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Abstract—The upper mid-band (FR3, 7.125 - 24.25 GHz)
of 6G presents unique challenges for beamforming due to its
lower path loss and richer multipath effects compared to the
mmWave (FR2, 24.25 - 52.6 GHz). Traditional narrow, highly
directional beamforming designed for FR2 can lead to suboptimal
performance in FR3, as it neglects the richer set of usable
propagation paths present in this band. In this work, we propose
a practical hybrid beamforming design for FR3 that explicitly
exploits these multipath characteristics, with a simple, lightweight
deep neural network employed to assist in estimating path-
wise weights. The design adaptively prioritizes and combines
multipath components to improve overall transmission quality.
Experimental results show that this approach enables more
reliable and robust beamforming performance with modest model
complexity, highlighting its potential for practical deployment in
next generation mobile systems.

I. INTRODUCTION

In the evolution toward 6G wireless systems, the upper mid-
band (FR3, 7.125 - 24.25 GHz) has emerged as a critical
frequency range, offering a balance between coverage and
capacity for dense urban deployments. Beamforming in FR3
faces unique challenges compared to both sub-6GHz (FR1)
and mmWave (FR2) frequencies. While FR2 is characterized
by highly directional and sparse propagation, FR3 channels
exhibit moderate path loss alongside richer multipath propa-
gation [1]–[4]. In this regime, conventional narrow or single-
path beamforming techniques, which maximize signal power
around the strongest path, fail to capitalize on the additional
spatial diversity available in the channel. To address this limi-
tation, multipath-aware beamforming aims coherently combine
distinct propagation paths, reinforcing the received signal and
improving robustness against blockage and fading.

Traditional analog beamforming architectures, commonly
adopted for implementing narrow beams, are fundamentally
limited for multipath exploitation: they can only manipulate
the phase of transmitted signals. To generate multiple beams
the analog arrays must be divided into sub-arrays. However,
this division reduces the array gain per beam and restricts the
flexibility of the beam pattern [5]. Meanwhile, fully digital
beamforming, which enables independent phase and amplitude
control at each antenna, allows for the optimal combining
of all significant multipath components. As a result, digital
beamforming achieves far superior performance, but it remains

Fig. 1. Concept of downlink multipath-aware hybrid beamforming.

prohibitively expensive and power-consuming for practical
systems.

Hybrid beamforming is a widely studied compromise to
overcome the limitations of analog and fully digital beam-
forming [6], [7]. In hybrid architectures, a limited number of
digital RF chains are used together with analog phase shifters
to control a large antenna array. This architecture enables
flexible beam steering while keeping hardware cost and power
consumption manageable, making hybrid beamforming an
effective solution for FR3.

Within the hybrid MIMO architecture, we propose a prac-
tical multipath-aware beamforming scheme tailored for FR3
channels. In our approach, the codebook based analog beam-
former implements wide beams, that span sufficiently broad
angular sectors to encompass multiple significant propagation
paths simultaneously. Inspired by the Type-II codebooks in
3GPP NR [8], the digital baseband precoder is computed by
a weighted sum of the effective steering vectors associated
with each usable path within the wide beam’s coverage. The
weights are derived via a lightweight neural network that maps
the geometric channel parameters (e.g., angle, gain, delay)
to complex coefficients optimized for the received signal
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strength. We adopt a lightweight network to leverage deep
learning’s capability to model complex nonlinear mappings,
while keeping the model simple enough for real-time deploy-
ment. Our method enables robust and efficient beamforming
for FR3, while maintaining the practical feasibility and low
complexity. This concept is illustrated in Fig. 1, which depicts
how multiple significant paths can be used to reinforce signal
transmission within a hybrid beamforming framework.

II. FR3 HYBRID MIMO SYSTEM

A. Hybrid Beamforming

We consider a single stream downlink transmission scenario
where the base station (BS) is equipped with Nt = Nx ×Ny

uniform planar antenna (UPA) elements and employs hybrid
beamforming with Nrf RF chains to serve a single antenna
user. The received signal y at the user is given by

y = hHFRFfBBs+ n, (1)

where h ∈ CNt×1 denotes the downlink channel vector from
the BS to the UE and n ∼ CN (0, σ2

n) is the additive Gaussian
noise. FRF ∈ CNt×Nrf is the analog RF beamformer, and
fBB ∈ CNrf×1 is the digital baseband precoder. The overall
beamformer is subject to the power constraint ||FRFfBB||2 ≤
Pt, where Pt is the transmit power budget.

The analog beam is realized using phase shifters, so every
nonzero element of |[FRF]i,j | has constant unit modulus. To
ensure practical feasibility, FRF is not adaptively optimized for
each instantaneous channel realization but is instead selected
from a finite codebook of candidate beams. These beams
are implemented as wide beams designed to span sufficiently
broad angular sectors, thereby encompassing multiple signif-
icant multipath components simultaneously. In this work, we
construct the codebook using the DFT matrix, which enables
the analog beamformer to generate directional beams with low
hardware complexity.

In our scenario, we adopt a partially connected hybrid
architecture described in [7] and demonstrated in Fig. 2. This
configuration achieves lower hardware complexity and power
consumption compared to its fully connected counterpart. Each
RF chain is connected to a dedicated subarray with nt =
nx × ny = Nt/Nrf antenna elements in this configuration.
The analog beamforming matrix is given by

FRF = diag
([
fRF,1 · · · fRF,Nrf

])
, fRF ∈ Cnt×1, (2)

where FRF is block-diagonal, and each block fRF,i corre-
sponds to the analog beamforming vector applied to the ith
subarray. In the typical case, all Nrf blocks are chosen to be
identical to implement the wide beams.

The combined effect of the physical channel h and the ana-
log beamformer FRF is represented by the effective channel
g = FH

RFh ∈ CNrf , such that the signal model in (1) becomes

y = gHfBBs+ n. (3)

Based on this model, the achievable rate is given by

R = log2

(
1 +

Pt|gHfBB|2

σ2
n

)
, (4)

Fig. 2. Partially connected hybrid beamforming architecture.

where |gHfBB| denotes the beamforming gain.

B. Channel Model

As for the channel model, we consider the geometric model
where the channel is expressed as

h =
L∑

l=1

αle
−j2πfcτla(θl, ϕl) ∈ CNt×1, (5)

where L is the number of propagation paths, fc is the carrier
frequency, αl is the complex path gain of the lth path,
τl is the corresponding delay, θl and ϕl are the azimuth
and elevation angles, respectively. The array response vector
a(θ, ϕ) ∈ CNt×1 of the UPA is given by

a(θ, ϕ) =
1√
Nt

[
1 · · · ejπ(Nx−1) cos θ sinϕ

]T

⊗
[
1 · · · ejπ(Ny−1) cosϕ

]T
. (6)

Thus, the lth path is fully characterized by the set of pa-
rameters {θl, ϕl, αl, τl}. The overall channel between the
BS and the user can therefore be compactly represented
by the parameter vectors θ =

[
θ1 θ2 · · · θL

]
, ϕ =[

ϕ1 ϕ2 · · · ϕL

]
, α =

[
α1 α2 · · · αL

]
, τ =[

τ1 τ2 · · · τL
]
.

III. MULTIPATH-AWARE BEAMFORMING DESIGN VIA
LEIGHTWEIGHT NETWORK

In this work, we assume that the channel parameters of all
significant paths—namely the angles of departure, complex
gains, and delays—are perfectly known at the transmitter. In
practice, such information can be obtained through estimation
techniques including subspace-based methods [9], compressed
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sensing [10], [11], or deep learning based approaches [12],
[13]. Although this assumption may be optimistic, it allows us
to focus on the core problem at hand: determining the optimal
multipath-aware beamforming design under practical hybrid
constraints. By considering the ideal case of perfect channel
knowledge, we analyze the performance limits and design
principles for learning the relations between the paths, without
the confounding effects of estimation errors. This provides
theoretical insight and serves as a reference for future research
considering more realistic channel acquisition.

A. Analog Beam Selection

The objective is to identify the optimal analog beamformer
F

(k)
RF, and design the digital precoder fBB for multipath aware

beamforming. As discussed in Section II-A, FRF is not adap-
tively optimized for each channel realization, but is instead
selected from a predetermined codebook of candidate analog
beams. At this stage, the goal is to choose F

(k)
RF so as to

maximize the effective channel gain ||g|| = ||FH
RFh||. This

selection can be formulated as the following optimization
problem.

max
k

||(F(k)
RF)

Hh||

s.t. F
(k)
RF ∈ FRF = {F(1)

RF, · · · ,F
(K)
RF }, (7)

where FRF denotes the set of analog beams, i.e., the analog
beam codebook. Since the cardinality of FRF is limited, the
above optimization can be efficiently solved via exhaustive
search (beam sweeping) over all codebook entries.

B. Path Filtering

After selecting the best F(k)
RF for transmission, we filter the

multipath components to retain only those whose directions are
within the coverage of the selected analog beam. Specifically,
we consider the half-power beamwidth (HPBW) [14], which
for a UPA with antenna spacings of dx = dy = λ/2, is
approximately

HPBWazimuth ≈ 101°
nx

HPBWelevation ≈ 101°
ny

. (8)

Any path with azimuth and elevation angles (θl, ϕl) outside
the HPBW region A(k) of the selected analog beam is re-
garded as unusable and discarded. Consequently, only the
channel paths effectively covered by F

(k)
RF are retained for

hybrid beamforming. We denote the parameters of these usable
paths as {θ̃, ϕ̃, α̃, τ̃}, where only the parameters such that
(θl, ϕl) ∈ A(k) are included. After the filtering process, only
a L̃ paths remain, with θ̃, ϕ̃, α̃, τ̃ ∈ CL̃.

C. Digital Precoding Design Principle

To enable effective multipath-aware beamforming, we next
design the digital precoding vector fBB. Motivated by the
Type-II codebook framework, we adopt a dictionary-based
approach in which each resolvable path is represented by a

distinct steering vector. Accordingly, we construct a matrix of
array steering vectors corresponding to the directions of the
P̃ usable paths:

A =
[
a(θ̃1, ϕ̃1) · · · a(θ̃L̃, ϕ̃L̃)

]
∈ CNt×L̃. (9)

Since the analog beamforming stage imposes a structural
constraint on the realizable beams, we apply the pseudo-
inverse of the analog beamformer to mitigate this distortion.
This yields the effective dictionary matrix:

B = F†
RFA ∈ CNrf×L̃. (10)

The purpose of this transformation is to ensure that the
resulting hybrid beam, i.e., FRFfBB, approximates the desired
multipath beam pattern given by a weighted combination of
steering vectors:

∑L̃
l=1 wla(θ̃l, ϕ̃l) = Aw. Here the complex

weights wl jointly capture both phase and amplitude. Accord-
ingly, the digital precoder is derived as:

f̂BB = βBw (11)

where w =
[
w1 · · ·wL̃

]
∈ CL̃ contains the path-specific

complex weights, and β =
√

Pt

||FRFBw||2 ∈ R is the scaling
factor that enforces the power constraint.

D. Lightweight Network for Weight Estimation

We employ a lightweight deep learning network to learn
the nonlinear mapping from the filtered channel parameters
{θ̃, ϕ̃, α̃, τ̃} to the beamforming weight vector w.

f(θ̃, ϕ̃, α̃, τ̃ ; η) = w, (12)

where η denotes the model parameters.
To implement this mapping, we adopt a simple feedforward

neural network consisting of multiple fully connected (FC)
layers with ReLU activation is employed. The mapping is
structured as a composition of linear and nonlinear operations:

f(x) = Wnσ(· · · (σ(W1(x) + b1)))) + bn (13)

where x is the input feature vector, σ(·) the ReLU, and
Wi,bi represents the weights and biases of the ith fully
connected affine transformation. While more sophisticated
architectures could potentially be considered, our aim is to
demonstrate that accurate path-wise weight estimation and
near-optimal beamforming performance can be achieved even
with a compact neural network. This choice further aligns with
practical deployment scenarios where low latency, energy-
efficient inference at the BS is essential. Empirical results
in Section IV-B show that the lightweight FCN effectively
captures the underlying mapping of (12).

To train the model, we leverage a loss function based on
the beamforming gain for the effective channel g = FH

RFh,
explicitly incorporating the transmit power constraint. The loss
is defined as:

L = − |gHf̂BB|
|gHfBB,opt|

= −β|gHBw|√
Pt||g||

, (14)
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where gHBw represents the projection of the hybrid beam
onto the effective channel. The normalization by

√
Pt||g||

ensures the metric is invariant to channel norm and transmit
power. This loss function guides the neural network to infer
a weight vector w that maximizes the effective received
signal strength at the user, while remaining consistent with
the hardware constraints imposed by hybrid beamforming.

Notably, the denominator incorporates the optimal beam-
forming gain, corresponding to the maximum ratio transmis-
sion (MRT) solution for the effective channel, i.e.,

fBB,opt =
√
Pt

g

||g||
. (15)

Normalizing the beamforming gain by this optimal value
|gHfBB,opt|, ensures that it is bounded for stable training,
and enables direct interpretation of the loss as the relative
performance gap with respect to the optimal beamformer.

By minimizing this loss, the network learns to produce a
digital precoder that approaches maximum achievable gain to
the user over the selected analog beam and the channel. Hybrid
beamforming performance is optimized while accounting for
both hardware constraints and the inherent multipath charac-
teristics of FR3 channels.

IV. SIMULATIONS AND DISCUSSIONS

A. Simulation Setup

In our simulations, the dataset is generated from ray tracing
on OpenStreetMap models of real urban environments. Users
are randomly placed within a 200 m radius of the BS, con-
sistent with the urban microcell (UMi) deployment scenario
specified in 3GPP TR 38.901 [15]. The BS is positioned at a
height of 1.5 m, in accordance with UMi specifications. For
each user location, ray tracing is used to extract the multipath
channel parameters, as illustrated in Fig. 3. Both LOS and
NLOS cases are generated, and analog beam selection and
path filtering is performed prior to model training.

The BS is equipped with a UPA of Nt = 256 (16 by 16) an-
tennas and Nrf = 64 RF chains, with each RF chain connected
to a nt = 4 (2 by 2) subarray. Under this configuration, the
analog beam exhibits HPBW of approximately 25.5° in both
azimuth and elevation, as given by (8). The carrier frequency
is set to 7.5 GHz.

To ensure diversity and generalization, we construct a
dataset of 10,000 samples spanning 5 different city maps. The
neural network consists of 3 FC layers (n = 3): the first hidden
layer has 64 units, the second contains 32 units, and ReLU
activation is applied after each hidden layer. Early stopping
with a patience of 5 epochs is employed to prevent overfitting.

B. Evaluation and Discussions

To evaluate the effectiveness of the proposed path-wise
beamforming method, we compare it against two baseline
hybrid beamforming schemes.

• Single-path (Strongest-path) Beamforming: In this
baseline, the analog and digital beamformers are designed
to maximize the gain along the single strongest path (i.e.,

Fig. 3. Ray tracing in urban environment via OpenStreetMap file for data
generation.

Fig. 4. Achievable Rate vs. Transmit Power Pt for different beamforming
schemes in 256× 64 FR3 hybrid MIMO system.

the path with the largest path gain). This approach serves
as a reference case where multipath components are not
exploited.

• DFT Codebook-based Beamforming: In this scheme,
both the analog beamformer and the digital precoder
are designed based on DFT-based codebooks. Similar to
the analog beam, the digital precoder fBB is constrained
to be one of the codebook vectors and is selected via
beam sweeping. This design follows the principle of the
NR Type 2 codebook [8], which employs DFT-based
structures for both analog and digital domains to enable
practical implementation.

For a fair comparison, all methods are implemented under
the same partially connected hybrid beamforming architecture,
with identical analog beam codebooks and hardware con-
straints as the proposed scheme. Performance is evaluated on
unseen ray-traced channel datasets and using system parame-
ters described in Section IV-A.

Fig. 4 illustrates the achievable rate as a function of the

12



Fig. 5. Distribution of Normalized Beamforming Gain for 2,000 users vs.
azimuth of each users’ strongest path. The x axis is based on the strongest
path direction (not necessarily LOS) to reflect both LOS and NLOS scenarios.

transmit power Pt for the proposed path-wise beamforming
scheme, the single-path (strongest-path) baseline, and the DFT
codebook-based baseline. The proposed scheme consistently
outperforms both baselines across the entire Pt range. The
rate gap becomes more evident with increasing transmit power.
At a representative transmit power of Pt = 20 dBm, the
proposed scheme achieves an average rate of 2.382 bps/Hz,
which corresponds to a 27.1% improvement over the single-
path baseline (1.875 bps/Hz) and an 88.5% improvement over
the DFT codebook baseline (1.264 bps/Hz). This performance
gain arises from the ability of the proposed model to exploit
multiple multipath components by optimally combining their
amplitudes and phases. In contrast, the single-path method
relies solely on the strongest path, while the DFT codebook
approach is further limited by its restricted set of beam
directions in both analog and digital domains.

Fig. 5 shows a scatter plot of the normalized beamforming
gain

|gHfBB|
||g|| · ||fBB||

(16)

for 2,000 randomly located users under the three considered
schemes. The absence of users outside the angular range of
−20◦ to +20◦ results from the directional constraint imposed
by the analog beam. The proposed method (green) achieves
near-optimal normalized gain for the vast majority of users
across the azimuth range, with most points tightly clustered
around 1. The single-path baseline (orange) also attains high
gains for many users but exhibits greater variability, par-
ticularly in NLOS scenarios or when significant multipath
components are present. The DFT codebook-based method
(blue) displays a much wider spread and lower average gain,
especially for users whose dominant path angles do not align
with the quantized codebook directions. Overall, the scatter
plot highlights the robustness of the proposed scheme to
variations in user position and channel conditions.

V. CONCLUSION

In this paper, we proposed a novel multipath-aware beam-
forming approach for practical hybrid MIMO systems in
FR3 band. The method leverages a lightweight deep learning
model to directly learn the optimal weights for combining
significant multipath components. Simulation results based
on realistic urban microcell scenarios and ray-traced channel
data demonstrate that the proposed scheme outperforms the
baselines across a range of transmit powers and diverse user
conditions. Future work will address the impact of imperfect
channel parameter estimation, extend the approach to multi-
user scenarios, and explore online learning techniques for real-
time adaptation.
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