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• serving with more devices and applications 
• generating more amounts of data
• requiring lower communication delay
• facing more complicated situations
• demanding much smarter decision making skills
• more vulnerable to security and privacy threats

• compatible to GPU and TPU
• stronger capability of fitting unknown and complex functions as black boxes
• better performances on feature learning automatically

I. Background

Solve classical and new problems well
—— B5G and 6G demand more powerful tools

Compared with traditional algorithms—— Deep neural networks and deep learning have 
become the most effective and efficient machine learning technologies for various applications
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G. Gui, M. Liu, F. Tang, N. Kato, F. Adachi, “6G: Opening New Horizons for Integration of Comfort, Security, and Intelligence,”
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Machine Learning for Wireless Communications
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II. Deep Learning-based AMC Methods

• Automatic Modulation Classification (AMC) - a key technique for non-cooperative communication
systems to recognize different modulation types relying on received signals. There are generally no
agreement and authorization between transmitter and receiver.

Transmitter Receiver

No agreement, No authorization

• Recently, deep learning (DL)-based AMC has outperformed these traditional methods in both 
performance and efficiency.

• DL-based AMC is generally modeled as multi-classification problem. Based on maximum a posteriori 
( MAP) criterion, it can be written as follows.

Background of AMC

෥𝑚 = arg max
𝑚∈𝑴

𝐹𝐷𝐿(𝑚|𝑹)

𝑹: The received signal

𝑚: The real modulation type

෥𝑚: The predicted modulation type

𝑴: The modulation type pooling

𝐹𝐷𝐿 : The DL model

variable notations for modelling the AMC problem
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II. Deep Learning-based AMC Methods

• Deep Learning for Automatic Modulation Classification in SISO Systems

 Lightweight Automatic Modulation Classification (LightAMC) 

 Federated Automatic Modulation Classification (FedeAMC)

• Deep Learning for Automatic Modulation Classification in MIMO System

 Multi-Antenna Cooperative Automatic Modulation Classification (Co-AMC) 

 CSI and Zero Forcing-aided Automatic Modulation Classification (ZF-AMC)

 Transfer Learning-based Automatic Modulation Classification (TL-AMC)

Our work scope in deep learning-based AMC methods: 
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II. Deep Learning-based AMC Methods

Lightweight Automatic Modulation Classification (LightAMC)
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Y. Wang, J. Yang, M. Liu, and G. Gui, “LightAMC: Lightweight Automatic Modulation Classification via Deep Learning and
Compressive Sensing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3491-3495, 2020.
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II. Deep Learning-based AMC Methods

(1) Signal model

𝑟 𝑛 = 𝐴𝑒
𝑗 ∆𝜃+2𝜋∆𝑓

𝑛
𝑁 𝑠 𝑛 + 𝑤 𝑛 , 0 ≤ 𝑛 ≤ 𝑁 − 1

𝑟 𝑛 : The received complex baseband signal

𝑠 𝑛 : The modulation signal

𝑤 𝑛 : Additive white Gaussian noise (AWGN)

𝐴: Channel gain, and it is a real value in (0,1]

∆𝜃: Time-varying phase offset, and ∆𝜃~U(0,
𝜋

16
)

∆𝑓: Normalized frequency offset (∆𝑓 = 0.1)

𝑁: The number of sampling points

• 𝑹𝑰𝑸 =
𝑟𝑒𝑎𝑙(𝑟(0)) 𝑟𝑒𝑎𝑙(𝑟(1)) … 𝑟𝑒𝑎𝑙(𝑟(𝑁 − 1))

𝑖𝑚𝑎𝑔(𝑟(0)) 𝑖𝑚𝑎𝑔(𝑟(1)) … 𝑖𝑚𝑎𝑔(𝑟(𝑁 − 1))
and 𝑹𝑰𝑸 is a real matrix with dimensionality 2×N (N=128).

• The modulation candidate pool: 𝚯1 = BPSK, QPSK, 8PSK , 𝚯2 = {BPSK, QPSK, 8PSK, 16QAM}.

• SNR is random, and SNR~U −10, 10 dB

(2) Dataset generation
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variable notations for modelling the modulation signals
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II. Deep Learning-based AMC Methods

(3) Introduction of lightweight methods

Lightweight method for Network Accelerating and Compression

Smaller Model SizeFaster Feedforward 
Computing Speed

Stable Performance

Efficient Structure Design Neuron Pruning and Sparsification Model Quantization

• Group Convolution

 ShuffleNet

 MobileNet

• Separable Convolution

 Bottleneck

 SqueezeNet

• Model Pruning

 Weight sum (WS)

 Average percentage of zero 

activation (APOZ)

 Sparsity regularization

• Kernel Sparsification

 Sparse constraint

• Binary neural network 

(BNN)

• XNOR-Net

• Ternary weight 

network (TWN)

• quantized neural 

network (QNN)

Task

Technology
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II. Deep Learning-based AMC Methods

(4) Our original Deep Neural Network for AMC

Convolution
al 

Layer

Fully-
connected 

Layer

Dataset (IQ sample, label)

Conv1D (128, 16) + BN + ReLU + Dropout (dr1)

Conv1D (64, 8) + BN + ReLU + Dropout (dr2)

Dense (256) + BN + ReLU + Dropout (dr3)

Dense (128) + BN + ReLU + Dropout (dr4)

Dense (M) + Softmax

Input Layer

 5 layers: 2 convolutional layers and 3 fully

connected layers.

 Apply Batch Normalization (BN) and dropout : to

avoid overfitting and accelerating training.

 Convolutional Neural Network representation:

𝑥𝑜𝑢𝑡𝑝𝑢𝑡
𝑙 = 𝑓𝑅𝑒𝐿𝑢 γ𝑙𝐵𝑁𝜇𝑙,𝜎𝑙,𝜖𝑙 𝑊

𝑙 ∗ 𝑥𝑖𝑛𝑝𝑢𝑡
𝑙 + 𝑏𝑙 + β𝑙

• 𝐵𝑁𝜇𝑙,𝜎𝑙,𝜖𝑙 𝑧 =
𝑧−𝜇𝑙

(𝜎𝑙)2+𝜖𝑙

• 𝜇𝑙 =
1

𝑁
σ𝑖=1
𝑁 𝑧(𝑖)

• (𝜎𝑙)2=
1

𝑁
σ𝑖=1
𝑁 [𝑧(𝑖) − 𝜇𝑙]2

Original CNN structure for the AMC technology.

Training Tips:
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II. Deep Learning-based AMC Methods

(5) Our Lightweight Deep Neural Network for AMC

The 𝑛-th neuron

= ൝
𝑝𝑟𝑢𝑛𝑖𝑛𝑔, 𝛼𝑛

𝑙 < 𝜆𝑡ℎ𝑟𝑒
𝑙

𝑠𝑎𝑣𝑖𝑛𝑔, 𝛼𝑛
𝑙 ≥ 𝜆𝑡ℎ𝑟𝑒

𝑙

The 𝑙-th
layer

×

…

The 𝑙-th 
scaling factor layer

×

×

×

×

𝛼1
𝑙

𝛼2
𝑙

𝛼3
𝑙

𝛼4
𝑙

𝛼𝑁
𝑙

…

The (𝑙 + 1)-th 
layer

…

The 𝑙-th
layer

×

…

The 𝑙-th 
scaling factor layer

×

×

𝛼1
𝑙

𝛼3
𝑙

𝛼𝑁
𝑙

…

The (𝑙 + 1)-th 
layer

…

ℓ𝟏-norm

 Objective function:

Define training samples: 𝑇 =
𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … , 𝑥𝑆 , 𝑦𝑆 ,

arg min
𝑊,𝑏,𝛾,𝛽,α

෍

𝑠=1

𝑆

𝑙 𝑓𝐶𝑁𝑁 𝑥𝑠;𝑊, 𝑏, 𝛾, 𝛽, α , 𝑦𝑠

+λ α 1

 Add scaling factor for CNN:  
𝑥𝑜𝑢𝑡𝑝𝑢𝑡
𝑙 =

𝛼𝑓𝑅𝑒𝐿𝑢 ቄγ
𝑙
𝐵𝑁𝜇𝑙,𝜎𝑙,𝜖𝑙൫𝑊

𝑙 ∗

Training Tips:

Neuron pruning for LightAMC. 11
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II. Deep Learning-based AMC Methods

(4) Experimental results for LightAMC

Model Structure/𝛩1 Model size/𝛩1 Structure/𝛩2 Model size/𝛩2

CNN-based AMC 128-64-256-128 15.5MB 128-64-256-128 15.5MB

LightAMC (Proposed) 77-18-49-44 1.0MB (93.5%↓) 81-19-63-49 1.3MB (91.6%↓)

 Compared with M-AMC, our proposed LightAMC only has less than 7% and 9% of original CNN 
model sizes in 𝜣𝟏 and 𝜣𝟐, respectively.

Model ത𝑇𝐶 (us) / 𝛩1 ത𝑇𝐶 (us) / 𝛩2

CNN-based AMC 44.2 44.2

Traditional AMC 200.7 312.9

LightAMC (Proposed) 33.3 (24.6%↓) 33.6 (23.9%↓)

 Compared with CNN-based AMC, the computing time of our proposed LightAMC gets further 
reduction, and it has been reduced by nearly 24% in both two datasets.
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II. Deep Learning-based AMC Methods

Model ത𝑃𝑐𝑐 (%) / 𝛩1 ത𝑃𝑐𝑐 (%) / 𝛩2

CNN-based AMC 78.63 70.35

Traditional AMC 62.93 51.12

LightAMC (Proposed) 78.93 70.10

• Compared with traditional AMC (HOC+SVM), CNN-
based AMC has huge performance advantages.

• Our proposed LightAMC has similar performance 
with CNN-based AMC.

ത𝑃𝑐𝑐 (%) / 𝛩1 with different SNR and AMC methods. ത𝑃𝑐𝑐 (%) / 𝛩2 with different SNR and AMC methods.
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II. Deep Learning-based AMC Methods

Federated Automatic Modulation Classification (FedeAMC)

14

Y. Wang, G. Gui, H. Gacanin, B. Adebisi, H. Sari, and F. Adachi, “Federated Learning for Automatic Modulation Classification
Under Class Imbalance and Varying Noise Condition,” IEEE Transactions on Cognitive Communications and Networking, vol. 8,
no. 1, pp. 86-96, 2022.
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II. Deep Learning-based AMC Methods

(1) Background and Problem

Cloud Server

Dataset collected by devices

The distribution of dataset

Upload operation

Device with GPU

• From the left figure, the perfect DL model is 
trained on cloud server and based on huge and 
balance samples, uploaded from each device.

• Uploading each sample maybe impossible: 

(1) High communication cost caused by too 
much data; 
(2) data privacy.

• How can we train a perfect DL model jointly 
without data sharing?

Training

? ? ? ?

Background of the federated learning based AMC.

15
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II. Deep Learning-based AMC Methods

(2) System model based on federated learning (FL)

Cloud server

Sub-
dataset

Sub-
dataset

Sub-
dataset

①

② ③

x x

Steps:

1. Cloud server choose and initialize a DL model, and send 
it to each device;

2. Devices train the DL model on each sub-dataset;

3. Devices upload the learned knowledge (such as model 
weights);

4. Cloud server aggregate this knowledge and send it to 
each devices

5. Repeat Step 2 to Step 4.

Federated learning (FL)

share knowledge rather than data
aggregation

Background of the federated learning based AMC.

① Train the sub-model
② Upload the key knowledge of the sub-model
③ Update the sub-model

16
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(3) Signal model

𝑟 𝑛 = 𝐴𝑒𝑗(∆𝜃+2𝜋∆𝑓
𝑛
𝑁)𝑠 𝑛 + 𝑤 𝑛 , 0 ≤ 𝑛 ≤ 𝑁 − 1 𝑟 𝑛 : The received complex baseband signal

𝑠 𝑛 : The modulation signal

𝑤 𝑛 : Additive white Gaussian noise (AWGN)

𝐴: Channel gain, and it is a real value in (0,1]

∆𝜃: Time-varying phase offset, and ∆𝜃~U(0,
𝜋

16
)

∆𝑓: Normalized frequency offset (∆𝑓 = 0.1)

𝑁: The number of sampling points

• The modulation candidate pool: 𝕸 = {BPSK, QPSK, 8PSK, 16QAM}.

• SNR is random, and SNR~U −10, 10 dB

• We prepare four sub-dataset (with class imbalance) for 
simulations of four IoT devices, and their distributions are 
shown on the right.

(4) Dataset with class imbalance
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0

2000

4000

6000

Client1 Client2 Client3 Client4

The number of training samples

BPSK QPSK 8PSK 16QAM

Simulation model for generating the dataset.

II. Deep Learning-based AMC Methods

variable notations for modelling the modulation signals

Data distributions of four IoT devices
17
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Convolutional 
Layer

Fully-connected 
Layer

Dataset
(IQ sample, label)

Conv1D (128, 16) + BN + ReLU + Dropout 
(0.1)

Conv1D (64, 8) + BN + ReLU + Dropout 
(0.1)

Dense (256) + BN + ReLU + Dropout (0.5)

Dense (128) + BN + ReLU + Dropout (0.5)

Dense (4) + Softmax

Input
 A common 5-layer CNN contains two “Conv1D” and 

3 “Dense” .

 Batch normalization (BN) and dropout are adopted 
to prevent overfitting.

 Two learning algorithms are applied.

 Synchronous SGD (SSGD): share the gradients

 Model average (MA): share the model weights

 Assume that

• 𝑤𝑡 is the model weight at t-th epoch,
• 𝐾 is the number of devices,
• 𝑇 is the all training epochs,
• η𝑡 is the learning rate at t-th epoch,
• 𝑀 is the communication interval,
• 𝐵 is the number of batch in a epoch,

(5) CNN structures for FedeAMC
Training Tips:

CNN structure for the FedeAMC technology.

II. Deep Learning-based AMC Methods

18
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(6) The descriptions of two FL algorithms: SSGD and MA

Algorithm1: Federated learning-based AMC (SSGD)

Initialize 𝑤𝑡 , 𝐾, 𝑇, 𝜂𝑡 , 𝑎𝑛𝑑 𝐵

𝑤𝑡 is the model weight at t-th epoch,
𝐾 is the number of devices,
𝑇 is the all training epochs,
η𝑡 is the learning rate at t-th epoch,
𝐵 is the number of batch in a epoch,

for 𝑡 = 0,1,2, … , 𝑇 − 1 do

Load the current model 𝑤𝑡;

for 𝑏 = 0,1,2,… , 𝐵 − 1 do

Compute the current gradient at 𝑘 − 𝑡ℎ device 𝛻𝑓𝑘,𝑏 (𝑤𝑡 );

Obtain gradients of all devices through synchronous 

communication, 𝛻𝑓1,𝑏(𝑤𝑡), 𝛻𝑓2,𝑏(𝑤𝑡), … , 𝛻𝑓𝐾,𝑏(𝑤𝑡) ;

Update 𝑤𝑡+1 = 𝑤𝑡 −
𝜂𝑡

𝐾
σ𝑘=1
𝐾 𝛻𝑓𝑘,𝑏(𝑤𝑡)

end for

end for

Algorithm2: Federated learning-based AMC (MA)

Initialize 𝑤𝑡 , 𝐾, 𝑇, 𝜂𝑡 , 𝐵 𝑎𝑛𝑑 𝑀

for 𝑡 = 0,1,2, … , 𝑇 − 1 do

Load the current model 𝑤𝑡
𝑘 = 𝑤𝑡 ;

for 𝑚 = 0,1,2, … ,𝑀 − 1 do

for 𝑏 = 0,1,2,… , 𝐵 − 1 do

Compute the current gradient at 𝑘 − 𝑡ℎ device 

𝛻𝑓𝑘,𝑚,𝑏(𝑤𝑡
𝑘);

Update 𝑤𝑡
𝑘 = 𝑤𝑡

𝑘 − 𝜂𝑡,𝑚𝛻𝑓𝑘,𝑚.𝑏(𝑤𝑡
𝑘);

end for

end for

Obtain weights of all devices through synchronous communication, 

Update 𝑤𝑡+1 =
1

𝐾
σ𝑘=1
𝐾 𝑤𝑡

𝑘

end for

II. Deep Learning-based AMC Methods

19
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(7) Loss function for class imbalance and its equivalent skill 

Assume sample and labels are (𝑥𝑖 , 𝑦𝑖) 𝑖=1
𝑁𝐵 in a training batch:

𝑙𝐶𝐸 = −
1

𝑁𝐵
෍

𝑖=1

𝑁𝐵

𝑦𝑖 log 𝑓𝐶𝑁𝑁 𝜽; 𝑥𝑖 = −
1

𝑁𝐵
෍

𝑚∈𝑀

෍

𝑖=1

𝑁𝑚

𝑦𝑖
𝑚 log(𝑓𝐶𝑁𝑁(𝜽; 𝑦𝑖

𝑚))

• Cross-entropy (CE) loss function 

• Balanced cross-entropy (BCE) loss function 

𝑁𝑚: The number of training samples with 

the modulation type 𝑚

𝛼𝑚: class balance factor

𝑁𝑚𝑎𝑥 = max
𝑚∈𝑀

(𝑁𝑚)

𝑙𝐵𝐶𝐸 = −
1

𝑁𝐵
෍

𝑚∈𝑀

෍

𝑖=1

𝑁𝑚

𝛼𝑚𝑦𝑖
𝑚 log 𝑓𝐶𝑁𝑁 𝜽; 𝑦𝑖

𝑚 = −
1

𝑁𝐵
෍

𝑚∈𝑀

𝑁𝑚𝑎𝑥

𝑁𝑚 ෍

𝑖=1

𝑁𝑚

𝑦𝑖
𝑚 log 𝑓𝐶𝑁𝑁 𝜽; 𝑦𝑖

𝑚

CE + Data repeated expansion 

Tips: increase the weight in the 
loss of class with small samples

Equivalent to

class imbalance 

Variable 
notations

II. Deep Learning-based AMC Methods

20
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(8) Experimental results for FedeAMC

 “CentAMC” is the CNN-based AMC trained on dataset, 
which contains four sub-datasets, and it has the best 
performance;

 “TradAMC” (High order cumulants with ANN) has almost no 
work under the condition of training dataset with changing 
SNRs;

 “SubAMC” is the average performance of the CNN-based 
AMC trained on the corresponding sub-dataset.

 “FedeAMC” has better performance than “SubAMC”, and it 
still has slight performance gap with “CentAMC” . Specifically, 
average performance loss is close to 2%, and the highest 
performance loss is almost 4% at 2 dB. In addition, in 
“FedeAMC”

 SSGD is slightly beyond MA

 BCE is slightly beyond CE
Experimental results on ത𝑃𝑐𝑐 (%) with different SNR 

and AMC methods.

II. Deep Learning-based AMC Methods

21
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 Convergence rate : CentAMC ≈ FedeAMC (BCE) ≫

FedeAMC (CE), and the application of BCE can 

effectively accelerate the training.

 It is noted that although loss of FedeAMC (SSGD, CE) 

and FedeAMC (MA, CE) have difference before 

convergence, but they converge almost at the same 

epoch.

Experimental results on loss with different epoch numbers 
and AMC methods.

(8) Experimental results for FedeAMC

II. Deep Learning-based AMC Methods

22
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Cooperative Automatic Modulation Classification (Co-AMC)

II. Deep Learning-based AMC Methods

23

Y. Wang, J. Wang, W.Zhang, J. Yang, G. Gui, “Deep Learning-Based Cooperative Automatic Modulation Classification Method
for MIMO Systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4575-4579, 2020.



Signal model

T04: Machine Learning for Intelligent Wireless Communications - Part 2

(1) AMC for MIMO systems

𝒚𝑘 = 𝑯𝒙𝑘 + 𝒏𝑘

• 𝒚𝑘 = 𝑦𝑘 1 , 𝑦𝑘 2 , … , 𝑦𝑘 𝑁𝑟
𝑇 , 𝑘 ∈ [1, 𝑁/𝑁𝑡]: the received signal in the moment 𝑘 without considering carrier 

frequency offset and phase offset.

• 𝒙𝑘 = 𝑥𝑘 1 , 𝑥𝑘 2 ,… , 𝑥𝑘 𝑁𝑡
𝑇, 𝑘 ∈ [1, 𝑁/𝑁𝑡]: the transmitted source signal vector in the moment 𝑘, and 𝑿 =

[𝒙1, 𝒙2, … , 𝒙𝑁/𝑁𝑡]

• 𝒏𝑘~𝐶𝑁 0,𝑛
2𝑰𝑁𝑟 : additive noise.

• 𝑯~𝐶𝑁 0, 𝐼𝑁𝑟×𝑁𝑡 : complex-valued MIMO channel

Dataset generation

• 𝒚𝑛 = 𝑦1 𝑛 , 𝑦2 𝑛 , … , 𝑦𝑁/𝑁𝑡 𝑛 , 𝑛 ∈ [1, 𝑁𝑟]: the received vector in the 𝑛-th receiving antenna, and its real 
part and imaginary part as a set of training sample of the 𝑛-th antenna.

• 𝒙𝑛 = 𝑥1 𝑛 , 𝑥2 𝑛 ,… , 𝑥𝑁/𝑁𝑡 𝑛 , 𝑛 ∈ [1, 𝑁𝑟]: the transmitted vector in the 𝑛-th transmitting antenna, and 𝑿 =

[𝒙1, 𝒙2, … , 𝒙𝑁𝑟]𝑇 is enforced into the unit power.

II. Deep Learning-based AMC Methods
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𝑷𝑛 = {𝑃 𝑚1 𝒚
𝑛; 𝜗 , 𝑃 𝑚2 𝒚

𝑛; 𝜗 , … , 𝑃 𝑚|𝑀| 𝒚
𝑛; 𝜗 }

• CNN-based Co-AMC

Modulation 
type

R
eceiver

… …
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maker

…

𝑷1

𝑷2

𝑷𝑁𝑟

𝒚1

𝒚2

𝒚𝑁𝑟

DNN

DNN

DNN

HOC extraction

HOC extraction

HOC extraction

… …
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…

…

𝒚1

𝒚2

𝒚𝑁𝑟
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) +
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…

𝑷1

𝑷2

𝑷𝑁𝑟

Training Tips

Decision rules:

 Majority voting (MV)

ෝ𝑚 𝑦𝑛 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑀

𝑃𝑛

ෝ𝑚

= 𝑚𝑎𝑗𝑜𝑟 ෝ𝑚 𝑦1 , ෝ𝑚 𝑦2 , … , ෝ𝑚 𝑦𝑁𝑟

 Average weighting (AW)

ത𝑃 =
σ𝑘=1
𝑁𝑟 𝑃𝑛

𝑁𝑟

ෝ𝑚 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑀

ത𝑃

• HOC-DNN-based Co-AMC

(2) Neural network structures for Co-AMC

II. Deep Learning-based AMC Methods

(a) The process of  HOC and DNN-based Co-AMC.

(b) The process of CNN-based Co-AMC. 25
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(3) Experimental results for Co-AMC

 AW method is better than MV method, whether in CNN-based AMC or in HOC-DNN-based AMC;

 CNN-based AMC has better performance than HOC-DNN-based AMC.

Simulation results of Pcc for different schemes with  (a). 𝑁𝑡 = 1, 𝑁𝑟 = 4, (b). 𝑁𝑡 = 2, 𝑁𝑟 = 4, (c). 𝑁𝑡 = 4, 𝑁𝑟 = 4.

II. Deep Learning-based AMC Methods

26



T04: Machine Learning for Intelligent Wireless Communications - Part 2

Zero Forcing-aided Automatic Modulation Classification (ZF-AMC)

II. Deep Learning-based AMC Methods
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Y. Wang, G. Gui, et al., “Automatic Modulation Classification for MIMO Systems via Deep Learning and Zero-Forcing
Equalization,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5688-5692, 2020.
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Channel estimation

R
eceiver

…

…

Z
F eq

u
alizer

V
ecto

rizatio
n

…

𝑹1

M
o

d
u

latio
n

 typ
e

……

Tran
sm

itter

𝑹2

𝑹𝑁𝑟

෡𝑹1

෡𝑹2

෡𝑹𝑁𝑡

CNN
-

-
-

-

-
-

-
-

Conv (128, 16)
Conv (64, 8)

FC (256) FC (128) FC (4)

Feature extraction module Classification module

 ZF-AMC uses channel state information (CSI) and 
equalization algorithm.

 Here, we consider different CSI conditions, including 
perfect CSI-aided ZF-AMC and imperfect CSI-aided ZF-
AMC.

(1) System model

The process of  HOC and DNN-based ZF-AMC.     

II. Deep Learning-based AMC Methods
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 ෝ𝒙𝑘 = 𝑍𝐹 ෡𝑯 𝒚𝑘 = ෡𝑯𝐻 ෡𝑯
−1෡𝑯𝐻 𝐇𝒙𝑘 + 𝒏𝑘

 Post-processing SNR:  ෤𝛾𝑘 =
𝛾𝑘

1+
𝜎𝑒

1−𝜎𝑒
𝑁𝑡𝛾𝑘 𝑯𝐻𝑯 −1

𝑘𝑘

• The larger 𝑁𝑡, the more severe the performance degradation of the imperfect CSI-aided ZF-AMC

(2) Experimental results for ZF-AMC

Simulation results of Pcc for different schemes with (a). 𝑁𝑡 = 1, 𝑁𝑟 = 4, (b). 𝑁𝑡 = 2, 𝑁𝑟 = 4, (c). 𝑁𝑡 = 4, 𝑁𝑟 = 4.

Training Tips:

II. Deep Learning-based AMC Methods
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Transfer Learning based Automatic Modulation Classification 
(TL-AMC)

II. Deep Learning-based AMC Methods
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Y. Wang, G. Gui, H. Gacanin, T. Ohtsuki, H. Sari, F. Adachi, “Transfer Learning for Semi-Supervised Automatic
Modulation Classification in ZF-MIMO Systems,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 10, no. 2, pp. 231-239, 2020.
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(1) System model

-
-

-
-

-
-

-
-

Conv1D (128, 16)

Conv1D (64, 8)

Conv1D (64, 8) Conv1D (128, 16) Conv1D (2, 1)

Dense (256)
Dense (128)

Dense (4)Feature/Encoder layer

Decoder layer

Classification layer

{(𝑠𝑖 , 𝑙𝑖)}

𝑖 ∈ [1, 𝑁𝐶]

{𝑠𝑗}

𝑗 ∈ [1, 𝑁𝐴𝐸]

CE

MSE

෍

1− λ𝐶𝐴𝐸

λ𝐶𝐴𝐸

Update 𝜗𝐹 , 𝜗𝐸

Update 𝜗𝐶

Update 𝜗𝐷

 𝜗𝐹, 𝜗𝐸 is the weight for 
feature and encode 
layer, and 𝜗𝐹 ≡ 𝜗𝐸;

 𝜗𝐶 , 𝜗𝐷 is the weight for 
classification and 
decode layer.

 𝑆𝐶 = {(𝑠𝑖 , 𝑙𝑖)}𝑖=1
𝑁𝐶 for 

classification

 𝑆𝐴𝐸 = {𝑠𝑗}𝑗=1
𝑁𝐴𝐸 for auto-

encoder 


𝑁𝐶

𝑁𝐶+𝑁𝐴𝐸
= 0.95

Training Tips:

The structure of  TL-AMC.  

II. Deep Learning-based AMC Methods
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(2) Training details for TL-AMC

• Loss function: categorical cross entropy (CCE) for classification and mean square error (MSE) for auto-encoder:

𝐿𝐶𝐶𝐸 𝜗𝐹 , 𝜗𝑐 = −
1

𝑁𝐶
෍

𝑖=1

𝑁𝐶

𝑙𝑖 𝑙𝑜𝑔(𝑓𝐶(𝑠𝑖; 𝜗𝐹 , 𝜗𝑐 ))

𝐿𝑀𝑆𝐸 𝜗𝐸 , 𝜗𝐷 =
1

𝑁𝐴𝐸
෍

𝑗=1

𝑁𝐴𝐸

(𝑓𝐶 𝑠𝑗; 𝜗𝐸 , 𝜗𝐷 − 𝑠𝑗)
2

arg min
𝜗𝐸,𝜗𝐹,𝜗𝑐,𝜗𝐷

(1 − λ𝐴𝐸−𝐶)𝐿𝐶𝐶𝐸 𝜗𝐹 , 𝜗𝑐 + λ𝐴𝐸−𝐶𝐿𝑀𝑆𝐸 𝜗𝐸 , 𝜗𝐷 λ𝐴𝐸−𝐶

• Optimizer: stochastic gradient decent (SGD)

For each mini-batch classification data, after a forward pass, update 𝜗𝐹, 𝜗𝑐 :

𝜗𝐹 , 𝜗𝑐 ← 𝜗𝐹 , 𝜗𝑐 − 𝜂1(1 − λ𝐴𝐸−𝐶)𝛻 𝜗𝐹,𝜗𝑐 𝐿𝐶𝐶𝐸 𝜗𝐹 , 𝜗𝑐

𝜗𝐷 = 𝜗𝐹

For each mini-batch auto-encoder data, after a forward pass, update 𝜗𝐸 , 𝜗𝐷 :

𝜗𝐸 , 𝜗𝐷 ← 𝜗𝐸 , 𝜗𝐷 − 𝜂2λ𝐴𝐸−𝐶𝛻 𝜗𝐸,𝜗𝐷 𝐿𝑀𝑆𝐸 𝜗𝐸 , 𝜗𝐷

𝜗𝐹 = 𝜗𝐷

II. Deep Learning-based AMC Methods
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(3) Experimental results for TL-AMC

 TL-AMC has the similar performance with CNN, when SNR is higher than 0 dB, but its performance is far below 
that of CNN.

Simulation results of Pcc for different schemes with(a). 𝑁𝑡 = 1, 𝑁𝑟 = 4, (b). 𝑁𝑡 = 2, 𝑁𝑟 = 4, (c). 𝑁𝑡 = 4, 𝑁𝑟 = 4.

II. Deep Learning-based AMC Methods
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III. Deep Learning-based SEI Methods

Our Work Scope in Deep Learning based SEI 

34

• Background

• System Model and Problem Description

• The Proposed FSL-SEI Method

 FSL-SEI with Hybrid Metric

 Benchmarks

• Simulation Results

 Identification Performances

 Feature Visualization

• Conclusion

Y. Wang, G. Gui, Y. Lin, H.-C. Wu, C. Yuen, F. Adachi, “Few-Shot Specific Emitter Identification via Deep Metric Ensemble
Learning,” IEEE Internet of Things Journal, early access, 2022.
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Background: SEI and RFF

35

 RFF-based SEI is a

potential method to

protect the physical

layer security

SEI based on radio frequency fingerprinting (RFF), which originates from differences in 
hardware circuits of wireless devices and is parasitic in the wireless signal [1]

DSP DAC

Filter Mixer

~

PA

LO

Baseband 
signal

I

Q

 Harmonic 
distortion

 DC offset

 Amplitude/
Phase 

distortion
 Phase noise

 I/Q gain 
imbalance

 Orthogonal 
offset error

 Nonlinear

RFF

Differences in hardware circuits 

More difficult to tamper with, More difficult to counterfeit!
[1] F. Xie, H. Wen, Y. Li, et al., “Optimized coherent integration-based radio frequency fingerprinting in Internet of Things,” IEEE Internet of Things 
Journal, vol. 5, no. 5, pp. 3967-3977, 2018.
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Background: Few Shot Learning
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Define: Training Dataset𝑫𝑇𝑟 = 𝒙𝑖 , 𝑦𝑖 𝑖=1
𝑁𝑇𝑟 , Test Dataset 𝑫𝑇𝑒 = 𝒙𝑗 𝑗=1

𝑁𝑇𝑒
, and there are C classes with K samples per classes in 

𝑫𝑇𝑟, i.e., C-way-K-shot task, and 𝑁𝑇𝑟 = 𝐶𝐾; Assisted Dataset 𝑫𝐴𝑠 = 𝒙𝑛, 𝑦𝑛 𝑛=1
𝑁𝐴𝑠 is needed, and 𝑫𝐴𝑠 ∩ 𝑫𝑇𝑟 = ∅,∀𝑦𝑛 ∉ 𝑦𝑖 𝑖

𝑁𝑇𝑟

[1] Y. Tian, Y. Wang, D. Krishnan, et al., “Rethinking few-shot image classification: a good embedding is all you need?” in ECCV 2020: 16th European 
Conference, Glasgow, UK, Aug. 23–28, 2020, pp. 266-282.

FSL =  Feature embedding + Simple classifier [1]

 A good feature embedding 

• Generative model 

• Metric model (learn to compare)

• Meta model (learn to learn)

𝑫𝐴𝑠 = 𝒙𝑛, 𝑦𝑛 𝑛
𝑁𝐴𝑠

𝑓𝐷𝐿

L
o

s
s
 

fu
n

ctio
n

Feature
embedding

𝑓𝐷𝐿

Feature
embedding

𝑫𝑇𝑟 = 𝒙𝑖 , 𝑦𝑖 𝑖
𝑁𝑇𝑟

Trainable

Untrainable

Transfer Simple classifier
(SVM/LR/Cosine…)

 Transfer learning (TL) vs. FSL

• Existing FSL methods (Pseudo FSL)

can be considered as a simple TL

• FSL focuses on how to construct a

good feature embedding rather than

how to transfer knowledge
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Background: Metric Learning

37

Metric learning: Distinguish different individuals rather than identify their categories

Separable featuresDiscriminative features
• Enlarge inter-class 

distance
• Narrow inner-class 

distance

• Simple classifier: 
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System Model and Problem Formulation
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System Model and Problem Formulation
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• RFF-based SEI Problem

SEI is generally defined as multi-category classification problem

Receiver
Pre-

processing
Feature 

extraction

RFF Database

Match/Identify

Online identification

Offline training

Filtering
Power normalization

Synchronization
Target signal interception

…

ො𝑦 = arg max
𝑦∈𝒀

𝑓 𝑦|𝒙

Predicted 
label

Real label

RF dataMapping 
function

All categories

• FS-SEI Problem

Assisted Dataset 𝑫𝐴𝑠 = 𝒙𝑛, 𝑦𝑛 𝑛
𝑁𝐴𝑠:  Massive historical ADS-B data containing N classes (>10^5 samples)

𝐖∗ = arg min
𝐖

ℒ 𝑓 𝒙𝑛;𝐖 , 𝑦𝑛 𝐖𝑐
∗ = arg min

𝐖𝑠𝑐

ℒ𝑐{𝑓𝑐 𝑓 𝒙𝑖;𝐖
∗ ;𝐖𝑐 } ො𝑦𝑗 = 𝑓𝑐 𝑓 𝒙𝑗;𝐖

∗ ;𝐖𝑐
∗

Training Dataset 𝑫𝑇𝑟 = 𝒙𝑖 , 𝑦𝑖 𝑖
𝑁𝑇𝑟: Few ADS-B data from new C classes with K samples per classes

Test Dataset 𝑫𝑇𝑒 = 𝒙𝑗 𝑗=1

𝑁𝑇𝑒
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• Hybrid Metric-based Joint Separable and Discriminative Feature Embedding

ℒ𝐻𝑀 = ℒ𝐶𝐸 + 𝜆 ℒ𝑇𝑟𝑖𝑝𝑙𝑒𝑡 + ℒ𝐶𝑒𝑛𝑡𝑒𝑟

 ℒ𝐶𝐸 : Cross-entropy (CE) loss function for

separable feature representation

 ℒ𝑇𝑟𝑖𝑝𝑙𝑒𝑡 : Triplet loss function for both enlarge

inter-class distance and narrowing inner-class

distance [4]

 ℒ𝐶𝑒𝑛𝑡𝑒𝑟: Center loss function for narrowing inner-

class distance [5]

[4] X. Dong, J. Shen, “Triplet loss in Siamese network for object tracking,” in European
conference on computer vision (ECCV), pp. 459-474, 2018.
[5] Y. Wen, et al., “A discriminative feature learning approach for deep face recognition,”
in European conference on computer vision. Springer, Cham, pp. 499-515, 2016.

Knowledge 
transfer

Dense
+Softmax

∑

Update

Auxiliary Dataset 

• Step 1: Feature embedding 
(pre-train) Contrastive loss

Softmax loss

CVCNN

…

Few-shot Training Dataset

Test Dataset 

Trainable

Ensemble

• Step 2: Ensemble classification
(train classifier & test)

Predicted 
category

…

Classifier 1

Classifier 2

Classifier M

Feature 
vector

Feature 
vector

Feature 
vector
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Triplet network and triplet loss

41

Loss function:

ℒ𝑇𝑟𝑖𝑝𝑙𝑒𝑡

= 𝔼[ 𝑓𝐶𝑉𝐶𝑁𝑁 𝒙𝑎𝑛;𝐖 − 𝑓𝐶𝑉𝐶𝑁𝑁 𝒙+;𝐖 2

𝜕ℒcenter
𝜕𝐖

=
𝜕𝑓𝐶𝑉𝐶𝑁𝑁 𝒙𝑖;𝐖

𝜕𝐖
− 𝒄𝒚𝑖

∆𝒄𝒚𝑖 =
σ𝑖=1
𝑀 𝛿 𝒚𝑖 = 𝑗 ⋅ 𝒄𝑗 − 𝒙𝑖

1 + σ𝑖=1
𝑀 𝛿 𝒚𝑖 = 𝑗

• Center loss

ℒcenter =
1

2
෍

𝑖=1

𝑀

𝑓𝐶𝑉𝐶𝑁𝑁 𝒙𝑖;𝐖 − 𝒄𝒚𝑖 𝐖𝑐 2

2

Difference between triplet loss and center loss

triplet losscenter loss
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weight sharing
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Narrow intra-category distance
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Benchmarks
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 Instananeous features:  traditional instananeous feature, extrated from few-shot samples 
[6]

 CVCNN (few-shot samples): CVCNN, diretly trained on few-shot samples.

 CVCNN: CVCNN, trained on 𝑫𝐴𝑠 = 𝒙𝑛, 𝑦𝑛 𝑛
𝑁𝐴𝑠 with CE loss function, and then applied into 

few-shot task.

 Siamese CVCNN: CVCNN with siamese structure for roubust signal feature extraction [7].

 SR2CNN: It was applied into zero-shot signal recognition, which consists of classifier, 
auto-encoder and center loss. Here, we use its signal feature representation part for 
comparison rather than zero-shot recognition scheme [8]. 

[6] W. E. Cobb, E. D. Laspe, R. O. Baldwin, M. A. Temple and Y. C. Kim, "Intrinsic Physical-Layer Authentication of Integrated Circuits," IEEE 
Transactions on Information Forensics and Security, vol. 7, no. 1, pp. 14-24, 2012.
[7] Z. Langford, L. Eisenbeiser, M. Vondal, “Robust signal classification using siamese networks,” in ACM Workshop on Wireless Security and 
Machine Learning, pp. 1-5, 2019.
[8] Y. Dong, X. Jiang, H. Zhou, et al., “SR2CNN: Zero-Shot Learning for Signal Recognition,” IEEE Transactions on Signal Processing, vol. 69, pp. 
2316-2329, 2021.
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Simulation parameters
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Sampling rate 50 M Samples/s

Frequency 1090MHz

Bandwidth 10MHz

Gain 30dB

Signal format IQ

The number of aircrafts in assisted dataset 90

The number of samples in assisted dataset 200~500

Training vs. Validation 7:3

The number of aircrafts in few-shot training/test dataset 10~30

The number of samples in few-shot training dataset 1~20 samples per classes

The number of samples in test dataset 200 samples per classes

Channel ≈LOS

margin 𝑚 and threshold 𝜆 5, 0.01

Optimizer ADAM with default parameters
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Identification performance comparison of single metric
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• CVCNN (separable feature) and Triplet CVCNN (discriminative feature) have their own advantages
• Single separable or discriminative feature can not work well 
• Triplet CVCNN has better performance than Siamese CVCNN
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Identification performance comparison of hybrid metric

45

• TC CVCNN is based on triplet loss and CE loss 
• T2C CVCNN is CVCNN based on triplet loss, center loss and CE loss



III. Deep Learning-based SEI Methods
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 Ensemble classifier performs better than single classifier
 The more base classifiers in ensemble learning, the better the performance, which is obvious in the

one-shot scenario

Identification performance comparison: Single Classifier vs. Ensemble Classifier
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Feature Visualization

CVCNN Siamese CVCNN Triplet CVCNN

SR2CNNTC CVCNN T2C CVCNN

 The feature distance 
between emitters of 
the same category is 
smaller

 The feature distance 
between emitters of 
different categories is 
larger
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The influence of few-shot sample quality

 Few-shot samples are as anchors of the corresponding classes
 FSL-SEI is to measure the distance between test samples and

anchors
 “Anchor” is important for FSL-SEI, and a deviated anchor can bring

about catastrophic results
 The smaller the number of samples, the more serious the impact
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• We proposed an effective FS-SEI method for aircraft identification based on metric learning 
and ensemble learning. Simulation results demonstrated the effectiveness of our proposed 
FS-SEI. Feature visualization also showed the compact intra-category distance and separable 
inter-category distance in the features extracted by our proposed method. 

• We also revealed the impact of noisy samples on the stability of the proposed algorithm, and 
we expect to use some schemes, such as attention mechanism [9], to reduce the impact of 
sample quality on identification performance in the future works.

• The corresponding codes can be downloaded from GitHub: 
https://github.com/BeechburgPieStar/Few-Shot-Specific-Emitter-Identification-via-Deep-
Metric-Ensemble-Learning

[9] T. Gao,  Z. Liu and M. Sun, “Hybrid attention-based prototypical networks for noisy few-shot relation classification”, in AAAI Conference on 
Artificial Intelligence, 2019, pp. 6407-6414.

Conclusion
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• Challenges in FDD Massive MIMO system - The acquisition of downlink CSI is a very challenging
task for frequency division duplexing (FDD) massive MIMO systems due to high overheads associated
with downlink training and uplink feedback.

• Two observations:

(1) A small angular spread (AS) between BS and users;

(2) There exists angular reciprocity between uplink and downlink.

Background of CSI inferring technology

IV. Deep Learning-based CSI Inferring Methods

• Why deep learning (DL)

(1) Inherent characteristics of wireless channels can be captured by DL;

(2) Deep learning can provide solutions for the problems that have no clear analytical model;

(3) Efficient parallel computing methods reduce the complexity.
50
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• Complex-valued Deep Learning for CSI prediction in FDD massive MIMO System

• Fully Convolutional Network for CSI limited feedback in FDD massive MIMO System

• Transfer learning for CSI limited feedback in FDD massive MIMO System

Our Work Scope in Deep Learning-based CSI inferring 

IV. Deep Learning-based CSI Inferring Method

51
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CV-3DCNN: Complex-valued Deep Learning for CSI prediction 

in FDD massive MIMO System

IV. Deep Learning-based CSI Inferring Method

52

Y. Zhang, J. Wang, J. Sun, B. Adebisi, H. Gacanin, G. Gui, F. Adachi, ”CV-3DCNN: Complex-Valued Deep Learning for CSI 
Prediction in FDD Massive MIMO Systems,” IEEE Wireless Communications Letters, vol. 10, no. 2, pp. 266-270, 2021.
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(1) The steps of the prediction scheme

IV. Deep Learning-based CSI Inferring Methods

Data preprocessing
CV-

3DCNN

Training step

Known dataset 
UL-CSI & DL-CSI

Trained 
network

Prediction step

Trained network 
CV-3DCNN

Known dataset 
UL-CSI

Predicted data 
DL-CSI

The working mechanism of the proposed CSI prediction scheme   
53
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(2) The structure of our proposed CV-3DCNN

IV. Deep Learning-based CSI Inferring Methods
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The structure of CV-3DCNN.

Training Tips: The figure on the right shows the 
complex-valued (CV) convolution operation.
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(3) Experimental results: Measured and predicted data of first receiver antenna

IV. Deep Learning-based CSI Inferring Methods

 

 

Schematic diagram of measured downlink CSI
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(4) Experimental results: Measured and predicted data of first receiver antenna

IV. Deep Learning-based CSI Inferring Methods

Schematic diagram of predicted downlink CSI method
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(5) Experimental results: Error heat map of first receiver antenna

IV. Deep Learning-based CSI Inferring Methods

 

 

Schematic diagram of error between measured and predicted downlink CSI method.
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(6) Experimental results for CV-3DCNN

Compared with real-domain neural network, the NMSE performance of our proposed CV-3DCNN 
improved about 26.55%.

IV. Deep Learning-based CSI Inferring Methods

Real-domain Neural Network CV-3DCN

No. NMSE NMSE(dB) ρ NMSE NMSE(dB) ρ

1 0.0146 -18.3565 0.9970 0.0051 -22.9243 0.9989

2 0.0138 -18.6012 0.9972 0.0070 -21.5490 0.9985

3 0.0144 -18.4164 0.9970 0.0035 -24.5593 0.9993

4 0.0099 -20.0436 0.9980 0.0041 -23.8722 0.9991

5 0.0122 -19.1364 0.9975 0.0025 -26.0206 0.9995

6 0.0116 -19.3554 0.9976 0.0030 -25.2288 0.9994

Mean 0.0128 -18.9849 0.9974 0.0042 -24.0257 0.9991 
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Fully Convolutional Network for CSI limited feedback 

in FDD massive MIMO System

IV. Deep Learning-based CSI Inferring Methods

59

G. Fan, J. Sun, G. Gui, H. Gacanin, B. Adebisi, T. Ohtsuki, “Fully Convolutional Neural Network-Based CSI Limited Feedback for FDD Massive 
MIMO Systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 672-682, 2022.
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(1) The steps of the Downlink CSI Limited Feedback

IV. Deep Learning-based CSI Inferring Methods
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The working mechanism of downlink CSI limited feedback.
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(2) Existing network structure

IV. Deep Learning-based CSI Inferring Methods

[1] C. K. Wen, W. T. Shih, and S. Jin, “Deep learning for massive MIMO CSI feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 748–751, 2018.

 Feature Extraction：Extracting features of Downlink CSI and generate two feature maps. 

 Compression： Compressing the Downlink CSI and generate the codeword.

 Decompression： Mapping the codeword back into the Downlink CSI .

 Channel Refinement：Continuously refining the reconstructed Downlink CSI . 
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(3) Exiting problems

IV. Deep Learning-based CSI Inferring Methods

• Too many parameters in Fully Connected layer (FC layer)
→ high time complexity and space complexity 

…

• 4G CSI dimension: 32 × 32 × 2 →2,048 [1]
• If CR=1/4 → 2,048 : 512 → 1,048,576 → 2,097,152
• If CR=1/64 → 2,048 : 32 → 65,536 → 131,072

• 5G CSI dimension : 72 × 28 × 32 × 2 →129,024
• If CR=1/8 → 129,024 : 16128 → 2,080,899,072 → 4,161,798,144

• The research is carried under 4G channel models, and has not been applied to 5G yet
→ the simple CsiNet needs to be modified 

FC layer

62



(4) Our proposed FullyConv network for CSI limited feedback

Training Tips:

IV. Deep Learning-based CSI Inferring Methods

(7
2

, 1
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, 3
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, 2
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)

(7
2

, 1
4

, 3
2

, 2
, 2

)

 5G Downlink CSI matrix: (72, 14, 32, 2, 2)

where 72: Subcarriers, 14: OFDM symbols, 32: Transmitting antennas, 2: receiving antennas, 2: real and imaginary part

 Feature Extraction module：composed of 7 3Dconv layers → the ability of feature extraction is stronger

 Compression and Decompression modules ：3DConv layers and 3DDeConv layers

 Channel Refinement module ：2RefineNet blocks → 3RefineNet blocks, refining Downlink CSI 

Training Tips:
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(5) Baseline model: CsiNet_5G

Training Tips:

IV. Deep Learning-based CSI Inferring Methods
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3DConv 3*3; batch norm; LeakyReLU; S=(2,2,2),(4,4,4)...

• CsiNet cannot be applied to the current 5G Downlink CSI, so we modify CsiNet to CsiNet 5G for 5G downlink CSI.

• The biggest difference between CsiNet_5G and CsiNet is that all convolution operations are 3DConv.

• The dimension of downlink CSI is too high to use FC layers, so the compression and decompression modules of 

CsiNet_5G use convolutional layers.

The structure of CsiNet_5G     
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(6) Experimental results of FullyConv compared with baseline

IV. Deep Learning-based CSI Inferring Methods

Performances of the CsiNet 5G and the FullyConv. 
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IV. Deep Learning-based CSI Inferring Methods

Simulation results in AWGN channel when 𝐶𝑅 = {1/8, 1/64}

(7) Experimental results of FullyConv compared with baseline
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(8) Model complexity

IV. Deep Learning-based CSI Inferring Methods

• The model complexity can be measured by time complexity and space complexity.

• Time complexity refers to the number of floating-point operations (FLOPs) in a forward propagation of the 

model after a single sample is input.

• Space complexity refers to the total amount of memory exchange in a forward propagation of the model 

after a single sample is input, which is the memory consumption of the weights of each layer of the model.

• The Time complexity defines the training/prediction time of the model.

• The space complexity defines the number of parameters of the model.
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IV. Deep Learning-based CSI Inferring Methods

(8.1) Space complexity

• CsiNet_5G far exceeds FullyConv in terms of parameters because of the FC layer.

• The FC layer occupies more than 99% of the parameters of CsiNet_5G.

• Due to the use of convolutional layers to compress and decompress downlink CSI, the amount of

parameters of FullyConv is much smaller than that of CsiNet_5G.

The total weight parameters of all parameterized layers of the models
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IV. Deep Learning-based CSI Inferring Methods

Conv Layer Time Complexity ~ 𝑇 ෑ

𝑖=1

𝑁

𝑀𝑖 ∙ෑ

𝑗=1

𝐿

𝐾𝑗 ∙ 𝐶𝑖𝑛 ∙ 𝐶𝑜𝑢𝑡

(8.2) Time complexity

Dense Layer Time Complexity ~ 𝑇 𝑃𝑖𝑛 ∙ 𝑃𝑜𝑢𝑡

CR=1/8 CsiNet_5G FC layer FullyConv

Flops 7.37 G 4.16 G 3.21 G

Model Time Complexity ~ 𝑇 ෍

𝑙=1

𝐶

ෑ

𝑖=1

𝑁

𝑀𝑙𝑖 ∙ෑ

𝑗=1

𝐺

𝐾𝑙𝑗 ∙ 𝐶𝑙−1 ∙ 𝐶𝑙 +෍

𝑙=1

𝐷

𝑃𝑙−1 ∙ 𝑃𝑙

𝑀𝑖 : 𝑖-th side of convolution kernel

𝐾𝑗: 𝑗-th side of output feature map

𝐶𝑖𝑛: input channels

𝐶𝑜𝑢𝑡: output channels

𝑃𝑖𝑛: input neurons of FC layers

𝑃𝑜𝑢𝑡: output neurons of FC layers 

𝐶: number of convolutional layers

𝐷: number of FC layers

Time complexities of the two models

variable notations for computing 
the time complexity
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Deep Transfer Learning for 5G Massive MIMO
Downlink CSI Feedback

IV. Deep Learning-based CSI Inferring Methods
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J. Zeng, J. Sun, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, H. Sari, “Downlink CSI Feedback Algorithm With Deep Transfer Learning for FDD 
Massive MIMO Systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 4, pp. 1253-1265, 2021.



(1) Background and problem

IV. Deep Learning-based CSI Inferring Methods

• Acquisition of downlink channel state information (CSI) is an import procedure at the base station (BS)

for high quality wireless transmission in frequency division duplexing (FDD) communication systems.

• Compared with the traditional methods, the deep neural network (DNN) can effectively compress the

downlink CSI, thus greatly reducing the feedback overhead. However, the generalization of DNN is

poor, hence it is necessary to train a DNN from scratch whenever there is a change in the wireless

channel environment.

• Training a DNN from scratch requires huge data cost and time cost in 5G massive multiple-input

multiple output (MIMO) systems.

• For a similar task, the deep transfer learning can obtain a model with excellent performance using a

small number of samples based on the pre-trained model.
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(2) System model based on deep transfer learning 

IV. Deep Learning-based CSI Inferring Methods

Input Encoder Decoder
𝑥 ො𝑥

Deep Neural Network

Output

UE BS
Feedback

• At the UE (user equipment) side: the downlink CSI is inputted into the encoder of DNN for compression

The process of downlink CSI feedback using the DNN.

𝑠 = 𝑓𝑒𝑛(𝐻)

• At the BS side: the low-dimensional codeword 𝑠 is inputted into the decoder of DNN for recovering

𝐻 = 𝑓𝑑𝑒(𝑠)
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(3) Deep transfer learning algorithm for CSI limited feedback

IV. Deep Learning-based CSI Inferring Methods

CDL-A

Pre-trained 
model

Fine-tune New model

CDL-B CDL-D CDL-ECDL-C

The deep transfer learning model for downlink CSI feedback.

• 3GPP R15 defines a new channel model named 

clustered delay line (CDL) in 38.901, which is 

divided into CDL-A, CLD-B, CDL-C, CDL-D and 

CDL-E according to simulated network 

environments. 

• Large number of samples of CDL-A channel are 

used to train a DNN as the pre-trained model.

• Small number of samples of CDL-B, CDL-C, CDL-D,  

CDL-E channels are used to fine-tune the pre-

trained model, respectively.
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(4) Experiment results
Training Tips:

IV. Deep Learning-based CSI Inferring Methods

• The performance of the CDL-A model is obtained by 

training the DNN from scratch with 50000 samples, while 

the NMSEs of the other channel models are obtained using 

4000 samples to fine-tune the CDL-A pre-trained model.

• In different compression ratios 𝛾, the NMSEs of the CDL-B 

and CDL-C models are similar to that of the CDL-A model, 

while the NMSEs of the CDL-D and CDL-E models are even 

better than that of the CDL-A model.

• In four different compression ratios, the training time of the 

CDL-A model is about 40h using RTX 2080Ti GPU, while the 

training time of the other channel models is about 4h20min 

using GTX 1080Ti GPU. 

Performance comparison between different models
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IV. Deep Learning-based CSI Inferring Methods

Performance comparison between different sample sizes (𝛾 = 1/8).

• With the sample size reduces from 4000 to 200, 

the NMSEs of the CDL-B and CDL-D models 

also gradually decline. 

• With the reduction of the sample size, the 

training cost is also gradually reduced. 

• The reduction of sample size can further reduce 

the training cost by bearing a small loss of 

model performance.

(4) Experiment results
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IV. Deep Learning-based CSI Inferring Methods

(4) Experiment results

The NMSE of the CDL-B model during training process.
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IV. Deep Learning-based CSI Inferring Methods

(4) Experiment results

The NMSE of the CDL-D model during training process.
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• Background and Classification of ML for wireless communication 

• AMC: LightAMC, Fede-AMC (SISO); ZF-AMC, Co-AMC, TL-AMC (MIMO)

• SEI: Few-Shot SEI via Deep Metric Ensemble Learning

• CSI Inferring: CSI prediction; CSI limited feedback (FCN, TL)

V. Summary

T04: Machine Learning for Intelligent Wireless Communications - Part 2
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Thanks a lot for your attention
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