979-8-3315-5678-5/25/$31.00 ©2025 IEEE

Smart Fault Detection in Electric Vehicles
Using Battery and Motor Operation Data
Driven Deep Learning

Yeaeun Lee*, Jin-Woo Lee', Nagyeong Ham', Euiseok Hwang*
*Department of Electrical Engineering and Computer Science, TDepartment of Al Convergence
Gwangju Institute of Science and Technology (GIST)

Gwangju, Republic of Korea
{leeyeaeun, realfcnstu, duriduri2000} @gm.gist.ac.kr, euiscokh@gist.ac.kr

Abstract—As electric vehicles (EVs) become more widespread,
early detection of component faults is essential for safety and
reliability. This study proposes a smart fault detection system that
analyzes daily EV operation data using deep learning models and
notifies users of potential defects via a mobile application. We
developed two models: an LSTM-based battery fault detection
model and a CNN-LSTM-based motor fault classification model.
Both models showed strong performance on real-world datasets.
For demonstration, the motor model was deployed in a physical
setup, achieving near-perfect classification under simulated fault
conditions. The results validate the feasibility and potential of
deep learning-based fault diagnostics for EVs, emphasizing the
need for further real-world validation.

Index Terms—Electric Vehicle(EV), Fault Detection, Deep
Learning, Predictive Maintenance, Time-Series Classification.

I. INTRODUCTION

As electric vehicles (EVs) become more prevalent, ensuring
the reliability of key components such as batteries and motors
is critical. In particular, early detection of faults can prevent
safety issues and reduce maintenance costs. However, real-
time fault diagnosis remains a challenge due to the com-
plexity and variability of EV systems. This study proposes
a simple fault detection system that combines deep learning
models with a mobile app for fault diagnosis. Two models
are developed: a Long Short Term Memory (LSTM) based
classifier for battery anomaly detection and a Convolutional
Neural Network-Long Short Term Memory (CNN-LSTM)
based multi-class classifier for motor fault diagnosis. As shown
in Fig. 1, once the vehicle becomes idle, the recorded data is
transmitted to an Al server for fault diagnosis, and the results
are then delivered to the user’s smartphone to support proactive
fault management. In this study, the system is implemented
and tested in a simulated environment.

II. FAULT DETECTION
A. Datasets

1) Battery Dataset: We utilized a publicly available EV
battery anomaly detection dataset [1]. The dataset includes
200,000 labeled time-series samples from 198 electric vehi-
cles, with each sample containing 128 time steps. The dataset
is 57.3% labeled defective and 42.7% normal.
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Fig. 1. The system architecture: The system represents the vehicle, company
(AI server), and consumer app components working together for diagnosis
and notification.
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2) Motor Dataset: We employed the publicly available
motor fault detection dataset from the AI Hub platform [2],
containing three-phase current signals (I, I, I.) from subway
ventilation motors rated 5.5 kW and 11 kW. The dataset
includes 5 fault categories: Normal, Rotor Unbalance, Bearing
Fault, Loose Belt, and Sensor Fault.

B. Models

1) Battery Module: We implemented a binary classifica-
tion model using a two-layer LSTM network. The input is
a sequence of 128 time steps with 7 features, denoted as
X € RBX12Z8X7 QOnly the last hidden state hjsg is used
for classification. To handle class imbalance, we applied a
weighted binary cross-entropy loss. The model was trained
using the Adam optimizer with a learning rate of 1072,

2) Motor Module: To capture both local spectral patterns
and temporal dependencies across windows, we employ a
compact 1D CNN followed by a two-layer bidirectional LSTM
(Fig. 2). The input tensor is X € RBEXS*x3%256 \where B is the
batch size, S is the window sequence length, and each window
contains three-phase current signals with 256 time samples per
phase. The CNN encodes local features within each window,
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Fig. 2. CNN-LSTM architecture for motor fault classification: Local signal
features are first extracted by 1D CNN layers, followed by BiLSTM layers
to capture sequential dependencies across time windows.

which are then sequentially processed by the BiLSTM to
capture inter-window dynamics. A final fully connected layer
produces class logits y € RP*5, which are passed through a
softmax to produce class probabilities. Weights are initialized
using He normal initialization. Training is performed using the
Adam optimizer with a learning rate of Ir = 10~3, along with
cross-entropy loss and a Reduce-on-Plateau scheduler.

IIT. DEMONSTRATION

To validate the practical feasibility of the proposed fault
detection system, we implemented a real-world-like integrated
setup. For testing, we simulated a simplified EV motor
system using a custom 3D-printed wheel. The system was
implemented using a TI LAUNCHXL-F28379D controller and
BOOSTXL-DRV8305 inverter, driving a TEKNIC M-2310P
permanent magnet synchronous motor (PMSM). The motor
was controlled via a voltage-by-frequency (V/f) method to
maintain a constant speed of 300 RPM. As shown in Fig 3,
rotor unbalance faults were simulated by attaching weights
of Og, 50g, and 100g, representing normal, warning, and
fault conditions. A three-class CNN-LSTM model was trained
specifically for this setup, and the predictions were transmitted
to a mobile app in real time via the Al server.

IV. RESULTS
A. Battery Fault Detection

The LSTM-based battery fault detection model achieved
an accuracy of 92.09%, a precision of 98.94%, a recall of
87.13%, and an F1 score of 92.66%. As shown in Fig. 4,
the confusion matrix confirms that the model successfully
distinguishes between normal and defective battery states.

B. Motor Fault Detection

The CNN-LSTM model for motor fault classification
achieved an F1 score of 88.49%, with a precision of 88.58%
and recall of 89.62%. All five classes recorded AUC values
above 0.75, confirming the model’s effectiveness in multi-class
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Fig. 3. Motors used in the demo: (a) normal (0g), (b) warning (50g), and (c)
fault condition (100g).
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Fig. 4. Confusion matrix of models: (a) Battery fault detection model results.
(b) Motor fault detection model results.

fault detection. For the demonstration model, a total of 1,401
samples were evaluated—457 normal, 469 warning, and 475
fault cases. The model correctly identified all 1,401 samples
without any misclassification.

V. CONCLUSION

We presented deep learning-based fault detection models for
EV batteries and motors using LSTM and CNN-LSTM archi-
tectures, respectively. Both models showed high performance
on public datasets, confirming their effectiveness. In addition,
A simplified physical test of motor fault classification was
implemented with artificially simulated faults. This served as
a proof-of-concept for the model’s applicability. Future work
will extend validation to a broader set of EV traction motors
that exhibit real, naturally occurring faults across multiple
vehicle models and operating conditions.
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