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Abstract—Efficiently assigning incoming containers to inland
container depots is critical for reducing operational disruptions
and improving overall terminal efficiency. This paper addresses
the container depot selection problem with the objective of min-
imizing container relocations, a key factor influencing terminal
performance. We propose an integrated approach that accounts
for both immediate relocation costs incurred upon container
arrival and future relocation risks estimated via Monte Carlo
simulation. The proposed method provides a balanced decision-
making framework that considers both short-term and long-
term relocation factors. To evaluate the effectiveness of our
proposed method, computational experiments were conducted
under diverse conditions, including varying container volumes,
initial yard occupancy levels, and weighting parameter.

Index Terms—Container relocation, multi-depot systems, yard
selection, monte-carlo simulation, operational optimization.

I. INTRODUCTION

Global containerized trade continues to grow steadily, with
volumes projected to increase by approximately 3 percent
annually between 2024 and 2028 [1]. This sustained growth
is driven by the ongoing global economic recovery, the rapid
expansion of e-commerce, and evolving international trade
patterns. As a result, congestion at maritime terminals is inten-
sifying worldwide [2], [3]. To manage the increasing volume
of containers and alleviate quayside congestion, major ports
have adopted operational strategies that involve transferring
containers from maritime terminals to nearby Inland Container
Depots (ICDs), where containers are temporarily stored before
being delivered to final customers [4], [5].

In ICD-based operations, containers are ideally stacked
according to their planned departure dates. Those scheduled to
depart earlier are placed on upper tiers, while those departing
later are stored below [6]. However, the continuous arrival
of new containers frequently disrupts this optimal stacking
order, resulting in container relocations (reshuffling). These
relocations increase crane operation time, interfere with yard
truck movements, raise operational costs, and ultimately re-
duce terminal efficiency [7].
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Previous studies on the container relocation problem (CRP)
have primarily focused on minimizing relocations within in-
dividual yards through various optimization algorithms and
mathematical modeling [8]–[11]. In addition, heuristic and AI-
based approaches have proven particularly effective in reduc-
ing reshuffling operations and improving overall efficiency in
single-yard environments [12]–[14].

However, the involvement of multiple ICDs in modern port
operations presents a new operational challenge in selecting
the most suitable ICD for each newly arriving container. Yard-
selection strategies that focus solely on minimizing immediate
relocation costs may appear effective in the short term but
often result in significant long-term operational inefficiencies.
Concentrating containers in a limited number of ICDs can
lead to imbalanced yard utilization and accelerate overall
yard saturation. Moreover, when containers with varying de-
parture schedules are stored together in the same ICD, the
complexity and frequency of future relocations can increase
substantially, leading to a sharp rise in operational workload.
These compounded inefficiencies gradually degrade the overall
performance of the ICD system and constrain the logistical
throughput of the entire port. To overcome these challenges,
it is essential to adopt yard-selection strategies that systemati-
cally consider both immediate relocation costs and anticipated
future relocation risks.

To address this challenge, this paper proposes an effective
ICD selection strategy that jointly considers immediate reloca-
tion costs and future relocation risks. Specifically, we develop
a heuristic-based algorithm that estimates the number of
relocations required upon container arrival and assesses future
relocation risks using Monte-Carlo simulation. This integrated
approach enables terminal operators to make informed and
balanced ICD selection decisions, supporting both short-term
operational efficiency and long-term system stability.

The remainder of the paper is organized as follows. Section
II formally defines the ICD selection problem. Section III
presents the proposed heuristic algorithm. Section IV validates
the proposed approach through experimental results. Finally,
Section V concludes the paper and outlines potential directions
for future research.
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Fig. 1: Illustration of the container assignment process from an incoming container queue to multiple ICDs.

II. PROBLEM DEFINITION

Consider a container storage environment consisting of
multiple Inland Container Depots (ICDs), indexed by the set
Y = {1, 2, . . . ,m}. Each ICD y ∈ Y comprises multiple
container stacks arranged in a bay-row configuration, each
with a maximum allowable height H . Containers within stacks
should ideally be ordered based on their planned departure
dates, with containers scheduled to depart earlier placed above
those scheduled to depart later.

Given a queue of arriving containers Q, each container
c ∈ Q is assigned immediately to one of the ICDs upon
its arrival, as illustrated in Fig. 1. To maintain operational
efficiency, the assignment should minimize the total expected
number of relocations across all ICDs. The ICD selection
problem can be formally defined as the following optimization
problem:

minimize
∑
c∈Q

∑
y∈Y

R(y, c)xyc (1)

subject to
∑
y∈Y

xyc = 1, ∀c ∈ Q (2)

xyc ∈ {0, 1}, ∀y ∈ Y, c ∈ Q (3)

where xyc is a binary decision variable equal to 1 if container
c is assigned to ICD y, and 0 otherwise, and R(y, c) denotes
the estimated number of relocations incurred when assigning
container c to ICD y.

The objective is to determine an assignment of incom-
ing containers to ICDs that collectively minimizes the total
expected relocations. Each container must be immediately
allocated to exactly one ICD upon arrival, which reflects
realistic operational constraints. Due to the combinatorial
complexity of this problem, we propose an efficient heuristic
approach, detailed in Section III, designed to provide effective
and computationally tractable solutions suitable for real-time
operational decision-making.

III. METHODOLOGY

In this section, we present a heuristic approach to address
the ICD selection problem described in the previous section.
The proposed heuristic aims to assign each arriving container
to the most suitable ICD by considering two important types
of container relocations: immediate relocations and antici-
pated future relocations. An immediate relocation occurs when
assigning a newly arriving container disrupts the optimal
stacking order within an ICD, requiring other containers
to be moved immediately in order to maintain the correct
sequence. On the other hand, anticipated future relocations
refer to the expected relocations that may occur later due to
subsequent container arrivals, capturing the potential long-term
operational disruptions.

Our heuristic approach integrates both immediate and fu-
ture relocation costs, consisting of three core components:
(1) estimation of immediate relocation costs for each ICD
upon container arrival, (2) assessment of anticipated future
relocation risks using Monte-Carlo simulations, and (3) com-
bination of these two estimates into an unified decision-making
criterion. Each of these components is detailed in the following
subsections.

A. Immediate Relocation Cost Estimation

When assigning a newly arrived container c ∈ Q to an
ICD y ∈ Y , it is essential to maintain containers stacked
according to their planned departure dates. Ideally, containers
scheduled for earlier departure should always be positioned
above those departing later. Violations of this stacking order
inevitably trigger immediate relocations of containers, directly
impacting operational efficiency.

To efficiently estimate immediate relocation costs, denoted
as Rnow(y, c), we propose a practical heuristic comprising two
main phases. In the first phase, the heuristic identifies stacking
violations introduced by inserting the incoming container.
Specifically, it identifies and counts containers positioned
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Fig. 2: An illustrative example demonstrating the estimation
of immediate relocations. In this example, containers are
initially stacked in a random order, violating the ideal stacking
sequence based on departure dates. The heuristic first identifies
the containers violating the desired stacking order (Initial
Container Relocation, colored in red). Subsequently, these
containers are removed temporarily and reassigned to stacks,
considering additional relocations (Additional Container Re-
location, colored in green).

incorrectly, which refers to containers stacked above others
scheduled to depart earlier, as initial relocation requirements.
In the second phase, the heuristic addresses cases where these
improperly positioned containers cannot be directly relocated
without additional relocations. If the departure date of an im-
properly positioned container is later than that of all properly
stacked containers currently available at stack tops, additional
container relocations are required. The heuristic selects the
stack requiring the minimum number of extra moves to resolve
these secondary violations and incrementally updates the total
relocation estimate. An illustrative example demonstrating this
process is provided in Fig. 2.

B. Future Relocation Cost Estimation

While immediate relocation costs address disruptions
caused by a newly arriving container, anticipated future re-
location costs consider potential relocations arising from con-
tainers arriving subsequently. Due to the inherent uncertainty
regarding future container arrivals, precise calculation of future
relocations is challenging. Therefore, we employ a Monte-
Carlo simulation-based approach to robustly estimate the
anticipated future relocation burden, denoted as Rfuture(y, c),
incurred by assigning container c to ICD y.

The heuristic begins by hypothetically placing the newly
arrived container c into ICD y and temporarily updating the
ICD’s state. Then, N independent future arrival scenarios
are simulated, each involving a single additional container.
For each scenario, the simulated container’s departure date is
randomly generated from a predefined probability distribution,
such as a uniform distribution over the next 30 days.

For each simulated arrival, the heuristic estimates the im-
mediate relocation cost Rnow(y, c

sim
n ), using the procedure

described in the previous subsection. The anticipated future
relocation cost for ICD y is then computed as the average of
these immediate relocation costs across all N scenarios:

Rfuture(y, c) =
1

N

N∑
n=1

Rnow(y, c
sim
n ) (4)

where csimn represents the container arrival simulated in
scenario n.

C. Integrated ICD Selection Policy

The final stage of our heuristic integrates both imme-
diate and anticipated future relocation costs into a unified
decision-making criterion. Given the immediate relocation
cost Rnow(y, c) and the anticipated future relocation cost
Rfuture(y, c) for container c and ICD y, we define an integrated
cost measure J(y, c) as a weighted sum:

J(y, c) = αRnow(y, c)+(1−α)Rfuture(y, c), 0 ≤ α ≤ 1 (5)

The weighting parameter α controls the relative importance
placed on immediate versus future relocations. A higher value
of α prioritizes immediate operational convenience, while a
lower value emphasizes long-term operational stability and
resilience against future disruptions.

For each incoming container c, the heuristic evaluates
J(y, c) across all candidate ICDs and assigns the container
to the ICD y∗ with the lowest integrated cost:

y∗ = argmin
y∈Y

J(y, c) (6)

This integrated selection policy provides a balanced, inter-
pretable, and practical solution that can be directly applied to
real-time container assignment decisions, effectively address-
ing both short-term operational demands and long-term ICD
utilization efficiency.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the pro-
posed heuristic ICD selection strategy through a series of
computational experiments. Specifically, we investigate how
effectively the heuristic reduces container relocations under
varying conditions, including different numbers of arriving
containers, initial yard occupancy levels, and the weighting
parameter. We compare the proposed approach against two
baseline heuristics (immediate-only and future-only) and a
random selection strategy.

A. Experimental Setup

The simulation environment consisted of multiple ICDs,
each configured with 3 bays, 4 rows, and a maximum stack
height of 5 tiers. Container arrival scenarios were generated
randomly, with departure dates uniformly distributed between
1 and 30 days from the arrival date. For each test scenario,
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Fig. 3: Effect of the number of incoming containers on total
relocations (Initial yard occupancy = 50%, α = 0.5).

Fig. 4: Effect of initial yard occupancy on total relocations
(Number of incoming containers = 50, α = 0.5)

container yards were randomly initialized while maintaining a
predefined occupancy rate. To estimate the anticipated future
relocation costs, Monte-Carlo simulations were conducted
with 100 repetitions per container assignment. The perfor-
mance metric for evaluation was the total number of container
relocations incurred throughout the simulation.

B. Effect of the Number of Incoming Containers

We investigated the impact of the number of incoming
containers, ranging from 10 to 90, while maintaining an initial
yard occupancy of 50% and setting the weighting parameter α
= 0.5. As depicted in Fig. 3, the proposed strategy (Balance)
consistently outperformed all other methods, recording the
lowest number of relocations across the entire range. While the
immediate-only heuristic (Immediate) performed adequately
with a smaller number of incoming containers, its efficiency
declined notably as container volumes increased. In contrast,
the integrated approach maintained robust performance and
significantly lower relocation counts, even at higher container
volumes. This demonstrates its ability to effectively balance
immediate and anticipated future relocation costs. These re-
sults highlight that focusing solely on immediate relocation
costs overlooks potential future disruptions, which become
increasingly significant as container traffic grows.

(a) Initial Yard Occupancy = 30%

(b) Initial Yard Occupancy = 50%

(c) Initial Yard Occupancy = 70%

Fig. 5: Effect of the weighting parameter α on average relo-
cations under different initial yard occupancy levels (Number
of incoming containers = 50).

C. Effect of Initial Yard Occupancy

We also examined the influence of initial yard occupancy
levels by varying occupancy rates from 30% to 70%, while
fixing the number of incoming containers at 50 and the
weighting parameter α = 0.5. Results shown in Fig. 4 illustrate
that the proposed method consistently achieved the fewest
number of relocations across all occupancy levels. At lower
occupancy rates, the immediate-only heuristic produced results
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comparable to the balanced heuristic, but its effectiveness
deteriorated significantly as yard congestion increased beyond
50%. The future-only heuristic (Future) consistently underper-
formed compared to the balanced method, but occasionally
outperformed the immediate-only heuristic at higher occu-
pancy levels. This suggests that accounting for future reloca-
tion risks becomes particularly advantageous under congested
yard conditions. The random strategy (Random) consistently
showed the poorest performance across all occupancy lev-
els, highlighting the importance of strategic decision-making.
Overall, these results indicate that the proposed heuristic
effectively mitigates operational disruptions even as yard con-
gestion intensifies.

D. Effect of the Weighting Parameter α

To examine how the balance between immediate and fu-
ture relocation costs affects the performance, we varied the
weighting parameter α ∈ [0, 1] under three yard occupancy
conditions: 30%, 50%, and 70%. The parameter α determines
the trade-off between immediate and future relocation costs,
where α=1 considers only immediate costs, and α=0 considers
only future relocation risks. In each setting, the number of
incoming containers was fixed at 50.

As shown in Fig. 5a–5c, the number of relocations followed
a U-shaped trend across all occupancy levels, indicating the
presence of an optimal weight parameter value. When the yard
occupancy was relatively low (30% and 50%), the optimal
performance was achieved with α = 0.3, suggesting that
giving greater importance to future relocation risks leads to
more stable stacking in the long term. Under heavy congestion
(70% occupancy), the optimal value shifted to α = 0.7,
highlighting that avoiding immediate disruption becomes more
critical when space is limited.

These findings indicate that the most effective weighting be-
tween immediate and future relocation costs varies depending
on yard occupancy. In more spacious environments, planning
for future relocations is advantageous, while under congested
conditions, minimizing immediate reshuffling becomes essen-
tial.

V. CONCLUSION

This study addressed the container assignment problem in
multi-yard inland container depots by proposing a heuristic
strategy that balances immediate relocation costs and antici-
pated future relocation risks. Through Monte Carlo simula-
tion and a unified cost formulation, the proposed heuristic
demonstrated robust adaptability and performance across di-
verse operational scenarios. Simulation results showed that
the heuristic consistently outperformed baseline strategies,
particularly under high traffic volumes and congested yard
conditions, by reducing total relocation counts and mitigating
future operational disruptions.

These findings validate the importance of integrating both
short-term and long-term considerations into yard allocation
decisions. Furthermore, the weighting parameter offers a flex-
ible control mechanism to tailor the decision-making process

according to specific operational preferences and priorities. As
future work, we plan to explore the dynamic adjustment of the
weighting parameter based on real-time yard conditions and
extend the framework to multistage decision-making settings
that incorporate container priorities and departure uncertain-
ties.
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