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Abstract—Spectrum scarcity motivates integrated sensing and
communication (ISAC), where radar and communication coexist
in a shared band. We consider bistatic ISAC systems with
spatially separated transmitter and receiver to extend coverage
and suppress radar self-interference. The transmit base station
(BS) sends signals, while the receive BS captures radar echo
signals, predicts the beamformer, and feeds this beamformer
back to the transmit BS. Then, we introduce a Transformer-
based predictive beamforming scheme that converts radar echo
snapshots directly into downlink beamforming without perfect
channel state information. The sum rate maximization problem
is formulated using a penalty relaxation method that converts
the constrained problem into an unconstrained problem. The
formulated problem is nonconvex, and we address this issue
by employing a bistatic echo-based Convolutional Transformer
Network (B-ECTNet), which consists of two CNN modules and
one Transformer module. Simulation results validate that the
proposed method outperforms state-of-the-art baselines, achiev-
ing enhanced spectral efficiency while satisfying the radar signal-
to-interference-plus-noise ratio (SINR) constraint.

Index Terms—Beamforming, deep learning (DL), integrated
sensing and communication (ISAC), and vehicular networks.

I. INTRODUCTION

Rapid growth in vehicular networks is accelerating the
deployment of digital city services, autonomous driving sys-
tems, and real-time monitoring applications, which demand
both gigabit-level communication links and centimeter-level
sensing accuracy [1]. Base stations (BSs) that separately
handle communication and sensing functionalities result in in-
efficient use of spectrum and redundant hardware. In contrast,
integrated sensing and communication (ISAC), which com-
bines these two functionalities, achieves an effective balance
between communication and sensing performance [2]-[4].

In ISAC enabled vehicular networks, beamforming is a crit-
ical task, where large antenna arrays are utilized to design ra-
diation patterns that maximize communication rates in desired
directions while simultaneously ensuring sufficient angular
coverage and Doppler resolution for radar sensing. However,
optimizing these conflicting objectives, wherein narrow beams
improve throughput at the expense of radar coverage and broad
beams enhance radar coverage at the cost of spectral efficiency,
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results in an inherently non-convex optimization problem [5].
Therefore, it is crucial to jointly consider both sensing and
communication requirements when designing beamformer to
effectively manage these inherent trade-offs.

Recent advances in ISAC beamforming focus on joint de-
signs that balance radar sensing accuracy with communication
performance, ranging from conventional optimization problem
to deep learning based techniques. In [6], a transmit beam-
forming algorithm for multiple-input-multiple-output (MIMO)
radar improves radar metrics while meeting communication
quality of service constraints. For high-mobility mmWave ve-
hicular scenarios, where precise beam tracking and kinematic
prediction at roadside units are essential, an extended Kalman
filter with power allocation was proposed in [7].

To reduce signaling overhead, recent studies have explored
deep learning-based predictive beamforming schemes that re-
duce signaling overhead by bypassing explicit channel tracking
and directly inferring future beams for vehicular ISAC. In [8],
convolutional neural network (CNN)-long short-term memory
(LSTM) hybrids and a two-stage LSTM network for beam
prediction in vehicular ISAC were proposed. The LSTM-based
algorithm relies heavily on channel prediction or historical
channel state information (CSI), which increases signaling
overhead and limits beamforming performance. Additionally,
LSTM models have limited parallel processing capabilities and
insufficient spatial modeling, leading to higher latency and re-
duced accuracy. Therefore, a promising direction is developing
a high-performance, low-overhead beamformer that bypasses
CSI estimation and directly generates the beamforming matrix,
as exemplified by Transformer networks [9].

Although earlier studies [8], [9] focused on monostatic
ISAC beamforming, the self-interference-free bistatic architec-
ture, in which geographically separated transmit and receive
arrays provide isolation and wider sensing coverage, remains
largely unexplored. To bridge this gap, we propose a bistatic
echo-based CNN Transformer Network (B-ECTNet) that con-
verts real time echo snapshots into predictive beamforming
vectors, thereby boosting spectral efficiency while satisfying
the required radar SINR constraint.
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II. SYSTEM MODEL

We consider the vehicular networks where a transmit BS
is equipped with a mmWave massive MIMO uniform linear
array (ULA) consisting of N, transmit antennas and serves
K vehicle users. In a bistatic ISAC architecture, a spatially
separated receive BS, located apart from the transmitter and
equipped with its own N, receive antennas, possesses high
computing capability. We assume that the receive BS has high
computing capability, enabling it to predict the beamformer
and feed it back to the transmit BS via a backhaul connection
between the receive and transmit BSs. As future work, we will
investigate cases considering the limited backhaul capacity
[10] between the receive and transmit BSs and analyze its
impact on beamformer prediction performance. Additionally,
we will explore the effect of hardware constraints due to low-
resolution digital-to-analog converters (DACs) and analog-to-
digital converters (ADCs) in low-power transceivers [11]-[15]
as the number of antennas increases.

The BS transmits ISAC signals to the K vehicles at the n-th
instant, represented as s, (t) = [s1,n(t), ..., Sk.n(t)]T. At the
BS, a signal s,,(t) is transmitted as x,,(t) = F,,s,(t) where
F,, is the transmit beamforming matrix. We set beamforming
matrix F,, as F,, = [f,,, ..., fx »], where f.,, € CV*1. In
addition, the reflected echo signals are as follows:

r,(t) = (1)
K
wz Bk,neﬂﬂuk’ntbwzn)aH (chxn)xn (t = Tk.n)+1.(2),
k=1
(2)
where ¢ = N¢N, is the antenna gain, B, =

¢/ (Amdys, di,,) is the reflection coefficient, df’, is distance
between the receive BS and the vehicle, dtxn is distance
between the transmit BS and the vehicle, ¢ is the fading
coefficient, 0, is the receive angle of the k-th vehicle with
the receive BS at the n-th instant, 0%, is the transmit angle
of the k-th vehicle with the BS at the n-th instant, i, ,, is the
Doppler frequency, 4 ,, is the time-delay, and n,.(t) € CN-*1
is the complex additive white Gaussion noise with zero mean
and variance of o2, i.e., n.(t) ~ N(0,02). Furthermore, we
assume that a line-of-sight (LOS) channel is employed and the
steering vectors of the transmit and receive antenna array are
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Then, we define the received signal to interference plus
noise ratio (SINR) of the receive BS as follows:

gk,n(fk,n) (5)
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The received signal of k-th vehicle at the n-th instant is
Yin (t) )
\/me”””k ntg H Zfl i () + 1 (£),
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where «y,,, is given by ao(d}én/do)_", Vg, is the Doppler
frequency, and ny ,(¢) is the noise which follows a complex
Gaussian distribution with zero mean and unit variance. Here,
v 1s the path loss at a reference distance dy and 7 is the path
loss exponent. Then, we define SINR of the k-th vehicle at
the n-th instant can be presented as follows:
‘hg nfk mn |2
R (fn) = — ) )
" TRl + o2
Nyao(di,, /do)~ma™(6,,) represents the
channel vector between the BS and the vehicle.
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A. Problem Formulation

We formulate an optimization problem to maximize the
overall communication sum rate while satisfying the total
transmit power budget and the radar SINR threshold. Accord-
ingly, the optimization problem can be formulated as follows:

K
maximize E, _, Zlog2(1 + R (f,n)) (10)
k=1
subject to Tr (F,F}) < P, (11)
gk,n(fk,n) Z Fk,ny (12)

where P, denotes the maximum transmission power, the
objective function includes the term E, _, that presents the
ergodic average with respect t0 ry,—1 = [F1n—1,. -, "K.n—1)s
(11) is transmit power constraint of the BS, and (12) is the
minimum tolerable SINR threshold to ensure sensing perfor-
mance. Subsequently, we recast the optimization problem in
(10) into an equivalent unconstrained form as follows:

K
ma)%mlze E,, _, lz logs (1 + R n (fr, n))‘| (13)
k=1 !
o (win(0,en(fin) = Ty,)) (14
g (max(0, Tx (F,FY) — P))°, (15

where A\ and )\, are penalty parameters used to determine the
magnitude of the penalty term.

Achieving the desired trade-off between communication
rate and sensing accuracy depends on the careful design of



TABLE I
HYPERPARAMETERS OF THE PROPOSED B-ECTNET

Input: T,,_1 and F,,_1 with the size of [B, 2, K] and [B, 2Ny, K]

Layers/Modules/Blocks Parameters Values
Concatenate layer Output shape [B,2+ 2N, K]
Convolutional layer (CNN) Kernel size [242N¢, 2Ny, 3]
Activation layer (CNN) Function ReLU

Attention mechanism  Output shape [B, 2N, K]
(Encoder)

FNN (Encoder) Output shape [B,2Ny, K]
Convolutional layer (CNN) Kernel size [2N¢, 2Ny, 3]
Activation layer (CNN) Function ReLU

Output: F,, = [Re{F,},Im{F,}] with the size of [B, 2Ny, K]

the beamforming matrix F,,. In addition, the reformulated
unconstrained optimization problem in (15) is still non-convex.
Accordingly, we propose B-ECTNet, a lightweight predic-
tive beamforming architecture that integrates two symmetrical
CNN branches for local spatial feature extraction with a
Transformer encoder block for capturing global dependencies.

III. PROPOSED ALGORITHM

We first introduce the input layer of the proposed B-
ECTNet. The complex echo signal r,_1 € CY* K and the
previous beamformer F,,_; € CN+*K are first decomposed
into their real and imaginary components as follows:

tho1 = F(Re{r,_1},Im{r,_}) eRP*ZXK  (16)
and
F,_1 = M(Re{F,_1},Im{F,_;}) e REX2N:xK,

Here, () : RBXE — REX2XE and M(.) :
RE*2NtxK represent the mapping function, where B denotes
the batch size. Then, the output of concatenated layer is

Xn—l = [fn—l;Fn—l

(17)
RBthxK N

] e RB*(2+2Nt)x K (18)
This serves as the unified input to the first CNN module,
ensuring that spatial features related to both the echoes and
the beamformer are jointly exploited in subsequent layers.

In addition, the encoder block duplicates the CNN feature
map to form the query, key, and value tensors Q,K, and
V ¢ RBx2Ntxdr  Here, dj, denotes the dimensionality of
the query and key vectors. Then, we apply scaled-dot self-
attention, softmax(QKT /v/dy) x V, to capture global depen-
dencies. The attention output passes through a position-wise
feed-forward network (FNN) and layer normalization, with
identity skip connections around both sub-layers to stabilize
gradients and accelerate convergence. Then, the optimzed
predicted beamforming matrix using B-ECTNet algorithm can
be formualted as follows:

Fn = ?71(,]0@(17‘71,—17]?%—1))'

Here, the function f,(-) is the nonlinear mapping employed
by B-ECTNet, processing the input data together with the
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network parameters and producing the optimized beamformer
and F~1(-) is inverse mapping function. The hyperparameters
of the proposed network are provided in Table L.

A. B-ECTNet Algorithm

We divide the B-ECTNet into three steps: offline training,
where the network learns the echo-to-beamformer mapping;
offline validation, which assesses model generalization by
detecting overfitting or underfitting; and online prediction,
where the trained model uses current echoes and the previous
beamformer to generate the next beamforming matrix in real
time, thereby enhancing overall system performance.

1) Offline Tramzn% Durmg offline training, an unlabeled
set X = {(r,,_,,F B | is applied to B-ECTNet. Then,
using (15), the formulated loss function is as follows:

Lg_ecTnet(w) (20)
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(23)

where f( Y »(w) is k-th and i-th batch column of F,. Ac-
cordmgly, we iteratively refine the parameters w via back-
propagation to minimize the loss. When the convergence is
reached, the trained proposed model can be written as

fw* (fn—th—l) = F:L

Here, f,- is the mapping function of the optimal iteration
mapping.

2) Offline Validation: Let us assume a validation set defined
as

V= {(rg—)l ng)p F(B) )}

Evaluating the B-ECTNet output with loss function in (23)
allows us to assess its generalization performance and identify
potential overfitting or underfitting.

3) Online Prediction: Finally, we test the proposed algo-
rithm using a test example (T (test) F(fm‘)) In this regard, the

Tr—1>
optimized predicted beamformer is formulated as follows:

F (fw (rn la n— 1)) (25)

The overall proposed algorithm is summarized in Algorithm 1.

(24)
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IV. SIMULATION RESULTS

We adopt the hyperparameter configuration described in [9].
In addition, we set the path-loss exponent = 2, the reference
path loss cvg = —70 dB, the carrier frequency f. = 30 GHz,
and noise variance 0 = —30 dBm. We place the transmit BS
at the origin at (0, 0), locate the receive BS at (10, 0), and uni-
formly distributed each vehicle users within a circular region



Algorithm 1: B-ECTNet Predictive Beamforming

1 initialize: ¢; = 0, F; = Ny ax, random weight w, and
training set X
2 Unsupervised Offline Training:
Input: Training set X
while ¢; < Ny do
| Update w to minimze Lg_gcTnet(w) in (23)
Output: Well-trained f,«(-) in (24)
Offline Validation:
Input: Validation set V
while ¢ < Ny do
10 | Save Lp_gcTnet(w)
11 Output:LB_ECTNet(w)
12 Online Beamforming Prediction:
13 Input: Test sample set (£\*) WD)
14 do Beamforming Prediction using [« ()
15 Output:Predicted Beamforming F7 in (25)
16 return F7 .
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Fig. 1. The sum rate and radar SINR versus the maximum transmit power

for N = 16 BS antennas, SINR radar threshold I'y, ,, = 15 dB, and K = 4
users.

of radius 10 m centered on the BS. We consider the following
benchmarks for comparison. 1) Random beamforming (BF).

2) Maximum ratio transmission (MRT). 3) LSTM-based Net
(CLCCNet), reconstructed following the method in [8].

In Fig. 1, we consider N; = 16 transmit BS antennas,
N, = 16 receive BS antennas, K = 4 users, and I'y, ,, = 15
dB radar SINR threshold. We plot the average communication
sum rate in Fig. 1(a) and the radar SINR in Fig. 1(b) varying
the radar SINR penalty constraint A;. As shown in Fig. 1,
the proposed B-ECTNet algorithm attains the highest per-
formance compared to the other baseline methods satisfying
the radar SINR constraint. While the LSTM-based CLCCNet
outperforms conventional methods, its modeling is restricted to
short-term temporal patterns, whereas the proposed algorithm
of global self-attention captures long-range spatio-temporal
dependencies across the entire echo sequence, resulting in
superior performance.

V. CONCLUSION

In this paper, we introduced a Transformer-based predictive
beamforming scheme for bistatic ISAC vehicular networks
and a transmission protocol that eliminates the need for the
BS to obtain CSI or historical channel data, thereby reducing
signaling overhead. We formulated an optimization problem
to maximize the communication sum rate, converting it into
an unconstrained problem via a penalty method. A B-ECTNet,
combining a convolutional front end and a global self-attention
module, was developed to extract both local and global echo
features for predictive beamforming. Simulations demonstrate
that the proposed approach consistently surpasses state-of-the-
art beamformers in communication and radar performance.
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