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Links to download Matlab code:
https://ecse.monash.edu/staff/eviterbo/OTFS-VTC18/OTFS%20MRC%

20detection%20MATLAB%20code.zip

https://ecse.monash.edu/staff/eviterbo/OTFS-VTC18/OTFS_sample_code.zip
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* Y. Hong, T. Thaj, and E. Viterbo, Delay-Doppler Communications: Principles and

Applications. Academic Press - Elsevier, 2/2022, ISBN:9780323850285
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News

IEEE ComSoc Online Course:

OTFS and Delay-Doppler Communications

16 - 17 November 2022, 2:00 pm to 6:00 pm EST

E. Viterbo (Instructor), Y. Hong and T. Thaj (Developers)

Link: https://www.comsoc.org/education-training/training-courses/

online-courses/2022-11-otfs-and-delay-doppler-communications

Book: Y. Hong, T. Thaj, and E. Viterbo, Delay-Doppler Communications: Principles and

Applications. Academic Press - Elsevier, 2/2022, ISBN:9780323850285
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Introduction
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Evolution of wireless

Voice, Analog traffic

Voice, SMS, CS data 
transfer 

Voice, SMS, PS data 
transfer

PS data, VOIP

Mobile 1G 
Analog FDMA

Mobile 2G       
TDMA

Mobile 3G       
CDMA

Mobile 4G LTE       
OFDMA

1980s, N/A 1990s, 0.5 Mbps 2000s, 63 Mbps 2010s, 300 Mbps

Waveform design is the major change between the generations
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High-Doppler wireless channels
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Wireless Channels - delay spread

LoS path 

Reflected path

r1

r2

r3

Delay of LoS path: τ1 = r1/c

Delay of reflected path: τ2 = (r2 + r3)/c

Delay spread: τ2 − τ1

Received signal:
r(t) = h1 s(t − τ1)︸ ︷︷ ︸

delay

+h2 s(t − τ2)︸ ︷︷ ︸
delay

(Monash University, Australia) OTFS and Delay Doppler Communications
Seminar on OTFS and delay-Doppler Commun.

9 / 84



Wireless Channels - Doppler spread

LoS path 

Reflected path

v

θ 

v cosθ 

Doppler frequency of LoS path: ν1 = fc
v
c

Doppler frequency of reflected path: ν2 = fc
v cos θ

c
Doppler spread: ν2 − ν1
Received signal:

r(t) = h1 e
j2πν1(t−τ1)︸ ︷︷ ︸
Doppler

s(t − τ1)︸ ︷︷ ︸
delay

+h2 e
j2πν2(t−τ2)︸ ︷︷ ︸
Doppler

s(t − τ2)︸ ︷︷ ︸
delay
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Typical delay and Doppler spreads

Delay spread (c = 3 · 108m/s)

∆rmax Indoor (3m) Outdoor (3km)
τmax 10ns 10µs

Doppler spread

νmax fc = 2GHz fc = 60GHz
v = 1.5m/s = 5.5km/h 10Hz 300Hz
v = 3m/s = 11km/h 20Hz 600Hz
v = 30m/s = 110km/h 200Hz 6KHz
v = 150m/s = 550km/h 1KHz 30KHz
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Wireless Channels: time domain

Consider P propagation paths with parameters: (hi , τi , νi ), i = 1, . . . ,P

r(t) =
P∑
i=1

hie
j2πνi (t−τi )︸ ︷︷ ︸
g(t,τi )

s(t − τi )

Received signal in terms of time-varying convolution

r(t) =

∫
g(t, τ)︸ ︷︷ ︸

time-variant impulse response

s(t − τ)dτ

where the time-variant impulse response

g(t, τ) =
P∑
i=1

hie
j2πνi (t−τi )δ(τ − τi )
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Time-variant impulse response g(t, τ)

—————
* G. Matz and F. Hlawatsch, Chapter 1, Wireless Communications Over Rapidly Time-Varying

Channels. New York, NY, USA: Academic, 2011
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OFDM

OFDM - Orthogonal Frequency Division Multiplexing

Subcarriers

Frequency

OFDM divides the frequency selective channel into multiple parallel
sub-channels
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OFDM system model

Figure: OFDM Tx

Figure: OFDM Rx
(*) From Wikipedia, the free encyclopedia
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Effect of high multiple Dopplers in OFDM

Introduces inter carrier interference (ICI)

ICI

0

Frequency
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OTFS

Orthogonal Time Frequency Space Modulation (OTFS)(∗)

Solves the two cons of OFDM
Works in Delay–Doppler domain rather than Time–Frequency domain

——————
(*) R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R.

Calderbank, “Orthogonal time frequency space modulation,” in Proc. IEEE WCNC, San

Francisco, CA, USA, March 2017.
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Wireless channel representation
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Wireless channel representation

Different representations of linear time variant (LTV) wireless channels

g(t, τ )

B(f, ν)

h(τ, ν) H(t, f )

�
�

�	

@
@
@R

@
@
@R

�
�

�	

-
�

ISFT

SFT

Fτ

Ft

Ft

Fτ

delay-Doppler
channel response
(OTFS)

time-frequency
channel response
(OFDM)

time variant
channel response

frequency-Doppler
channel response

Figure: Different domain representations of a time-variant multipath channel impulse
response g(t, τ), also denoted as the delay-time channel response
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Wireless channel representation

The received signal in linear time variant channel (LTV)

r(t) =

∫
g(t, τ)︸ ︷︷ ︸

time-variant impulse response

s(t − τ)dτ → generalization of LTI

=

∫ ∫
h(τ, ν)︸ ︷︷ ︸

Delay–Doppler spreading function

s(t − τ)e j2πνtdτdν → Delay–Doppler Channel

=

∫
H(t, f )︸ ︷︷ ︸

time-frequency response

S(f )e j2πftdf → Time–Frequency Channel

Relation between Delay-Doppler channel response h(τ, ν) and time-frequency
channel response H(t, f )

h(τ, ν) =

∫ ∫
H(t, f )e−j2π(νt−f τ)dtdf

H(t, f ) =

∫ ∫
h(τ, ν)e j2π(νt−f τ)dτdν

Pair of 2D symplectic FT
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Wireless channel representation

Delay

Doppler

0 1 2 3 4

0
-1

-2

1

2
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Wireless channel representation

Delay

Doppler

0 1 2 3 4

0
-1

-2

1

2
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High mobility multipath channel in delay-Doppler domain

Received signal in terms of the delay-Doppler channel

r(t) =

∫ ∫
h(τ, ν)︸ ︷︷ ︸

Delay–Doppler channel response

s(t − τ)e j2πνtdτdν

where the delay-Doppler response of a multipath channel of P paths with
parameters (hi , τi , νi ), i = 1, . . . ,P

h(τ, ν) =
P∑
i=1

hie
−j2πτiνi︸ ︷︷ ︸
h′i

δ(τ − τi )δ(ν − νi )

This leads to

r(t) =
P∑
i=1

hie
−j2πνiτi︸ ︷︷ ︸
gain

e j2πνi t︸ ︷︷ ︸
Doppler

s(t − τi )︸ ︷︷ ︸
delay
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Delay-Doppler h(τ, ν) vs Time-frequency H(t, f ) channel
Multipath mobile channel
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Figure: The continuous delay-Doppler vs time-frequency channel representation of a high
mobility multipath channel (linear time-varying)
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Discrete baseband equivalent channel

Let the Tx signal s(t) be of bandwidth B = M∆f [Hz] and duration
Tf = NT [s], and T∆f = 1.

Let the baseband Rx sampling rate fs = 1/Ts = B [Hz]

Discrete-time signals sampled at sampling interval Ts = 1/B = T/M [s].

s[n] = s(t)|t=nTs , r [n] = r(t)|t=nTs

The discrete-time baseband channel for l , n ∈ Z

g s[l , n] = g(τ, t)|τ=lTs ,t=nTs

Received discrete baseband signal

r [n] =
∑
l

g s[l , n]s[n − l ]
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Time–Frequency and delay–Doppler grids

2 N

M

2

1

M∆f

1

NT

Doppler

Delay

2

M

2

∆f

T
Time

Frequency

2D SFFT

2D ISFFT

1 N
1

1

1

B = M∆f , Tf = NT [s], T = 1/∆f
delay resolution T/M = Ts , Doppler resolution ∆f /N = 1/Tf = 1/NT
Delay-Doppler channel response

h(τ, ν) =
P∑
i=1

h′iδ(τ − τi )δ(ν − νi )

Assume τi = li
(

1
M∆f

)
and νi = ki

(
1

NT

)
, li , ki ∈ Z

h[l , k] =

{
h′i if l = li , k = ki
0 otherwise
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OTFS modulation
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OTFS modulation by Hadani’17

ISFFT
Heisenberg
Transform

Channel
Wigner

Transform
SFFT

Time-Frequency Domain

Delay-Doppler Domain

Time Domain

Doppler

de
la

y

time

fr
eq

.

Figure: OTFS mod/demod

OTFS is equivalent to OFDM with 2-D unitary precoding (ISFFT) in the
time-frequency domain, which spreads each information symbol equally in M
sub-carriers and N time-slots.
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Delay–Doppler domain input-output relation (Ideal Pulse)

Received signal in delay–Doppler domain

y [k, l ] =
P∑
i=1

hix [[k − kνi ]N , [l − lτi ]M ]

= h[k , l ] ∗ x [k , l ] (2D Circular Convolution)
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(a) Input signal, x[k, l ]
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(b) Channel, h[k, l ]
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(c) Output signal, y [k, l ]

Figure: OTFS signals
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OTFS with ideal vs rectangular pulses – time–frequency
domain

Time–frequency input-output relation with ideal pulses

Ytf [k , l ] = Htf [k , l ]Xtf [k , l ]

Time–frequency input-output relation with rectangular pulses

Ytf [k , l ] = Htf [k , l ]Xtf [k , l ] + ICI + ISI

ICI – loss of orthogonality in frequency domain due to Dopplers

ISI – loss of orthogonality in time domain due to delays

(*) P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,”
IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501-6515, Oct. 2018.
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Rectangular pulses

Rectangular pulses:

TF I/O relation: ISI and ICI due to delay and Doppler spread

Ytf [k, l ] = Htf [k, l ]Xtf [k, l ] + ICI + ISI

DD I/O relation: 2-D twisted circular convolution

Y[k, l ] =
P∑
i=1

hiα(k, l , ki , li )X[[k − ki ]N , [l − li ]M ]

where α(k, l , ki , li ) = e
j2πki (l−li )

NM e
j 2π
N

(k−ki )
⌊
l−li
M

⌋
are the phase rotations due to

ICI and ISI (⌊·⌋ denotes the floor operation). They are associated with channel
delay and Doppler indices (ki , li ) and symbol location (k, l) in the DD grid,
which can be easily corrected.
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OTFS Input-Output Relation in Matrix Form
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OTFS transmitter implementation: M = 2048, N = 128

…

IFFT
128

IFFT
128

FFT
2048

FFT
2048

IFFT
2048

IFFT
2048

…

P/S+CP

de
la

y 
(M

=2
04

8)

Doppler (N=128)

de
la

y
fr

eq
ue

nc
y

(2
04

8 
su

bc
ar

rie
rs

)

ISFFT
MxN

time
(128 symbols)

Heisenberg transform
time-frequency -> time

(N-symbol OFDM transmitter)

.

.

.

…

…

time 
(128 symbols)

XMxN
Q-QAM

MN*log2(Q) bits 

IFFT
128

IFFT
128

P/S+CP

de
la

y 
(M

=2
04

8)

Doppler (N=128)

de
la

y

time
(128 symbols)

.

.

.
…

XMxN
Q-QAM

MN*log2(Q) bits 

…

Only 
one CP

Time domain signal (128 symbols, 2048 samples each)

2048 samples

M>N TX complexity PAPR
OTFS MN*log2(N) N

OFDM MN*log2(M) M

time
(128 symbols)

When the sizes of the FFT in ISFFT and the IFFT in Heisenberg transform
are the same, then the LHS structure reduces to the RHS one, which is the
inverse ZAK transform
(Monash University, Australia) OTFS and Delay Doppler Communications
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OTFS modulation: Matrix form

Tx signal in time domain: ISFFT (DD-TF) + Heisenberg (TF-T)

Matrix form S = GtxF
†
M FMXF†

N︸ ︷︷ ︸
ISFFT

= Gtx XF
†
N︸︷︷︸

X̃

Vector form s = vec(S) = vec(Gtx XF
†
N︸︷︷︸

X̃

)

For rectangular pulse shaping waveforms (Gtx = IM):

S = XF†
N = X̃ s = vec(XF†

N) = vec(X̃)

The above operation is equivalent to the well known inverse discrete Zak
transform (IDZT)

s = IDZT{X} = vec(XF†
N)
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OTFS Tx implementation: M = 2048, N = 128

Tx does the inverse discrete ZAK transform:

s = IDZT{X} = vec(XF†
N)

when the sizes of the FFT in ISFFT and the IFFT in Heisenberg transform
are the same.

The simplified Tx structure is equivalent to V-OFDM(*) [a.k.a. A-OFDM†],
proposed for static multipath channels only(**), but Not investigated for high
mobility communications.

(*) X. Xia, “Precoded and vector OFDM robust to channel spectral nulls and with reduced
cyclic prefix length in single transmit antenna systems”, in IEEE Trans. on Commun., 2001.
(†) J. Zhang, A. Jayalath, Y. Chen, ”Asymmetric OFDM Systems Based on Layered FFT
Structure”, in IEEE Signal Processing Letters, 2007.
(**) P.Raviteja, E.Viterbo, Y. Hong, ”OTFS Performance on Static Multipath Channels”,
in IEEE Wireless Communications Letters, 2019.
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OTFS demodulation: Matrix form

…

FFT
128

FFT
128

remove 
CP
+ 

S/P

de
la

y 
(M

=2
04

8)

Doppler (N=128)

de
la

y

…

Time domain signal (128 symbols, 2048 samples each)

time
(128 symbols)

.

.

.

2048 samples

YMxN
received 
Symbols

time varying
channel

Rx signal in delay-Doppler domain: Wigner (T-TF) + SFFT (TF-DD)

Y = F†
MFMGrx vec

−1
M,N(r)︸ ︷︷ ︸
Ỹ

FN = GrxỸFN

For rectangular pulse shaping waveforms (Grx = IM): Y = Ỹ · FN

It is equivalent to the discrete Zak transform (DZT)

Y = DZT{r} = vec−1
M,N(r) · FN = Ỹ · FN
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OTFS demodulation: Matrix form

Tx and Rx are operating inverse discrete Zak and discrete Zak Transforms,
respectively.

(*) S.K Mohammed, “Derivation of OTFS Modulation From First Principles,” IEEE Trans.
on Veh. Tech., vol. 70, no.8, pp. 7619-7636, Aug. 2021.

(*) Y. Hong, T. Thaj, and E. Viterbo, Delay-Doppler Communications: Principles and

Applications, Academic Press, an imprint of Elsevier, Feb. 2022.
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OTFS: matrix representation – channel

Received signal in vector form in time domain (assuming noiseless)

r = Gs

G is an MN ×MN matrix of the following form

G =
P∑
i=1

h′iΠ
li∆(ki ),

where, Π is the permutation matrix (forward cyclic shift), and ∆(ki ) is the
diagonal matrix

Π =


0 · · · 0 1

1
. . . 0 0

...
. . .

. . .
...

0 · · · 1 0


MN×MN︸ ︷︷ ︸

Delay (similar to OFDM)

,∆(ki ) =


e

j2πki (0)

MN 0 · · · 0

0 e
j2πki (1)

MN · · · 0
...

. . .
...

0 0 · · · e
j2πki (MN−1)

MN


︸ ︷︷ ︸

Doppler

(Monash University, Australia) OTFS and Delay Doppler Communications
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Summary of OTFS Channel matrix representation

The MN ×MN channel matrix for rectangular pulses:

H =
P∑
i=1

h′i
[
(FN ⊗ IM)Πli (FH

N ⊗ IM)
]︸ ︷︷ ︸

P(i) (delay)

[
(FN ⊗ IM)∆(ki )(FH

N ⊗ IM)
]

︸ ︷︷ ︸
Q(i) (Doppler)

=
P∑
i=1

h′iP
(i)Q(i) =

P∑
i=1

h′iT
(i)

T(i) has only one non-zero element in each row and the position and value of
the non-zero element depends on the delay and Doppler values.

The channel matrix H has only P nonzero entries in each row and column,
i.e., a simple sparse structure.

—————
*P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for

reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 957-961, 2019.
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OTFS: Example for computing Hrect
eff

M = 2, N = 2,MN = 4

li = 0 and ki = 0 (no delay and Doppler)

Πli=0 = I4 ⇒ P(i) = (F2 ⊗ I2)(F
H
2 ⊗ I2) = I4

∆(ki=0) = I4 ⇒ Q(i) = (F2 ⊗ I2)(F
H
2 ⊗ I2) = I4

T(i) = P(i)Q(i) = I4 ⇒ Narrowband channel

0

0

1

1

(Monash University, Australia) OTFS and Delay Doppler Communications
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OTFS: Example for computing Hrect
eff

li = 1 and ki = 1 (both delay and Doppler)

0

0

1

1

P(i) =

2

6

6

4

0 1 0 0

1 0 0 0

0 0 0 e
−j2π 1

2

0 0 1 0

3

7

7

5

Q(i) =

2

6

6

4

0 0 1 0

0 0 0 e
j2π 1

4

1 0 0 0

0 e
j2π 1

4 0 0

3

7

7

5

T(i) = P(i)Q(i) ⇒ T(i)s → circularly shifts both the blocks (size M) and the
elements in each block of s by 1 (delay and Doppler shifts)
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OTFS: channel for rectangular pulses

T(i) has only one non-zero element in each row and the position and value of
the non-zero element depends on the delay and Doppler values.

T(i)(p, q) =


e−j2π n

N e j2π
ki ([m−li ]M )

MN , if q = [m − li ]M +M[n − ki ]N and m < li

e j2π
ki ([m−li ]M )

MN , if q = [m − li ]M +M[n − ki ]N and m ≥ li

0, otherwise.

Example: li = 1 and ki = 1

T(i) =


0 0 0 e j2π

1
4

0 0 1 0

0 e−j2π 1
4 0 0

1 0 0 0


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MIMO-OTFS Input-Output Relation in Matrix Form
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MIMO-OTFS modulation

 mod

mod

mod

demod

demod

demod

delay-Doppler domain

time domain

Figure: Block diagram of MIMO-OTFS modulation scheme

* T. Thaj and E. Viterbo,“Low-Complexity Linear Diversity-Combining Detector
for MIMO-OTFS”, in IEEE Wireless Commun. Lett., vol. 11, no. 2, pp. 288-292,
Feb. 2022.
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Delay-Doppler input-output relation

MIMO-OTFS time domain input-output relation:

rMIMO = GMIMO · sMIMO

where rMIMO ∈ CnRMN , sMIMO ∈ CnTMN are the received and transmitted
signal samples vector and

GMIMO ∈ CnRMN×nTMN =

 G(1,1) · · · G(1,nT )

...
. . .

...
G(nR ,1) · · · G(nR ,nT )


is the MIMO-OTFS channel matrix with each submatrix G(r ,t) ∈ CMN×MN as

G(r ,t) =
P∑
i=1

h′iΠ
li∆(ki ), t = 1, . . . , nT , r = 1, . . . , nR .
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MIMO-OTFS delay Doppler domain input-output relation

MIMO-OTFS delay-Doppler domain input-output relation:
y(1)

y(2)

...
y(nR)


︸ ︷︷ ︸
yMIMO

=


H(1,1) H(1,2) · · · H(1,nT)

H(2,1) H(2,2) · · · H(2,nT)

...
. . .

. . .
...

H(nR,1) H(nR,2) · · · H(nR,nT)


︸ ︷︷ ︸

HMIMO(NMnR×NMnT
)


x(1)

x(2)

...
x(nT)


︸ ︷︷ ︸
xMIMO

The terms yMIMO ∈ CnRMN and xMIMO ∈ CnTMN are the received and
transmitted time-domain signal samples vectors.

The delay-Doppler domain channel matrix HMIMO has submatrices
H(r ,t) ∈ CMN×MN for r = 1, . . . , nR and t = 1, . . . , nT .
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OTFS Signal Detection
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Vectorized formulation of the input-output relation

The input-output relation in the DD domain is a 2D twisted convolution

Y[k, l ] =
P∑
i=1

hiα(k , l , ki , li )X[[k − ki ]N , [l − li ]M ] +W[k, l ]

where m = 1 . . .M, n = 1 . . .N.

We can reorganize the above equation in the vectorized form as

y = H︸︷︷︸
NM×NM

x+w (1)

where x ∈ CNM , y ∈ CNM are the transmitted symbol vector and the received
signal samples vector, and H is the DD domain channel matrix and has only
P non-zero terms in each row.

Given the sparse nature of H we can solve (1) by using a message passing
algorithm
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Message passing based detection

Symbol-by-symbol MAP detection for c = 1, . . . ,NM

x̂ [c] = argmax
aj∈A

Pr
(
x [c] = aj

∣∣y,H)
= argmax

aj∈A

1

Q
Pr

(
y
∣∣x [c] = aj ,H

)
≈ argmax

aj∈A

∏
d∈Jc

Pr
(
y [d ]

∣∣x [c] = aj ,H
)

Received signal y [d ]

y [d ] = x [c]H[d , c] +
∑

e∈Id ,e ̸=c

x [e]H[d , e] + z [d ]︸ ︷︷ ︸
ζ
(i)
d,c→ assumed to be Gaussian
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Messages in factor graph

Algorithm MP algorithm for OTFS symbol detection

Input: Received signal y, channel matrix H

Initialization: pmf p
(0)
c,d = 1/Q repeat

- Observation nodes send the mean and variance to variable nodes
- Variable nodes send the pmf to the observation nodes
- Update the decision

until Stopping criteria;
Output: The decision on transmitted symbols x̂ [c]

(µd;e1 ;σ
2

d;e1
)

fe1; e2; · · · ; eSg = Id

y[d]

x[e1] x[eS ]

(µd;eS ;σ
2

d;eS
)

Observation node messages

y[e1]

x[c]

y[eS ]

pc;e1
pc;eS

fe1; e2; · · · ; eSg = Jc

Variable node messages
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Messages in factor graph – observation node messages

Received signal

y [d ] = x [c]H[d , c] +
∑

e∈I(d),e ̸=c

x [e]H[d , e] + z [d ]

︸ ︷︷ ︸
ζ
(i)
d,c→ assumed to be Gaussian

(µd;e1 ;σ
2

d;e1
)

fe1; e2; · · · ; eSg = Id

y[d]

x[e1] x[eS ]

(µd;eS ;σ
2

d;eS
)

Mean and Variance

µ
(i)
d,c =

∑
e∈I(d),e ̸=c

Q∑
j=1

p
(i−1)
e,d (aj)ajH[d , e]

(σ
(i)
d,c)

2 =
∑

e∈I(d),e ̸=c

 Q∑
j=1

p
(i−1)
e,d (aj)|aj |2|H[d , e]|2 −

∣∣∣∣∣∣
Q∑
j=1

p
(i−1)
e,d (aj)ajH[d , e]

∣∣∣∣∣∣
2
+ σ2
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Messages in factor graph – variable node messages

Probability update with damping
factor ∆

p
(i)
c,d(aj) = ∆ · p̃(i)c,d(aj) + (1−∆) · p(i−1)

c,d (aj), aj ∈ A

y[e1]

x[c]

y[eS ]

pc;e1
pc;eS

fe1; e2; · · · ; eSg = Jc

where

p̃
(i)
c,d(aj) ∝

∏
e∈J (c),e ̸=d

Pr
(
y [e]

∣∣∣x [c] = aj ,H
)

=
∏

e∈J (c),e ̸=d

ξ(i)(e, c , j)∑Q
k=1 ξ

(i)(e, c , k)

ξ(i)(e, c , k) = exp

−
∣∣∣y [e]− µ

(i)
e,c − He,cak

∣∣∣2
(σ

(i)
e,c)2


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Final update and stopping criterion

Final update

p(i)c (aj) =
∏

e∈J (c)

ξ(i)(e, c , j)∑Q
k=1 ξ

(i)(e, c , k)

x̂ [c] = argmax
aj∈A

p(i)c (aj), c = 1, · · · ,NM.

Stopping Criterion

Convergence Indicator η(i) = 1

η(i) =
1

NM

NM∑
c=1

I
(
max
aj∈A

p(i)
c (aj) ≥ 0.99

)
Maximum number of Iterations

Complexity – O(NMPQ) per iteration
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Other detection methods

MRC detection (Ref [c])

MMSE detection (Ref [23][24])

FDE (frequency domain equalization) (Ref [19])

OTFS MMSE-PIC (Ref [20])

MP algorithm variants and improvements (Ref [43]-[47])

neural network based detection (Ref [48]-[50])

A detailed OTFS detection surveys can be found in References [a] and [b].

—————

[a]. Z. Q. Zhang, H. Liu, Q. L. Wang, and P. Fan, “A survey on low complexity detectors for
OTFS systems,” ZTE Communications, vol. 19, no. 4, pp. 03–15, Dec. 2021.

[b] A. Naikoti and A. Chockalingam, “Signal detection and channel estimation in OTFS,” ZTE
Communications, vol. 19, no. 4, pp. 16–33, Dec. 2021.

[c] T. Thaj and E. Viterbo, “Low complexity Iterative Rake Decision Feedback Equalizer for

Zero-Padded OTFS systems,”in IEEE Trans. Veh. Tech., vol. 69, no. 12, pp. 15606-15622,

Dec. 2020, doi: 10.1109/TVT.2020.3044276.
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Weakness of the MP detection

The number of delay-Doppler domain paths P is very high in practical cases.

Complexity of message passing detection scales linearly with P.

Complexity of message passing detection also scales linearly with modulation
size Q, implying it incurs high complexity for high order modulation.
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Other detection methods

Maximal Ratio Combining Detection

Detection complexity comparable to single tap equalizer

Performance similar to MP detector

Ease of implementation

We discuss MRC for zero padded (ZP) OTFS since ZP can be used as guard
symbols for pilot.

Can be easily extended to other OTFS variants

Detailed introduction is available in:

the IEEE ComSoc Training Course, 16 - 17 November 2022, 2:00 pm to 6:00
pm EST, Viterbo (Instructor), Hong and Thaj (Developers)

https://www.comsoc.org/education-training/training-courses/

online-courses/2022-11-otfs-and-delay-doppler-communications
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OTFS Parameters
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Simulation results – damping factor ∆

∆
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Figure: Variation of BER and average iterations no. with ∆. Optimal for ∆ = 0.7
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Simulation results – OTFS vs OFDM with ideal pulses

SNR in dB
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Figure: The BER performance comparison between OTFS with ideal pulses and OFDM
systems at different Doppler frequencies.
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Simulation results – Ideal and Rectangular pulses

SNR in dB
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Figure: The BER performance of OTFS with rectangular and ideal pulses at different
Doppler frequencies for 4-QAM.
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Simulation results – Ideal and Rect. pulses - 16-QAM

SNR in dB
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Figure: The BER performance of OTFS with rectangular and ideal pulses at different
Doppler frequencies for 16-QAM.
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OTFS channel estimation
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Channel estimation using single pilot in the delay-Doppler
domain

Each transmit and receive antenna pair sees a different channel having a
finite support in the delay-Doppler domain

The support is determined by the delay and Doppler spread of the channel

The OTFS input-output relation for pth transmit antenna and qth receive
antenna pair can be written as

Y(r)[k, l ] =

nT∑
t=1

P(r,t)∑
i=1

h
(r,t)
i α(k, l , k

(r,t),l
(r,t)
i

i )X(t)[[[k − k
(r,t)
i ]N , l − l

(r,t)
i ]M ]

—————
1 P. Raviteja, K. T. Phan and Y. Hong, “Embedded Pilot-Aided Channel Estimation

for OTFS in Delay–Doppler Channels” in IEEE Transactions on Vehicular

Technology, vol. 68, no. 5, pp. 4906-4917, May 2019.
2 M. K. Ramachandran and A. Chockalingam,“MIMO-OTFS in High-Doppler Fading

Channels: Signal Detection and Channel Estimation” 2018 IEEE Global

Communications Conference (GLOBECOM), 2018, pp. 206-212.
3 R. Hadani and S. Rakib, “OTFS methods of data channel characterization and uses

thereof.” U.S. Patent 9 444 514 B2, Sept. 13, 2016.
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Figure: Illustration of pilots and channel response in delay-Doppler domain in a 2×1
MIMO-OTFS system
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SISO OTFS system with integer Doppler
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(a) Tx symbol arrangement (□: pilot; ◦:
guard symbols; ×: data symbols)
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(b) Rx symbol pattern (▽: data detection,
⊞: channel estimation)

Figure: Tx pilot, guard, and data symbols and Rx received symbols
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SISO OTFS system with fractional Doppler
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(a) Tx symbol arrangement (□: pilot; ◦:
guard symbols; ×: data symbols)
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⊞: channel estimation)

Figure: Tx pilot, guard, and data symbols and Rx received symbols
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MIMO OTFS system
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Figure: Tx pilot, guard, and data symbols for MIMO OTFS system (□: pilot; ◦: guard)
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Multiuser OTFS system – uplink
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Figure: Tx pilot, guard, and data symbols for multiuser uplink OTFS system (□: pilot; ◦:
guard symbols)

—————
*P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in

delay-Doppler channels,” IEEE Trans. on Veh. Technol., vol. 68, no. 5, pp. 4906-4917, May

2019.
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SISO-OTFS performance with the estimated channel

Simulation parameters: Carrier frequency of 4GHz, sub-carrier spacing of
15KHz, M = 512, N = 128, 4-QAM signaling, LTE EVA channel model, and
MP detection.
Let SNRp and SNRd denote the average pilot and data SNRs
Channel estimation threshold is 3σp, where σ2

p = 1/SNRp is effective noise
power of the pilot signal
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Our recent publications

1 T. Thaj, E. Viterbo, and Y. Hong, ”Orthogonal Time Sequency Multiplexing
Modulation: Analysis and Low Complexity Receiver Design”, IEEE Trans. on
Wireless Commun., vol. 20, no. 12, pp. 7842-7855, Dec. 2021.

2 T. Thaj and E. Viterbo, ”Low-Complexity Linear Diversity-Combining
Detector for MIMO-OTFS”, IEEE Wireless Commun. Lett., vol. 11, no. 2,
pp. 288-292, Feb. 2022.

3 Y. Hong, T. Thaj, and E. Viterbo, Delay-Doppler Communications: Principles
and Applications. Academic Press - Elsevier, 2/2022, ISBN:9780323850285.
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OTFS in LEO Satcom
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OTFS in LEO Satcom

LEO satellites circle the earth at an altitude of 500− 2000 km.

LEO satellites orbit the earth at a speed of 7− 8 km/s

For example, a LEO satellite’s velocity at 1500km altitude is 7.1172 km/s.
When fc = 20GHz, the maximum Doppler shifts can be upto 400 kHz.

Recently, OTFS-based LEO satcoms were investigated [1-4].
*A. Bora, K. Phan, Y. Hong, “Spatially Correlated MIMO-OTFS for LEO Satellite Communication Systems,” IEEE ICC Workshop on OTFS, Seoul, 2022.
*X. Zhou, et al., “Joint Active User Detection and Channel Estimation for Grant-Free NOMA-OTFS in LEO Constellation Internet- of-Things,” 2021 IEEE
ICCC, pp. 735–740, 2021.
*T. Li, et al., “OTFS modulation performance in a satellite-to-ground channel at sub-6-GHz and millimeter-wave bands with high mobility,” Frontiers of
Information Technology and Electronic Engineering, 2021.
*X. Zhou, et al., “Active Terminal Identification, Channel Estimation and Signal Detection for Grant-Free NOMA-OTFS in LEO Satellite
Internet-of-Things,” arXiv:2201.02084, 2022.
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OTFS in LEO Satcom

LEO satcom channel:

h(τ, ν) =
P∑
i=1

h′iδ(τ − τi )δ(ν − νi )

Delay taps [3GPP-TR38.901]:

τi = τi,norm × DSdesired

τi,norm is the additional delay over the first arrival delay

DSdesired is scaling parameter that makes the delay spread values span the
range in channel measurements corresponding to typical 5G evaluation
scenarios.

(*) “5G Study on channel model for frequencies from 0.5 to 100 GHz”, (3GPP TR 38.901
version 16.1.0 Release 16), Nov. 2020.

(*) “3rd Generation Partnership Project; Technical Specification Group Radio Access

Network; Study on New Radio (NR) to support non-terrestrial networks (Release 15)”, 3GPP

TR 38.811 V15.3.0, July 2020.
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OTFS in LEO Satcom

Doppler shifts [3GPP-TR38.811]:

fd = (fc + fsat)
v cosα cosφ

c
, fsat =

vsat
c

fc cos θ, cos θ = cosα
R

R + h
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OTFS in LEO Satcom (Noiseless)

SISO-OTFS I/O: r = Gs, and G =
∑P

i=1 h
′
iΠ

li∆(ki ).

MIMO-OTFS I/O: rMIMO = GMIMO · sMIMO

GMIMO =


G(1,1) · · · G(1,nT )

.

.

.
. . .

.

.

.

G(nR ,1) · · · G(nR ,nT )

=
P∑
i=1


h′i

(1,1) · · · h′i
(1,nT )

.

.

.
. . .

.

.

.

h′i
(nR ,1) · · · h′i

(nR ,nT )


︸ ︷︷ ︸

Hi

⊗ Πli∆(ki )

If Rx/Tx have antenna correlations Rrx and Rtx, whitening transformation
can be applied to remove spatial correlation on channel

rcMIMO = Gc
MIMO · xMIMO → rwMIMO = GMIMO · xMIMO

(*) A. Bora, K. Phan, Y. Hong, “Spatially Correlated MIMO-OTFS for LEO Satellite Communication

Systems,” IEEE ICC Workshop on OTFS, Seoul, 2022.
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Simulation Results

(a) OTFS vs OFDM (b) MIMO-OTFS (corr. vs decorr.)
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