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Challenges for 6G

• Big data from mobile devices and IoT

• Complex and dynamically changing environments

• High performance requirements
• Peak data rate: 1 Tbps
• Connection density: 10/m2

• Latency: 0.1 ms
• …
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Six Key Technologies for 6G

1. AI/ML-driven air interface design and optimization
2. Expansion into new spectrum bands and new cognitive spectrum 

sharing methods
3. The integration of localization and sensing capabilities into system 

definition
4. The achievement of extreme performance requirements on latency 

and reliability
5. New network architecture paradigms involving sub-networks and 

RAN-core convergence
6. New security and privacy schemes

4Tomoaki Ohtsuki

Nokia 6G, 2020



AI is a Key Enabler of 6G
• AI has great potentials for addressing big data issues to achieve 

high requirements in complex and dynamic environments (but with 
signal processing, communication theory and so on)
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Deep Learning
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• A neural network (NN) is a multilayer perception that 
defines a mapping of an input vector x ∈ ℝ! to an output 
vector y ∈ ℝ"

%𝑓 x, 𝜽 : ℝ! ↦ ℝ"

• 𝜽 : parameters that determine the behavior of the NN

• DL describes the process of finding good values for 𝜽
from data to achieve a desired behavior

J. Hoydis and S. Cammerer, IEEE GCOM2018
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Deep Learning-based Wireless Communications
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• Wireless communication systems: complex, many imperfections and 
nonlinearities.

– DL-based communication systems (or processing block) that does not 
require a mathematically tractable model might be able to better 
optimize for such imperfections.

• Conv. block-based optimization does not always provide a best 
possible end-to-end performance.

• Joint optimization of signal processing blocks is often 
computationally prohibitive.

– A leaned end-to-end optimization can provide a superior performance.

Tomoaki Ohtsuki



Deep Learning-based Wireless Communications
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• Physical Layer
– Signal processing

• Data Link Layer

• Network Layer
– Routing, scheduling, resource allocation

• Network Security
– Flow identification
– Intrusion detection

• Network Level Mobile Data Analysis

• App-Level Mobile Data Analysis

Tomoaki Ohtsuki



Deep Learning-based Wireless Communications
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Physical Layer
• Modulation classification
• Error correction coding/decoding
• Interference management
• MIMO detection
• MIMO precoding
• Channel estimation
• Noise estimation
• …

Tomoaki Ohtsuki
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Encoder f(x) Decoder g(y)

x !𝐱

y

Autoencoder

Find a useful representation 𝐲 ∈ ℝ! of 𝐱 ∈ ℝ" at intermediate layer 
through learning to reproduce the input at the output
• Incomplete autoencoder: 𝑟 < 𝑛
• Overcomplete autoencoder: 𝑟 ≥ 𝑛
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Transmitter f(s) Receiver g(y)

s

yx

Channel p(y|x)
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Modeling Communication System as 
Autoencoder



Modeling Communication System as Autoencoder
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Modeling Communication System as 
Autoencoder

• Autoencoder has learned without 
any prior knowledge an encoder 
and decoder function that together 
achieve the same performance as 
the Hamming (7,4) code with MLD.

Tomoaki Ohtsuki 13

T. O'Shea and J. Hoydis, IEEE Trans. on Cognitive 
Communications and Networking, 2017

R = 4/7



Modeling Communication System as 
Autoencoder

• While autoencoder achieves the 
same BLER as uncoded BPSK for 
(2,2), it outperforms the latter for 
(8,8) over the full range of Eb/N0.

– This implies that it has learned 
some joint coding and modulation 
scheme, such that a coding gain 
is achieved.

Tomoaki Ohtsuki 14

R = 1 T. O'Shea and J. Hoydis, IEEE Trans. on Cognitive 
Communications and Networking, 2017



MIMO
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• x : Transmit signal
• H : Channel matrix
• w : Noise

Tomoaki Ohtsuki

Tx. Rx.

y = Hx + w

x y

H



MIMO Detection
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• Linear detectors
– Maximum ratio combining (MRC): HTy
– Zero forcing (ZF): (HTH)-1HTy
– Minimum mean squared error (MMSE): (HTH + s2I)-1HTy

• Non-linear detectors
– Maximum likelihood detection (MLD)
– Sphere detection
– Ordered successive detection (OSD)
– Semidefinite relaxation (SDR)
– Approximate message passing (AMP)
– …

Tomoaki Ohtsuki



Deep MIMO Detection
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• N. Samuel, T. Diskin, and A. Wiesel, “Deep MIMO Detection,” arXiv:1706.01151, 2017

• Unfolding a projected gradient descent like solution for ML 
optimization

• P[ ] : a nonlinear projection operator
• d k : a step size

• Each iteration is a linear combination of !𝐱k, HTy, HTH !𝐱k followed by 
a  projection (non-linearity)

• Lift input into a higher-dimensional space, enrich iterations with 
trainable parameters, and apply standard DL non-linearities

Tomoaki Ohtsuki



A Single Layer of Detection Network
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N. Samuel, T. Diskin, and A. Wiesel, arXiv:1706.01151, 2017

• An arbitrary number of layers can be concatenated

Tomoaki Ohtsuki



BER of Detection Network

19N. Samuel, T. Diskin, and A. Wiesel, arXiv:1706.01151, 2017

• 30 x 60 MIMO, random i.i.d. Gaussian channels
• Added a residual feature from ResNet
• Performance comparable to SDR/AMP but 30x faster

Tomoaki Ohtsuki



Massive MIMO

• A very large number of 
antenna arrays at BS

• Significantly increased 
spectral efficiency

• If the number of users 
increases, detection of a 
large number of streams 
is required.

Tomoaki Ohtsuki 20
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Massive MIMO Detection

• MAP detection: O(LN)
• Spatial filtering (MMSE, ZF): O(N 3)
• QR decomposition based algorithm: O(N 3)

• Detection based on belief propagation (BP): O(N 2)
– N : # of antennas, L : symbol constellation size

Tomoaki Ohtsuki
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MIMO BP Detection
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A factor graph representation
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MIMO BP Detection
Suboptimality of BP detection
• MIMO channel matrix has a loop è not guaranteed to converge to 

the MAP
• Antenna correlation can aggravate the looping effect due to less 

randomness

Dumped BP detector

𝛿 ∈ [0, 1] : damping factor

Messages at the 
l-th iteration

Tomoaki Ohtsuki
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Deep Unfolding
• J. R. Hershey, J. L. Roux, and F. Weninger, “Deep Unfolding: Model-Based 

Inspiration of Novel Deep Architectures,” arXiv:1409.2574, 2014.

• Unfold the iterations into a layer-wise structure analogous to a 
neural network.

• De-couple the model parameters across layers to obtain novel 
neural-network-like architectures that can easily be trained 
discriminatively using gradient-based methods.

Tomoaki Ohtsuki
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BP FG and DNN

BP FG DNN

Nodes Neurons

Transmitted signals x Input data x
Received signals x Output data y

l-th iteration l-th hidden layer

Belief messages a(l), b(l), p(l), Hidden signals xl
Message updating rules Mapping function between layers

Correction factor d Parameters q

X. Tan et al., arXiv:1804.01002v2, 2018

Similarities

Tomoaki Ohtsuki
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DNN Detector

X. Tan et al., arXiv:1804.01002v2, 2018

The structure of the DNN detector with 2 BP iterations

Tomoaki Ohtsuki
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DNN Detector: BER

X. Tan et al., arXiv:1804.01002v2, 2018

8 x 32 MIMO, i.i.d. Rayleigh channels, 16QAM, 
7 hidden layers

Tomoaki Ohtsuki



BP Detector with Node Selection and 
Dumping Factor Learning

Tomoaki Ohtsuki 29

• J. Tachibana and T. Ohtsuki, “Learning and Analysis of Damping Factor Learning in 
Massive MIMO Detection Using BP Algorithm With Node Selection,” IEEE Access 
2020

• Node Selection : Updating not all but some observation nodes with 
low correlation in one iteration (one layer)

è Reduction of short loops

J. Tachibana and T. Ohtsuki, IEEE Access 2020



BP Detector with Node Selection and 
Dumping Factor Learning
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Correlated channel (𝝆 = 𝟎. 𝟑)

“w/o NS” : 7 iterations
“w/ NS” o: NS with 4 intervals, 28 iterations

J. Tachibana and T. Ohtsuki, IEEE Access 2020

Tomoaki Ohtsuki



Image Restoration
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Deep convolutional networks : a popular tool for image restoration 
and generation. Their excellent performance is due to their ability to 
learn realistic image priors from a large number of example images?

https://dmitryulyanov.github.io/deep_image_prior
Tomoaki Ohtsuki



Deep Image Prior

Structure of the ConvNets imposes a strong prior!

32

https://dmitryulyanov.github
.io/deep_image_prior
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Deep Image Prior
• Contrary to the belief that learning is necessary for building good 

image priors, a great deal of image statistics is captured by the 
structure of a convolutional image generator independent of learning.

33

https://dmitryulyanov.github
.io/deep_image_prior
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Architecture used in the experiments
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https://dmitryulyanov.github.io/deep_image_prior
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Deep Image Prior
𝑥 : Clean image
𝑥0 : Corrupted/degraded image (observed)
𝑧 : Code vector
𝑓! : Neural network with parameters 𝜃
𝐸(𝑥, 𝑥0) : Task-dependent data term

1. Initialize 𝑧
• For example, with uniform noise 𝑈(−1,1)

2. Solve 𝜃∗ = argmin
!
𝐸(𝑓!(𝑧); 𝑥0)

• With any gradient-based method

𝜃#$% = 𝜃# − 𝛼
𝜕𝐸(𝑓!(𝑧); 𝑥0)

𝜕𝜃
;

3. Solution
𝑥∗ = 𝑓!∗(𝑧)

35

https://dmitryulyanov.github.io/deep_image_prior
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Image Restoration Using DIP

36

Starting from a random weights 𝜃0, we iteratively update them to minimize the 
data term 𝐸(𝑓#(𝑧); 𝑥0). At every iteration, the weights are mapped to an image 
𝑥 = 𝑓#(𝑧). The image 𝑥 is used to compute the task-dependent loss 𝐸(𝑥, 𝑥0). 
The gradient of the loss w.r.t. the weights 𝜃 is then computed and used to 
update the parameters.

https://dmitryulyanov.github.io/deep_image_priorTomoaki Ohtsuki



DIP : Learning Curves
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The network has high 
impedance to noise 
and low impedance to 
signal. 
• For most 

applications, the 
number of iterations 
in the optimization 
process is restricted 
to a certain number.

https://dmitryulyanov.github.io/deep_image_prior

Tomoaki Ohtsuki



Deep Image Prior : Data Term
𝑥 : Clean image
𝑥0 : Corrupted/degraded image (observed)
𝑚 : Binary mask

Objective:  𝜃∗ = argmin
!
𝐸(𝑓!(𝑧); 𝑥0)

• Denoising: 𝐸 𝑥, 𝑥0 = 𝑥 − 𝑥0 & Needs early stopping

• Inpainting:  𝐸 𝑥, 𝑥0 = 𝑥 − 𝑥0 ⨀𝑚 & ,  where⨀ is Hadamard’s 
product, 𝑚 is binary mask

• Super-resolution: 𝐸 𝑥, 𝑥0 = 𝑑(𝑥) − 𝑥0 & , where 𝑑 · is a 
downsampling operator to resize the image

• Feature-inversion: 𝐸 𝑥, 𝑥0 = 𝜙(𝑥) − 𝜙(𝑥0) & , where 𝜙 is the first 
several layers of a neural network trained to perform

38Tomoaki Ohtsuki



Denoising

39

https://dmitryulyanov.github.io/deep_image_prior

Tomoaki Ohtsuki



Inpainting : Text
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https://dmitryulyanov.github.io/deep_image_prior
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Super Resolution

Tomoaki Ohtsuki 41

https://dmitryulyanov.github.io/deep_image_prior



Massive MIMO BP Detection Using
DIP with DNN-Trained Scaling Factor

42Tomoaki Ohtsuki

• Tachibana and Ohtsuki, IEICE RCS, Mar. 5, 2021
• T. Ohtsuki, “Machine Learning in 6G Wireless Communications,” IEICE Trans. 

Commun., 2022.

n Uncorrelated Ch. (𝜌 = 0.0) n Correlated Ch. (𝜌 = 0.3)

16 x 16 MIMO



DIP in Wireless Communications
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• E. Valebi et al., “Massive MIMO Channel Estimation With an Untrained 
Deep Neural Network,” IEEE TW, Mar. 2020

• Denoising the received signal via DIP followed by LS channel 
estimation

The DNN architecture to denoise and inpaint the received signal 
before channel estimation for a 3-dimensional communication signal.

Tomoaki Ohtsuki



DIP in Wireless Communications
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NMSE for different spatial dimension of the hidden layers k and M = 64
Tx antennas.

E. Valebi et al., IEEE TW, Mar. 2020

Kronecker channel 
model with r = 0.5

Tomoaki Ohtsuki



Super Resolution
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• Create a high-resolution image from one or more low resolution images

https://dmitryulyanov.github.io/deep_image_prior

Tomoaki Ohtsuki



Super Resolution in Wireless 
Communications
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• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021

• Super resolution technique is applied to reduce overhead of beam 
search

beam 1 𝐰%
beam 2 𝐰&

beam 5 𝐰'

!!!!

Tomoaki Ohtsuki



Conventional Beam Searching Algorithm
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beam 1 𝐰%
beam 2 𝐰&

beam 6 𝐰(

!!!!

beam 1 𝐰%
beam 2 𝐰&
beam 3 𝐰)

Exhaustive search

Hierarchical search
Tomoaki Ohtsuki



Deep Learning-based Beam Searching 
Algorithm

• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021

• Our proposed model estimates the beam qualities with narrow 
beams based on beam measurements with wide beams.

è Increase the resolution of images : super resolution

48

beam 2 𝐯&

Deep learning-based beam search
Tomoaki Ohtsuki



Deep Learning-based Beam Searching 
Algorithm

• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021
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Low-resolution beam 
domain image

prediction

4 × 4 DFT 
beam

8× 8 DFT 
beam

Tomoaki Ohtsuki



Deep Learning-based Beam Searching 
Algorithm

• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021

50Tomoaki Ohtsuki



Deep Learning-based Beam Searching 
Algorithm : Beam Quality Estimation
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・・・

outputinput sub-pixel 
convolution

CNN layer fully connected 
layer

Ø Sub-pixel convolution (J. Caballero, et.al, IEEE Comput, 2017)

Convolution 
with N filtersLow-resolution map

N low-resolution map

Periodic reshuffling*

High-resolution 
map

Tomoaki Ohtsuki

Received powers 
with narrow beams

Received powers 
with wide beams



Deep Learning-based Beam Searching 
Algorithm : Beam Quality Prediction

• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021

52

outputinput sub-pixel 
convolution

convolutional 
LSTM layer

・・・

fully connected 
layer

Tomoaki Ohtsuki

Future Received 
powers with 

narrow beams

Past Received 
powers with wide 

beams



Deep Learning-based Beam Searching 
Algorithm

• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021

53

Algorithm Overhead
Proposed scheme 8
Exhaustive search (optimal beam select) 64
Hierarchical search 20
Exhaustive search with wide beams 16
Exhaustive search without prediction 32

TABLE : NUMBER OF BEAM MEASUREMENTS PER COHERENCE TIME

Tomoaki Ohtsuki



Deep Learning-based Beam Searching 
Algorithm : Beam Quality Estimation

• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021

54Tomoaki Ohtsuki



Deep Learning-based Beam Searching 
Algorithm : Beam Quality Prediction

• H. Echigo, Y. Cao, M. Bouazizi, and T. Ohtsuki, “A Deep Learning-based Low 
Overhead Beam Selection in mmWave Communications,” IEEE Trans. on Vehicular 
Technology, Jan. 2021
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Transfer Learning : Motivation

56

• Traditional ML tasks assume the training/test data are drawn from 
the same data space and the same distribution

• Insufficient labelled data result in poor prediction performance
• Start from scratch is always time-consuming

• Transfer knowledge from other sources may help!

P.-H. (Eddy) Su and Y. Li, 2015

Tomoaki Ohtsuki



Transfer Learning : Motivation

57

Taylor et.al JMLR '09
Tomoaki Ohtsuki



Transfer Learning : Definition
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• Ability of a system to recognize and apply knowledge 
and skills learned in previous domains/tasks to novel 
domains/tasks

• Improvement of learning in a new task through the 
transfer of knowledge from a related task that has 
already been learned.

Tomoaki Ohtsuki



Transfer Learning : Definition
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Notations:

• Domain 𝒟
– Data space 𝒳
– Marginal distribution 𝑃 𝑋 ∈ 𝒳, where 𝑋 ∈ 𝒳

• Task 𝒯 (Given 𝒟 = {𝑋, 𝑃 𝑋 })
– Label space 𝒴
– Learn an 𝑓: 𝑋 → 𝑌 to approach the underlying 𝑃 𝑌|𝑋 , where 𝑋 ∈
𝒳 and 𝑌 ∈ 𝒴

P.-H. (Eddy) Su and Y. Li, 2015

Tomoaki Ohtsuki



Transfer Learning : Definition

60

Assume we have only one source 𝑆 and one target 𝑇 :

• Given a source domain 𝒟𝑆 and learning task 𝒯𝑆, a target domain 𝒟𝑇
and learning task 𝒯𝑇, transfer learning aims to help improve the 
learning of the target predictive function 𝑓𝑇 F in 𝒟𝑇 using the 
knowledge in 𝒟𝑆 and 𝒯𝑆, where

𝒟𝑆 ≠ 𝒟𝑇 (either 𝒳𝑆 ≠ 𝒳𝑇 or 𝑃𝑆 𝑋 ≠ 𝑃𝑇 𝑋 )
or

𝒯𝑆 ≠ 𝒯𝑇 (either 𝒴𝑆 ≠ 𝒴𝑇 or 𝑃 𝑌𝑆|𝑋𝑆 ≠ 𝑃 𝑌𝑇|𝑋𝑇 )

P.-H. (Eddy) Su and Y. Li, 2015

Tomoaki Ohtsuki



ML vs. TL
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Langley '06, Yang et al. '13

Tomoaki Ohtsuki



Transfer Learning
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1. What to transfer
• Instance transfer : data
• Feature transfer : features
• Model transfer : parameters or priors of models

2. When to transfer
• When there exists relatedness between source and target 

domains
Ø Transferring knowledge from unrelated domain can be 

harmful : Negative transfer

Tomoaki Ohtsuki



Application of Transfer Learning
for Future Wireless Networks

63Tomoaki Ohtsuki

Nguyen et al., 2022

Spectrum
Management

Signal
Recognition

Wireless
Security

Caching Localization Activity
Recognition

Application of Transfer Learning
for Future Wireless Networks



Transfer Learning : Spectrum Management

64Tomoaki Ohtsuki

Nguyen et al., 2022

• Cognitive radio
– Spectrum sensing
– Channel selection
– Interference management
– Radio map construction

• Resource allocation
– Channel assignment
– Power allocation and energy efficiency
– Resource block allocation
– Resource utilization prediction

• Channel estimation and prediction

• Other issues



Downlink CSI Feedback Algorithm with Deep 
Transfer Learning for FDD Massive MIMO Systems

65

• J. Zeng et al., “Downlink CSI Feedback Algorithm with Deep Transfer Learning for 
FDD Massive MIMO Systems,” IEEE Trans. Cogn. Commun. Netw., 2021

Tomoaki Ohtsuki
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Encoder f(x) Decoder g(y)

x !𝐱

y

Autoencoder

Find a useful representation 𝐲 ∈ ℝ! of 𝐱 ∈ ℝ" at intermediate layer 
through learning to reproduce the input at the output
• Incomplete autoencoder: 𝑟 < 𝑛
• Overcomplete autoencoder: 𝑟 ≥ 𝑛



Downlink CSI Feedback Algorithm with Deep 
Transfer Learning for FDD Massive MIMO Systems

67

• J. Zeng et al., “Downlink CSI Feedback Algorithm with Deep Transfer Learning for 
FDD Massive MIMO Systems,” IEEE Trans. Cogn. Commun. Netw., 2021

Tomoaki Ohtsuki



Downlink CSI Feedback Algorithm with Deep 
Transfer Learning for FDD Massive MIMO Systems
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Downlink CSI Feedback Algorithm with Deep 
Transfer Learning for FDD Massive MIMO Systems
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Downlink CSI Feedback Algorithm with Deep 
Transfer Learning for FDD Massive MIMO Systems

70Tomoaki Ohtsuki



Evaluation of Source Data Selection for DTL Based CSI 
Feedback Method in FDD Massive MIMO Systems

71Tomoaki Ohtsuki
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# of samples of CDL-A for fine tuning

Source CDL-A(NLOS) 50000, w/o DTL

Source CDL-B(NLOS) 50000, w/ DTL

Source CDL-C(NLOS) 50000, w/ DTL

Source CDL-D(LOS) 50000, w/ DTL

Source CDL-E(LOS) 50000, w/ DTL

Compression rate : 1/8



Meta Learning

72

• Insufficient labelled data result in poor prediction 
performance

• Start from scratch is always time-consuming
• If we have already learned many tasks, can we figure out 

how to learn more efficiently?
• Can we learn to learn?

• Meta learning = Learning to Learn

C. Finn and S. Levine, 2019

Tomoaki Ohtsuki



Model-Agnostic Meta-Learning (MAML)

73Tomoaki Ohtsuki

Setting:
• Multiple tasks are trained during training and new tasks are trained during testing with a 

small amount of training data

MAML
• Model parameter：𝜃
• Model represented by the model parameter 𝜃： 𝑓"
• Update the model parameters by stochastic gradient descent (SGD) to minimize the 

objective function (loss function) ℒ𝒯! for task 𝒯$. If there are multiple sets of training data, 
this SGD is repeated multiple times.

𝜃$%: = 𝜃& − 𝛼∇"ℒ𝒯! 𝑓"

• Initial parameters are determined so that the sum of the objective function after updating 
becomes small.

𝜃& = argmin
""

0
$

ℒ𝒯! 𝑓"!#

• Find a good initial value for each task that will work well after updating in SGD from the 
current initial value.



Model-Agnostic Meta-Learning (MAML)

Tomoaki Ohtsuki 74

C. Finn et al., 2017
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Downlink CSI Feedback Algorithm with Deep Transfer 
Learning for FDD Massive MIMO Systems : DTL and MAML
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Downlink CSI Feedback Algorithm with Deep Transfer 
Learning for FDD Massive MIMO Systems : DTL and MAML

• MAML is computationally expensive due to high GPU memory usage. 
However, training time is short and the time cost is low.

• DTL is better when a large amount of data can be collected for each 
environment

• On the other hand, MAML is also good if the data collected for each 
environment is small, although there is some degradation of characteristics. 



DL-aided Communications and Sensing

• S. Yang, M. Bouazizi, Y. Cao, and T. Ohtsuki, “Inter-User Distance 
Estimation Based on a New Type of Fingerprint in Massive MIMO 
System for COVID-19 Contact Detection,” Sensors, vol. 22, issue 16, 
22 pages, 2022.

• M. Bouazizi, S. Yang, Y. Cao, and T. Ohtsuki, “A Novel Approach for 
Inter-User Distance Estimation in 5G mmWave Networks Using 
Deep Learning,” APCC2021, Virtual, Oct. 2021



Background

• Estimate the location of the target object

• Rely on a set of wireless signals propagated between BSs
and the target.

Localization in cellular networks:

è Exposure to Covid-19: requires estimation of the distance between the virus carrier and
the subject è Accurate estimation leads to better identification of exposure

2G 5G
100s m < 1 m

3G 4G

10s m

Co-located devices identification:
• Identify devices in proximity of one another

• Estimate inter-device distance à Similar to localization

BS

BS

BS



Localization and Co-location techniques -1/2-
Geometry-based techniques:
• Refer to the geometric properties of the signal propagation
• RSS-based [1], TOA-based [2], AOA/AOD-based [3]

RSS: Received Signal Strength
TOA: Time of Arrival
AOA: Angle of Arrival
AOD: Angle of Departure
LOS: Light of Sight

𝑀

𝑇! 𝑇"

𝜃'

𝜃(

AOA/AOD-based

Fingerprint-based techniques [4]:
• Make location specific database of features
• Refer to the database to identify the location of users

𝑇"

𝑇! 𝑇#

Cell 𝑥, 𝑦 : {𝑅(, 𝑅', 𝑅)}

Proximity-based techniques [5]:
• Refer to RSS measurements of emitting devices:

• Identify the location of UEs
• Identify co-located UEs

𝐴𝑁"

𝐴𝑁!
𝐴𝑁#

𝑀

𝑅𝑆𝑆)

𝑅𝑆𝑆'

𝑅𝑆𝑆' Fingerprint-based
Proximity-based

[1] Z. Yang et al., ACM CSUR, 2013.
[2] A. A. Wahab et al , IEEE ITST, 2013.
[3] S. Kumar et al, ICMCN 2014.
[4] Q. Vo and P. De, IEEE CST, 2015.
[5] M. Li and Y. Liu, ICMCN, 2009.
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Existing Co-location techniques
• Use similar techniques to Localization:

1. Rely on Wi-Fi and Bluetooth signals for proximity-detection [6–9]:
• In [6],[7] and [8]: Rely on RSS of iBeacons, other BLE devices, and ambient Wi-Fi

signals to identify groups of people walking together: UEs experiencing the same
levels of signals from the same devices à in proximity

• In [9]: for spaces with “dense” distribution of Wi-Fi hotspots (e.g., malls), use the
RSSI of the Wi-Fi signal to identify UEs in proximity
è Good clustering and vicinity detection accuracy (Over 98% accuracy)
è Mostly focus on indoor environment,
è Works for short range
è Identify UEs in vicinity rather than estimate the distance between them

2. Rely on Localization techniques in cellular networks for Co-location [10]

è Imprecision from the localization techniques are inevitably inherent when
using these techniques for co-location

BLE: Bluetooth Low Energy
UE: User Equipment

[6] M. Pedro and T. Ohtsuki, IEEE Access, 2016.
[7] R. Canetti et al., arXiv 2020.

[8]   M. Pedro et al. IEEE IoT, 2017
[9]   M. Dmitrienko et al., ScienceOpen, 2020.
[10] F. Hejazi et al., arXiv 2021.



Conventional Method

[10] F. Hejazi et al., arXiv 2021.

• Use location Information to estimate inter-UE distance [10]
• Use a Deep Convolution Neural Network (DCNN) to estimate the UE location

• DCNN: learn the mapping between angle delay profile (ADP) and user
location

• ADP: a linear transformation of channel state information (CSI), it can
represent the relation between the absolute gain of AOA and delay.

• Use the found locations to estimate the distance between users
• Limitation

• Only minimizing the error between the estimated location and UE location:
• Does not directly minimize the error between two different UE locations
• Estimation error between two UE can go up to e1 + e2

user location
estimation location

e1 e2

e1, e2: estimation error of user location



Objective and Contributions
Objective:

• Improve the accuracy of co-location in cellular systems

• Target system: mmWave 5G cellular network

Contributions:

• Propose a novel fingerprint-like method for co-location à robust to changes
over time in the environment, and to change in environment.

• Estimate the distance between each pair of user equipments (UEs), even
apart ones è Improve the estimation accuracy of Inter-UE distance,
compared to existing work

• Propose a technique to reduce the time and power consumption of the
original proposed method without much loss of estimation performance.
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System:

• A mmWave massive MIMO system

• Use uniform planar array (UPA) with
𝑀* = 𝑀+×𝑀, antennas at the BS
(transmitter) and single-antenna at 𝐾
UEs (receivers)



System description -2/2-

• Beam sweeping in consecutive time
slots.

• UEs located at different locations in
the coverage of the BS record
measurements of the received
beams.

• The recorded measurements are used as a fingerprint of the users’
locations

• Unlike fingerprint-based localization conventional methods, there is
no need for offline fingerprint learning or building a database of
features



Proposed Approach - Fingerprint Image Generation

𝑀% =
𝑚%
(',') ⋯ 𝑚%

(',*-)

⋮ ⋱ ⋮
𝑚%
(*-,') ⋯ 𝑚%

(*-,*-)

• The BS sweeps beams in consecutive timeslots.

• We refer to the number of beams needed to “cover” the entire region as
𝑁. = 𝑛.×𝑛..

• The RSSI of each received beam at the 𝑘-th UE end is recorded as 𝑚/
(1,2) for

𝑥 ∈ 0,⋯ , 𝑛. and 𝑦 ∈ 0,⋯ , 𝑛.

• For all the beams, we define the beam-based image𝑀/ of the 𝑘-th UE as



Proposed Approach - Image Difference measurement

𝐷",$ =
|𝑚"

%,% −𝑚$
(%,%)| ⋯ |𝑚"
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%,!$ |

⋮ ⋱ ⋮
|𝑚"
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• Given two UEs 𝑘 and 𝑙, with their respective measurement matrices /
images, we define the difference matrix 𝐷/,4 as:

𝑀/ 𝐷/,4𝑀4

• 𝐷 is obviously commutative (𝐷/,4 = 𝐷4,/)



Proposed Approach - Inter-UE distance estimation

• Use Deep Learning-based regression:
• Input: difference Image
• Output: estimated distance between UEs

Neural Network architecture

Total Number of Parameters:
2,444,226

Neural network used for inter-UE distance estimation

Difference
image



Proposed Approach - Reduce Resource consumption

Limitations

• Narrower beams = More beams needed è

↗ Higher Accuracy

↘ Power resources consumption

↘ More time required for the sweeping

Proposed method:

• Use wide beams è Apply Super Resolution (SR) to improve the generated fingerprint
image quality

Super 
Resolution

Low resolution 
difference image Super resolution 

difference image



Proposed Approach - SR Neural Network Architecture

Neural Network architecture

• Use Deep Learning-based Super Resolution:
• Input: low resolution difference image
• Output: high resolution difference image

• Use Sub-Pixel Convolution and 2D Up-sampling

• Upscale the image ×4: in our experiment 4×4 à 8×8

Neural network used for Super Resolution

Total Number of Parameters:
528,513

Low resolution 
difference image High resolution 

difference image



Simulation Parameters

Parameter description Value
Carrier frequency 60 GHz
# of antennas at the BS (𝑀*×𝑀+) 8×8
# of DTF codebook beams 𝑁, 8×8 / 4×4
UE spread area 60m × 30m
UE average distance to the BS 24.2m
Height of BS 10m
Total downlink power 𝑃 30 dBm
Building and ground reflection gain 𝑔 -6 dB
Noise figure 𝐹 9.5 dB

Evaluate the proposed method against [10]:

• Use a Deep Convolution Neural Network (DCNN) to
estimate the UE location

• DCNN: learn the mapping between angle delay profile
(ADP) and user location

.
[10] F. Hejazi et al., arXiv 2021.



CDF of Distance Error Over All Pairs of Users

CDF of distance error over all pairs of users

Prop. method 8×8 res.
Prop. method 4×4 res.
Prop. method 4×4 enhanced
Conventional method [10]

At CDF = 0.5:
• Prop. method [8×8 res.]: 0.097 m
• Prop. method [4×4 res.]: 0.160 m
• Prop. method [4×4 Super res.]: 0.101 m
• Conv. method: 0.280 m

At CDF = 0.9:
• Prop. method [8×8 res.]: 0.231 m
• Prop. method [4×4 res.]: 0.344m
• Prop. method [4×4 Super res.]: 0.254 m
• Conv. method: 0.753 m

è Much better accuracy than the conventional method
è Reduce the estimation error by 26% after applying Super Resolution to images of size 4×4



Summary
• AI is a key enabler of 6G

– Great potentials for addressing big data issues to achieve high 
requirements in complex and dynamic environments 

– Knowledge about AI becomes essential for people in 
communication fields
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