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. Background

Solve classical and new problems well

—— B5G and 6G demand more powerful tools

* serving with more devices and applications

* generating more amounts of data

* requiring lower communication delay

* facing more complicated situations

* demanding much smarter decision making skills
* more vulnerable to security and privacy threats

Compared with traditional algorithms—— Deep neural networks and deep learning have

become the most effective and efficient machine learning technologies for various applications

* compatible to GPU and TPU
* stronger capability of fitting unknown and complex functions as black boxes
* better performances on feature learning automatically

G. Gui, M. Liu, F. Tang, N. Kato, F. Adachi, “6G: Opening New Horizons for Integration of Comfort, Security, and Intelligence,”
IEEE Wireless Communications Magzine, vol. 27, no. 5, pp. 126-132, 2020.
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I. Deep Learning-based AMC Methods

Background of AMC

* Automatic Modulation Classification (AMC) - a key technique for non-cooperative communication
systems to recognize different modulation types relying on received signals. There are generally no
agreement and authorization between transmitter and receiver.

Transmitter j7: x : YE Receiver

No agreement, No authorization

* Recently, deep learning (DL)-based AMC has outperformed these traditional methods in both
performance and efficiency.

* DL-based AMC is generally modeled as multi-classification problem. Based on maximum a posteriori
( MAP) criterion, it can be written as follows.

R: The received signal
m;

The real modulation type

N

m = arg max Fp; (m|R) variable notations for modelling the AMC problem The predicted modulation type

memMm

<

The modulation type pooling
Fp;: The DL model
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Il. Deep Learning-based AMC Methods

Our work scope in deep learning-based AMC methods:

* Deep Learning for Automatic Modulation Classification in SISO Systems

» Lightweight Automatic Modulation Classification (LightAMC)
» Federated Automatic Modulation Classification (FedeAMC)

* Deep Learning for Automatic Modulation Classification in MIMO System

» Multi-Antenna Cooperative Automatic Modulation Classification (Co-AMCQC)
» CSl and Zero Forcing-aided Automatic Modulation Classification (ZF-AMC)
» Transfer Learning-based Automatic Modulation Classification (TL-AMC)



Il. Deep Learning-based AMC Methods

Lightweight Automatic Modulation Classification (LightAMC)

Y. Wang, J. Yang, M. Liu, and G. Gui, “LightAMC: Lightweight Automatic Modulation Classification via Deep Learning and
Compressive Sensing,” /EEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3491-3495, 2020.



Il. Deep Learning-based AMC Methods

(1) Slgnal model r(n): The received complex baseband signal
. n o
AO+2TAf— s(n): The modulation signal
r(n)=AeJ( an)S(Tl)-l-W(Tl),OSnSN—l ) g
w(n): Additive white Gaussian noise (AWGN)

A: Channel gain, and it is a real value in (0,1]

(2) Dataset generation AB: Time-varying phase offset, and A9~U(0,1—”6)
=z AWGN g O Af: Normalized frequency offset (Af = 0.1)
20 ®) =
o 3 S o ' g 2 N: The number of sampling points
® 5 — QC_J —_— 5 — _|_  ——— = "3
. % g fjl Q 23 variable notations for modelling the modulation signals
> o S
o]
_ | real(r(0)) real(r(1)) .. real(r(N-—1)) _ L _ , B
Rjg = imag(r(0)) imag(r(1)) .. imag(r(N— 1)) and Rjq Is a real matrix with dimensionality 2xN (N=128).

* The modulation candidate pool: ®; = {BPSK, QPSK, 8PSK}, ®, = {BPSK, QPSK, 8PSK, 16QAM}.
* SNRis random, and SNR~U (—10,10) dB



Il. Deep Learning-based AMC Methods

(3) Introduction of lightweight methods

Task Faster Fe_edforward Smaller Model Size Stable Performance
Computing Speed
W Wy W
[ Lightweight method for Network Accelerating and Compression ]
Ny Ny o
Technology Efficient Structure Design Neuron Pruning and Sparsification Model Quantization

Model Pruning
» Weight sum (WS)

* Binary neural network
(BNN)
* XNOR-Net

* Group Convolution
» ShuffleNet

I

I

I

: > MobileNet > Average percentage of zero

obileNe

I

I

I

I

I

I

I

I

| activation (APOZ) * Ternary weight
I

I

I

I

network (TWN)

* Separable Convolution
» Sparsity regularization

» Bottleneck

* Kernel Sparsification * quantized neural

» SqueezeNet
- _ _ L __ » Sparseconstraint | network (QNN)

9



Il. Deep Learning-based AMC Methods

(4) Our original Deep Neural Network for AMC

Dataset (IQ sample, label) Input Layer Training Tips:

ConvlD (128, 16) + BN + RelLU + Dropout (drl) ) _
M Convolution
al
ConvlD (64, 8) + BN + RelLU + Dropout (dr2) L
J ayer
Dense (256) + BN + RelLU + Dropout (dr3)
Dense (128) + BN + RelLU + Dropout (dr4) > Fully-
connected
M Layer
Dense (M) + Softmax

Original CNN structure for the AMC technology.




Il. Deep Learning-based AMC Methods

(5) Our Lightweight Deep Neural Network for AMC

The [-th The [-th The I-th The [-th Training Tips:
layer  scaling factor layer layer  scaling factor layer
The (I + 1)-th ( ‘ ( ) The (l+ 1)-th
"X layer

The n-th neuron

pruning, ak <A,

{ saving, al =2, .,

000

+«— {4-norm

11

Neuron pruning for LightAMC.



. Deep Learning-based AMC Methods

(4) Experimental results for LightAMC

Model Structure/0, Model size/0, Structure/0, Model size/0,
CNN-based AMC 128-64-256-128 15.5MB 128-64-256-128 15.5MB
LightAMC (Proposed) 77-18-49-44 1.0MB (93.5%!) 81-19-63-49 1.3MB (91.6%!)

B Compared with M-AMC, our proposed LightAMC only has less than 7% and 9% of original CNN
model sizes in @1 and @4, respectively.

Model Tc (us) / 0, Tc (us) / 0,
CNN-based AMC 44.2 44 .2
Traditional AMC 200.7 312.9

LightAMC (Proposed) 33.3 (24.6%!) 33.6 (23.9%1)

B Compared with CNN-based AMC, the computing time of our proposed LightAMC gets further
reduction, and it has been reduced by nearly 24% in both two datasets.

12



l. Deep Learning-based AMC Methods

P.. (%) / 6, with different SNR and AMC methods.

—B—F-AMC/O1
oo L —€—M-AMC/O1
LightAMC without finetuning/©1
—P— Light AMC with finetuning (Proposed)/©1

—A— Traditional AMC/©1
0 . I I
-10 -5 0 5 10
SNR(dB)
Model Fcc (%) / 64 FCC (%) / 6,
CNN-based AMC 78.63 70.35
Traditional AMC 62.93 51.12
LightAMC (Proposed) 78.93 70.10

P.. (%) / @, with different SNR and AMC methods.

0.9
0.8
0.7
0.6
S
3 0.5
[a )
04r
0.3] \
i =~ —B— F-AMC/02
021 —d— M-AMC/O2
LightAMC without finetuning/©2
0.17 —P— LightAMC with finetuning (Proposed)/©2| |
0 | Traiditional AMC/©2
-10 -5 0 5 10
SNR(dB)

Compared with traditional AMC (HOC+SVM), CNN -
based AMC has huge performance advantages.

Our proposed LightAMC has similar performance
with CNN-based AMC.
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Il. Deep Learning-based AMC Methods

Federated Automatic Modulation Classitication (FedeAMC)

Y. Wang, G. Gui, H. Gacanin, B. Adebisi, H. Sari, and F. Adachi, “Federated Learning for Automatic Modulation Classification
Under Class Imbalance and Varying Noise Condition,” /EEE Transactions on Cognitive Communications and Networking, vol. 8,
no. 1, pp. 86-96, 2022.
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. Deep Learning-based AMC Methods
(1) Background and Problem

Cloud Server *  From the left figure, the perfect DL model is

_ Training trained on cloud server and based on huge and
==k

balance samples, uploaded from each device.

Uploading each sample maybe impossible:

(1) High communication cost caused by too
much data;
(2) data privacy.

* How can we train a perfect DL model jointly
without data sharing?

15



Il. Deep Learning-based AMC Methods

(2) System model based on federated learning (FL)

Cloud server

aggregationg %

AN
F ¥F Ix
-

@ Train the sub-model
@ Upload the key knowledge of the sub-model
@ Update the sub-model

Background of the federated learning based AMC.

Federated learning (FL)

share knowledge rather than data
Steps:

1. Cloud server choose and initialize a DL model, and send
it to each device;

2. Devices train the DL model on each sub-dataset:

3. Devices upload the learned knowledge (such as model
weights);

4. Cloud server aggregate this knowledge and send it to
each devices

5. Repeat Step 2 to Step 4.

16



Il. Deep Learning-based AMC Methods
(3) Sighal model

variable notations for modelling the modulation signals

. n
r(n) — AeJ(A9+27TAfN)S(n) + W(Tl), 0<n<N-1 r(n): The received complex baseband signal
s(n): The modulation signal
(4) Dataset with class imbalance w(n): Additive white Gaussian noise (AWGN)
— A: Channel gain, and it is a real value in (0,1]
Z g
< o O n
o & 8_ 9 3 . AB: Time-varying phase offset, and A8~U(0,—)
2 <)) ) —~ 16
v a5 » S = 5 = 4 = = < .
Q % Q = N o Af: Normalized frequency offset (Af = 0.1)
S o T §' S N: The number of sampling points
AWGN -
) ) ) The number of training samples
Simulation model for generating the dataset. 4000
 The modulation candidate pool: 9t = {BPSK, QPSK, 8PSK, 16QAM}. 4000
« SNRis random, and SNR~U(—10,10)dB 2000
0 N ] N
« We prepare four sub-dataset (with class imbalance) for Clientl  Client2  Client3  Client4
simulations of four loT devices, and their distributions are mBPSK mQPSK ®8PSK m16QAM

shown on the right. Data distributions of four IoT devices
17



Il. Deep Learning-based AMC Methods

(5) CNN structures for FedeAMC

Dataset } In out

ConviD (128, 16) + BN + RelU + Dropout |
g (0.1) y _
. Convolutional
ConvlD (64, 8) + BN + ReLU + Dropout Layer
L (0.1) )

«

\
Dense (256) + BN + RelLU + Dropout (0.5)

«

>FuIIy—c:onnected

Dense (128) + BN + ReLU + Dropout (0.5) Layer

«

Dense (4) + Softmax
7

CNN structure for the FedeAMC technology.

Training Tips:

18



. Deep Learning-based AMC Methods

(6) The descriptions of two FL algorithms: SSGD and MA

Algorithm1: Federated learning-based AMC (SSGD)

Initialize w;, K, T, ¢, and B

w; is the model weight at t-th epoch,
K is the number of devices,

T is the all training epochs,

N¢ IS the learning rate at t-th epoch,
B is the number of batch in a epoch,

fort =0,1,2,..,T —1do
Load the current model wy;

forb=0,1,2,...,B—1do

Compute the current gradient at k — th device Vfj p(we);

Obtain gradients of all devices through synchronous
communication, {Vf, ,(We), Vfoo(We), -, V fic s(We)};
Update wiiq = wy — %Zfﬂ Vfiep(We)

end for

end for

r
|

Algorithm2: Federated learning-based AMC (MA) I
Initialize w¢, K, T, ¢, B and M I
fort =0,1,2,..,T —1do
Load the current model wf = wy; I
form=20,12,..,M—-1do I
forb=10,1,2,..,B—1do I
Compute the current gradient at k — th device
V fiembWE); I
Update w = w = 1t mV fiomps(WE): I
end for I
end for I
Obtain weights of all devices through synchronous communication,
Update w;4q = %Zlk{:l w I
end for I
_— e |

19




Il. Deep Learning-based AMC Methods

(7) Loss function for class imbalance and its equivalent skill

Assume sample and labels are {(xl,yl)} In a training batch: e N\
N™: The number of training samples with
* Cross-entropy (CE) loss function the modulation type m
a™: class balance factor _
Variable
lep = _—Z yi1og(foun (8 x)) = —— Z Zyl log(fenn(8; ¥™) | Nmax = maxym
mEM = \ meM /

class imbalance
Tips: increase the weight in the

_ loss of class with small samples
* Balanced cross-entropy (BCE) loss function

lBCE———Z Z“ Vi log(fCNN(9 .)):-NLBZ

zyl log(fCNN(e '))
meM i= meM

CE + Data repeated expansion A Equivalent to

Nmax

20



Il. Deep Learning-based AMC Methods

(8) Experimental results for FedeAMC

100

[ ContAMC. ' | B “CentAMC” is the CNN-based AMC trained on dataset,
—A— Trad AMC which contains four sub-datasets, and it has the best
90 I | —8— FedeAMC (SSGD, BCE) i _
—6—FedeAMC (SSGD, CE) performance;
R0 | |= % ‘FedeAMC (MA, BCE) | _ _
— % ‘FedeAMC (MA, CE) B “TradAMC" (High order cumulants with ANN) has almost no
ol —<— SubAMC (Average performance) S work under the condition of training dataset with changing
. ’ = SNRs;
2. 6ol ’ |
a’ fa - - :_ - B “SubAMC" Is the average performance of the CNN-based

AMC trained on the corresponding sub-dataset.

B “FedeAMC” has better performance than “SUbAMC”, and it
still has slight performance gap with “CentAMC” . Specifically,
average performance loss is close to 2%, and the highest

performance loss is almost 4% at 2 dB. In addition, in
20 = | ' ' | “FedeAMC”

-10 -5 0 5 10
B S5SGD is slightly beyond MA

50

40

30 -

SNR/dB

Experimental results on P.. (%) with different SNR L
and AMC methods. B BCE is slightly beyond CE

21



Il. Deep Learning-based AMC Methods

(8) Experimental results for FedeAMC

2 CentAMC
Ejijiﬁg ﬁiigg%@? B Convergence rate : CentAMC = FedeAMC (BCE) >
L5 _ IEEiZﬁﬁE %QZB(%) 1 FedeAMC (CE), and the application of BCE can
effectively accelerate the training.

B |t ;s noted that although loss of FedeAMC (SSGD, CE)
and FedeAMC (MA, CE) have difference before

convergence, but they converge almost at the same

epoch.

0 200 400 600 800 1000
epoch

Experimental results on loss with different epoch numbers
and AMC methods.

22



l. Deep Learning-based AMC Methods

Cooperative Automatic Modulation Classification (Co-AMC)

Y. Wang, J. Wang, W.Zhang, J. Yang, G. Gui, “Deep Learning-Based Cooperative Automatic Modulation Classification Method
for MIMO Systems,” /EEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4575-4579, 2020.

23



l. Deep Learning-based AMC Methods

(1) AMC for MIMO systems

Signal model Yy = Hxy + ny

 yYi = v,y (2), ..., ie(N)]T, k € [1,N/N,]: the received signal in the moment k without considering carrier
frequency offset and phase offset.

o xp =[x, (1), x,(2), ..., xx (N)]T, k € [1,N/N,]: the transmitted source signal vector in the moment k, and X =
[xlleJ '"lxN/Nt]

» n,~CN(0,0621y ): additive noise.

* H~CN(0,Iy x,): complex-valued MIMO channel

Dataset generation

« X" [xl(n) x2(n), ..., xy/n,(M)],n € [1, N,]: the transmitted vector in the n-th transmitting antenna, and X =
[x1, x2, ..., xM]T is enforced into the unit power.

¢ Yyt = [yl(n),yz (1), .., yn/n, (M|, n € [1,N,]: the received vector in the n-th receiving antenna, and its real

part and imaginary part as a set of training sample of the n-th antenna.
24



. Deep Learning-based AMC Methods

(2) Neural network structures for Co-AMC

. HOC DNN-based Co-AMC P" = {P(my|y™9), P(mzly”'ﬁ). e P(myag [y 9)} Training Tips

P? Decision
N.

(a) The process of HOC and DNN-based Co-AMC.

191903}

\,
ﬂ

it
L

‘*7
Y

* CNN-based Co-AMC

= SRR >

(b) The process of CNN-based Co-AMC. 25
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Il. Deep Learning-based AMC Methods

(3) Experimental results for Co-AMC

—&— CNN (Average weighting)
CNN (Majority voting)
- > ‘HOC+DNN

= [F ‘HOC+DNN (Average weighting)

= ‘HOC+DNN (Majority voting)

0 5
SNR/dB

10

0.2

—B&— CNN (Average weighting)
CNN (Majority voting)
-] 'HOC+DNN

= [F ‘HOC+DNN (Average weighting)

= ‘HOC+DNN (Majority voting)

0 5
SNR/dB

10

0.2r

—&— CNN (Average weighting)
CNN (Majority voting)

= > ‘HOC+DNN i

= [F ‘HOC+DNN (Average weighting)

= ‘HOC+DNN (Majority voting)

0 5
SNR/dB

Simulation results of Pcc for different schemes with (a). Ny = 1, N,, = 4, (b). Ny = 2, N,, = 4, (¢). N = 4, N, = 4.

B AW method is better than MV method, whether in CNN-based AMC or in HOC-DNN-based AMC;

B CNN-based AMC has better performance than HOC-DNN-based AMC.

26
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l. Deep Learning-based AMC Methods

Zero Forcing-aided Automatic Modulation Classification (ZF-AMC)

Y. Wang, G. Gui, et al, “Automatic Modulation Classification for MIMO Systems via Deep Learning and Zero-Forcing
Equalization,” /EEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5688-5692, 2020.

27



Il. Deep Learning-based AMC Methods

(1) System model

N 4
: - ¢ SO an 3O
g E

—  Channel estimation 4] __________________________ .

|

: , FC(4) 1

The process of HOC and DNN-based ZF-AMC. : Conv (128, 16) Conv (64, 8) :

I |

. . I , I

B /F-AMC uses channel state information (CSI) and I ) ‘ ) ) ; ) l
equalization algorithm. : ’ : ' :

I |

B Here, we consider different CSI conditions, including : \ ~ - N y :
perfect CSl-aided ZF-AMC and imperfect CSl-aided ZF- | Feature extraction module Classification module |

AMC. sy ey



. Deep Learning-based AMC Methods

(2) Experimental results for ZF-AMC

e :
09 r
0.8
2007
—4—0 =0 —4—0 =0
+Je=0.01 06 L _P_J:O.Ol -
—A—0 =0.05 —A—0 =0.05
—d—0=0.1 | | 0.54 —d—0_=0.1
+O'e=02 +O'e=02
0.5 : : ; 0.4 ! . :
-10 -5 0 5 10 -10 -5 0 5 10 -
SNR/dB SNR/dB SNR/dB

Simulation results of Pcc for different schemes with (a). N = 1, N,. = 4, (b). N; = 2, N, = 4, (c). N = 4, N,. = 4.

Training Tips:

* The larger N¢, the more severe the performance degradation of the imperfect CSl-aided ZF-AMC

29




Il. Deep Learning-based AMC Methods

Transfer Learning based Automatic Modulation Classification
(TL-AMC)

Y. Wang, G. Gui, H. Gacanin, T. Ohtsuki, H. Sari, F. Adachi, “Transfer Learning for Semi-Supervised Automatic
Modulation Classification in ZF-MIMO Systems,” /EEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 10, no. 2, pp. 231-239, 2020.

30



Il. Deep Learning-based AMC Methods

(1) System model

Update ¢
€ [1,N¢] Classification layer oo €
—_— P A - Update 9, 9g
(G5 1)) v Dense (230)) e (128) Training Tips:
Feature/Encoder layer - Dense (4)
r A\ N -
- 1- )\CAE

Conv1D (128, 16) ) o ——~ CE
Conv1D (64, 8 A4 I

1 1
1 A 4
) I
.
.
.

Il-)lllll-) . Acat

Conle (64, 8) ConvlD (128, 16) ConvlD 2 1)

J € [1, Nag] Update 9p
Decoder Iayer <

The structure of TL-AMC.
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Il. Deep Learning-based AMC Methods
(2) Training details for TL-AMC

* Loss function: categorical cross entropy (CCE) for classification and mean square error (MSE) for auto-encoder:

N¢
1
Lece ({0, 0c) =~ ) L Log (fe(si; (9%, 8c})

NaEg

1
Lnse (00, 951) = 7= ) (F(s5: 09, 9p}) = 5’
j=1

arg min (1 — Aup_c)Lccg ({9, 9c3) + Aup—cLyse {96, 9p}) Mg—c
9g,9F,9¢,9p

* Optimizer: stochastic gradient decent (SGD)
For each mini-batch classification data, after a forward pass, update {9¢, 9.}:
{19F:'9c}<_{19F; ﬁc} - 771(1 - }\AE—C)V{ﬁp,ﬁC}LCCE ({ﬁF; ﬁc})
19D - 191;'
For each mini-batch auto-encoder data, after a forward pass, update {9g, 9p}:
g, 9p 9%, 9p} — maue—c V{19E,19D}LMSE {9, 9p})
191;' - 19D

32



l. Deep Learning-based AMC Methods

(3) Experimental results for TL-AMC

100 100 100 —
90
90 90
80 -
80 80 70
° —#— CNN-AMC (Large) 3 —#— CNN-AMC (Large) © 60f
g 70+ —P—CNN-AMC (Small) | 5 70+ —P—CNN-AMC (Small) 1 =,
o —A—TL-AMC (A, ;=0.3)|| & —A—TL-AMC (A, ;=03)|| &~ 50
TL-AMC (A ., .=0.6) TL-AMC () . _=0.6) i —#— CNN-AMC (Large)
0 TL-AMC (,\CAE—O 9] o1 TL-AMC ACAE—O 9 0 P CNN-AMC (Small)
—d— TL-AMC (A, g=09) —H— TL-AMC (A, ;=0.9) 30l —A—TL-AMC (A, =03) |
50 50 TL-AMC (A, ,=0-6)
20 —e— TL-AMC (A, .=0.9) |
40 L L 1 1 1 40 I I I I L 10 I L I L |
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
SNR/dB SNR/dB SNR/dB

Simulation results of Pcc for different schemes with(a). N, = 1, N, = 4, (b). N, = 2, N, = 4, (c). N, = 4, N,. = 4.

B TL-AMC has the similar performance with CNN, when SNR is higher than 0 dB, but its performance is far below
that of CNN.
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Il. Deep Learning-based SEl Methods

Our Work Scope in Deep Learning based SEI
* Background
« System Model and Problem Description

* The Proposed FSL-SEI Method
= FSL-SEI with Hybrid Metric

= Benchmarks

 Simulation Results

= |dentification Performances

= Feature Visualization

Conclusion

Y. Wang, G. Gui, Y. Lin, H.-C. Wu, C. Yuen, F. Adachi, “Few-Shot Specific Emitter Identification via Deep Metric Ensemble
Learning,” /EEE Internet of Things Journal, early access, 2022.
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Il. Deep Learning-based SEl Methods
Background: SEl and RFF

SEl based on radio frequency fingerprinting (RFF), which originates from differences in
hardware circuits of wireless devices and is parasitic in the wireless signal [1]
I Iv' Phase noise | offset error! :

1//‘)\

/ \ |
|
A I
|
|
I
Y Differences in hardware circuits

Bas.,eband S psp
signal

DAC

RFF-based SEl is a

I I
[ I
| |
I I
| |
I I
[ I
| |
potential method to '

!
v Harmonic 'Y Amplitude/ ¥ 1/Q gain L, _
distortion | Phase ! imbalance | Nonlinear:

: ) I
protect the physical 1 v DC offset 1 distortion ¥ Orthogonal I

e [

More difficult to tamper with, More difficult to counterfeit! «—

[1] F. Xie, H. Wen, Y. Li, et al, “Optimized coherent integration-based radio frequency fingerprinting in Internet of Things,” /EEE Internet of Things
Journal vol. 5, no. 5, pp. 3967-3977, 2018.



Il. Deep Learning-based SEl Methods

Background: Few Shot Learning

=1’

D, i.e., C-way-K-shot task, and Np,. = CK; Assisted Dataset D s = {(x,, yn)}gij is needed, and Dys N Dy = @, Vy, & {yi}?'”

Define: Training Dataset Dy, = {(x;, y;)}.o7, Test Dataset Dy, = {(x])}ivz, and there are C classes with K samples per classes in

FSL = Feature embedding + Simple classifier [1]
O A good feature embedding

Dy = {(xn: yn)}gAs

| T
= o R v .
s e o Foature N « Generative model
c
embeddin s> - .
[ oL 2 1 ER « Metric model (learn to compare)
o W
i S
Trainable _ + Meta model (learn to learn)

: . y.}Tr m Simple classifier O Transfer learning (TL) vs. FSL
Ml _ (SYM/LR/Cosine. ) - Existing FSL methods (Pseudo FSL)
’f = [ 1— Feature

embedding
fDL

N’

Untrainable

can be considered as a simple TL

v

* FSL focuses on how to construct a

good feature embedding rather than

how to transfer knowledge

[1Y. Tian, Y. Wang, D. Krishnan, et al., “Rethinking few-shot image classification: a good embedding is all you need?” in ECCV 2020: 1é6th Eurggean
Conference, Glasgow, UK, Aug. 23-28, 2020, pp. 266-282.



Il. Deep Learning-based SEI Methods

Background: Metric Learning

Metric learning: Distinguish different individuals rather than identify their categories

— v — _
—~— —~—
Discriminative features Separable features
Enlarge inter-class , N
. N X X
distance N QXXXXXX/\ A\\3< X X X
Narrow inner-class AN ,’ X X X X\ X X X X X
distance AN X A AD
- AN \\/ X X X// \\\X X X X
//AAA \\\\‘x'\\\ >i A A A \\ X X X
//AAAAAAI\\\\ =" A A A A\\\ X X
l
\\AAAAAAA | AAAA A\\\ X
AN
Ng ATATY AAAAAAS

- Simple classifier:

X X X

X X X

XXX*XXX Y& Y Fearture from few-shot samples
X X X

Xx XX A x Fearture from test samples
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System Model and Problem Formulation

Cloud server

Dataset Model

Model | o¥e

training

<—— ADS-B link

«— — Data link

)

Base station

g ADS-B receiver

Data collection

Airspace 2

(@)
A

L ‘a0 en

Model deployment
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System Model and Problem Formulation

 RFF-based SEIl Problem

— RFF Database — Offline training

-~

Pre- __, Feature _.(/ o —— Online identification
processing extraction

Filtering
Power normalization

Synchronization — Match/ldentlfy
Target signal interception Predicted Mapping RE data

. g . la%el fun(\tion /

: : : ces y = X
SEl is generally defined as multi-category classification problem Y ar%é?i“f(y' )

- All categories
Real label
 FS-SEI Problem =

Assisted Dataset D, = {(x,,, yn)}ﬁAS: Massive historical ADS-B data containing N classes (>10*5 samples)

Training Dataset D, = {(xl,yl)}livw: Few ADS-B data from new C classes with K samples per classes
Test Dataset Dy, = {(x;)}

W* = arg“r,ninL[f(xn;W),yn] Z> W) = ar%vminﬁc{fc[f(xi;W*);Wc]} Z> Vi = fc[f(xj;W*);W;jg
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« Hybrid Metric-based Joint Separable and Discriminative Feature Embedding

* Step 1: Feature embedding Update _
(pre-train) CVENN Contrastive loss
fre(Wee) ~ A I x 1
LTriplet"'LCenter LHM = LCE + A([’TT‘Lplet + [’CenteT‘)
Auxiliary Dataset
Dy = {(Xav Ya)}gili .
v Lcp : Cross-entropy (CE) loss function for
Dense
+Softmax LCE .
& . separable feature representation
~-
Knowledge Softmax | . .
transfer ormaxtoss V' Lrpipec: Triplet loss function for both enlarge
. Step 2: Ensemble classification inter-class distance and narrowing inner-class
(train classifier & test) \ .
%’ Classifier 1 dIStance [4]
v L : Center loss function for narrowing inner-
Ensemble Center g
Test Dataset Feature |\ . . Predicted class distance [5]
D¢ = {(Xj)}]: Ap vector en category
Feature »
vecior Classifier M
[4] X. Dong, J. Shen, “Triplet loss in Siamese network for object tracking,” in European
Trainable conference on computer vision (ECCV), pp. 459-474, 2018.
- ~ ~ [5] Y. Wen, et al,, “A discriminative feature learning approach for deep face recognition,”
Few-shot Training Dataset in European conference on computer vision. Springer, Cham, pp. 499-515, 2016.

D., = {(xi, ¥}, 40



Il. Deep Learning-based SEl Methods

Triplet network and triplet loss
« Center loss

Positi CVCNN
oo & 2
+ S |1 (Wi ) — fop (Wegs x|, 1 _ = . _
< 3 e Leenter =5 Y | fevewn (e W) — ¢y, (W)
Anchor weightIsharing Narrow intra-category distance i=1
sample
D, X § (Z} 0L center . dfcvenn (xi; W) _c
ightlohar oW oW Vi
Negative welghtIsharlng Enl inter-cat distance M .
sample kil Wil Ac. = Zi=t S =1 (¢;—x;)
' — |1 fre(Wrg; x7) — frg(Wg; X )||2 — Yi 1 + Z{Vil 6()’1 — ])
update
Loss function: / Difference between triplet loss and center loss \
\ X X -X \ X X X
AN NS
. \ X % A h X X
Lrripiet N xe?}xx\,x N % ><>¢<><>:<><
— an. +. N
= Elllfevenn (™ W) = fevenn (75 W)l AN %QX/X A Mlbx X
SRTARN N XX A—A \ X . X
A‘/AA;&AA WX A AYA, N X
AGATRFA N 2SS N
A AN A N A A A A
A=A A N A ATA \

N\ \\
\ center loss triplet loss! /
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Benchmarks

= |Instananeous features: traditional instananeous feature, extrated from few-shot samples
[6]
= CVCNN (few-shot samples): CVCNN, diretly trained on few-shot samples.

» CVCNN: CVCNN, trained on D, = {(x,,, o) 15" with CE loss function, and then applied into
few-shot task.

= Siamese CVCNN: CVCNN with siamese structure for roubust signal feature extraction [7].

= SR2CNN: It was applied into zero-shot signal recognition, which consists of classifier,
auto-encoder and center loss. Here, we use its signal feature representation part for
comparison rather than zero-shot recognition scheme [8].

[6] W. E. Cobb, E. D. Laspe, R. 0. Baldwin, M. A. Temple and Y. C. Kim, "Intrinsic Physical-Layer Authentication of Integrated Circuits," /EEE
Transactions on Information Forensics and Security, vol. 7, no. 1, pp. 14-24, 2012.

[7] Z. Langford, L. Eisenbeiser, M. Vondal, “Robust signal classification using siamese networks,” in ACM Workshop on Wireless Security and
Machine Learning, pp. 1-5, 2019.

[8] Y. Dong, X. Jiang, H. Zhou, et al., “SR2CNN: Zero-Shot Learning for Signal Recognition,” /EEE Transactions on Signal Processing, vol. 69, pp.

2316-2329, 2021.
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Simulation parameters

Sampling rate

50 M Samples/s

Frequency 1090MHz
Bandwidth 10MHz
Gain 30dB
Signal format 1Q
The number of aircrafts in assisted dataset 90
The number of samples in assisted dataset 200~500
Training vs. Validation 7:3
The number of aircrafts in few-shot training/test dataset 10~30

The number of samples in few-shot training dataset

1~20 samples per classes

The number of samples in test dataset

200 samples per classes

Channel

~L0S

margin m and threshold 1

5, 0.01

Optimizer

ADAM with default parameters

43




Il. Deep Learning-based SEI Methods

|dentification performance comparison of single metric

100 | T | | 100

100
90 B 90 90 -
80 1 80T 80
—+—— Instananeous Features
70 | 70 - —H&—— CVCNN (Few-shot samples) | |
5 (S:i\;:ncq:gsl: CVCNN 707 —+—— Instanancous Features
| Trinlet CVCNN —FH&—— CVCNN (Few-shot samples)
o 60r o 00 P o 60 —— CVCNN
g g =, —O— Siamese CVCNN
=P 50 | A~ 50t a’ 50k —¥— Triplet CVCNN
40 + /.———|-/+ 1 40 1 40
30 + ——+—— Instananeous Features -~ 30 30 |
—FHE— CVCNN (Few-shot samples)
—%*— CVCNN 20|
20 1 —O— Siamese CVCNN 7 20 F
—¥— Triplet CVCNN /‘_/-4—/’Ir
10 L : L 10 : : . 10 . . . .
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Shot/10 Ways Shot/20 Ways Shot/30 Ways

« CVCNN (separable feature) and Triplet CVCNN (discriminative feature) have their own advantages
* Single separable or discriminative feature can not work well
* Triplet CVCNN has better performance than Siamese CVCNN
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|ldentification performance comparison of hybrid metric

cc

100 :
— :§ T
95 I . 57 1 95
90 I . 0 90 |
85 —— CVCNN |
85 | —5— Triplet CVCNN 85T
—%— TC CVCNN
g0 - 80 - —%— SR2CNN 1 80 -
° —6— T2C CVCNN .
S, 75} =
75 ¢ 8 g 75t
[a)
70 - 0r 70 -
65 | —— CVCNN | 65 65 | —— CVCNN
—FH— Triplet CVCNN —F&— Triplet CVCNN
ol —%— TC CVCNN | 60 | co | —%— TC CVCNN
—#— SR2CNN —#— SR2CNN
—6—T2C CVCNN i | —6— T2C CVCNN
55 i
55+ . 55
50 1 1 1 1
50 L L 1 L 50 1 I 1 !
0 5 10 15 20 0 > 10 15 20 0 5 10 15 20
Shot/10 Ways Shot/20 Ways Shot/30 Ways

« TC CVCNN is based on triplet loss and CE loss
« T2C CVCNN is CVCNN based on triplet loss, center loss and CE loss
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Ildentification performance comparison: Single Classifier vs. Ensemble Classifier

100 . . . w 100 . . " r 100 . — —&
99 -l 98 |
98 r
98 r L
97 o6
NN 97t X 9% X ogqt
8 3 3
&~ 96t e 95¢ 1 A~
92 r
951 —+— Single Classifier 1 * S i —+— Single Classifier
—+&— Ensemble Classifier (M=3) 93 Single Class1ﬁe? 4 90 E g ble Classifier (M=3
x— Ensemble Classifier (M=5) —&— Ensemble Classifier (M=3) =— kbnsemble assl ier (M=3)
94 . . —#— Ensemble Classifier (M=5 —*— Ensemble Classifier (M=5)
—©— Ensemble Classifier (M=7) 92t ( )| .
—o— Ensemble Classifier (M=7) ]8 —o6— Ensemble Classifier (M=7)
93 | | 1 1 91 1 1 | | 1 1 | |
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Shot/10 Ways Shot/20 Ways Shot/30 Ways

= Ensemble classifier performs better than single classifier
= The more base classifiers in ensemble learning, the better the performance, which is obvious in the
one-shot scenario
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CVCNN

M,
FEL
EX e
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»

TC CVCNN
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%

Siamese CVCNN
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&

SR2CNN

¢

Triplet CVCNN

1 ®
5.
Q 3
23 v" The feature distance
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%" the same category is
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The influence of few-shot sample quality

100* T T T T T ] 100_ 100_ I ] I I ‘:7

95 | ? : | T § ! | T
o5t | ‘ ; ! ] 95 - T *
90 | | * |
S5t J:r g, 0 <, o
a” : a” : o
80+ s : 85t |
L L |
751 - 3 i
: } 80+ i
80
70 F
i é 1IO 1I5 2IO 1 5 10 15 20 1 5 10 15 20
Shot/10 Ways Shot/20 Ways Shot/30 Ways
A d, <d,
= Few-shot samples are as anchors of the corresponding classes A AA A dexx Xx
» FSL-SEIl is to measure the distance between test samples and AAAA AAA ] o X xxx
1
anchors A AAA X ><X><X><
= “Anchor” is important for FSL-SEI, and a deviated anchor can bring - A X X

about catastrophic results

= The smaller the number of samples, the more serious the impact #k anchor from few-shot samples



Il. Deep Learning-based SEl Methods

Conclusion

 We proposed an effective FS-SEI method for aircraft identification based on metric learning
and ensemble learning. Simulation results demonstrated the effectiveness of our proposed
FS-SEI Feature visualization also showed the compact intra-category distance and separable
Inter-category distance in the features extracted by our proposed method.

 We also revealed the impact of noisy samples on the stability of the proposed algorithm, and
we expect to use some schemes, such as attention mechanism [9], to reduce the impact of
sample quality on identification performance in the future works.

* The corresponding codes can be downloaded from GitHub:

https://github.com/BeechburgPieStar/Few-Shot-Specific-Emitter-Identification-via-Deep-
Metric-Ensemble-Learning

[9] T. Gao, Z. Liu and M. Sun, “Hybrid attention-based prototypical networks for noisy few-shot relation classification”, in AAA/ Conference on
Artificial Intelligence, 2019, pp. 6407-6414. 49
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Background of CSI inferring technology

* Challenges in FDD Massive MIMO system - The acquisition of downlink CSl is a very challenging
task for frequency division duplexing (FDD) massive MIMO systems due to high overheads associated
with downlink training and uplink feedback.

Two observations:
(1) A small angular spread (AS) between BS and users;

(2) There exists angular reciprocity between uplink and downlink.

* Why deep learning (DL)
(1) Inherent characteristics of wireless channels can be captured by DL;
(2) Deep learning can provide solutions for the problems that have no clear analytical model;

(3) Efficient parallel computing methods reduce the complexity. -



V. Deep Learning-based CSl Inferring Method

Our Work Scope in Deep Learning-based CSI inferring

* Complex-valued Deep Learning for CS| prediction in FDD massive MIMO System

* Fully Convolutional Network for CSI limited feedback in FDD massive MIMO System
* Transfer learning for CSI limited feedback in FDD massive MIMO System

ol
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CV-3DCNN: Complex-valued Deep Learning for CS| prediction
INn FDD massive MIMO System

Y. Zhang, J. Wang, J. Sun, B. Adebisi, H. Gacanin, G. Gui, F. Adachi, "CV-3DCNN: Complex-Valued Deep Learning for CSI
Prediction in FDD Massive MIMO Systems,” /EEE Wireless Communications Letters, vol. 10, no. 2, pp. 266-270, 2021.
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(1) The steps of the prediction scheme

Training step

o e e e e e e e e e e e e e o

l
Known dataset | CV- Trained
LS| & DLocS “—>‘: Data preprocessing }—>‘ AENI |—‘— otwork

e e e e o o e e e e e e e e e e e e e e e e e S e S e Ee e e e

-~

———————————————————

l, \I
Known dataset : [ Trained network : Predicted data
UL-CS| ! CV-3DCNN I i DL-CSI
: ]

———————————————————

The working mechanism of the proposed CSI prediction scheme .
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(2) The structure of our proposed CV-3DCNN

O Imaginary Dataset [ Imaginary Kemels
Encoder Decoder
T *
/’/’ \\\ ,',r \ N\ [ N\ \ \‘\ —
4 ) 4 ) ( ) ( ) v \
II \l | : [ Real Dataset [ Real Kemel
Y ¥ A 7 T N S
_ ¥ ! O L
wn 1 : _I' I '
O © © N ol I o o ~N 3 ! 3 " b " |
4 ail Lo Lo? Mot L8 Lblar bla b ol = = o
| I
S PlRsPRer2e P2 e zelz eleel(ze | 2 e o e
) L +— ] ata_ Im Kemelilm 1 ata Im T
S| 152( (52| (52| (52| 1|sE||8E||SE| [s2] || 5 L e
g_ : (@) i @) E O O+ ! : h : O * Convolution Operation
—_— ! : 1 U
| X | | P
— X g — : o
| N I ! * ! | *
" ;v\ J \ J \ J \ J /) ' : !
\ J \ J \ J \ J , : : )
’ I
__________________________ -7 i Data Re Keme]ilm : | : Data_R Kemnel R
————————————————————————— L e e e L1 b oo 2

The structure of CV-3DCNN.

O Imaginary Dataset

E1 = Dpn* Kre + Dre * Kpm
Training Tips: The figure on the right shows the
complex-valued (CV) convolution operation. [ = Dee * Kre = Dim * Kim

D Real Dataset

o4
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(3) Experimental results: Measured and predicted data of first receiver antenna

[-st Receiving Antenna Imag Measured

1-st Receiving Antenna Real Measured

HDL-CSI

2%
@y, 20
100 40 7Zey. 50
500;7. 1-9}‘/ 50 20 /”déir 0 0

X .
a Inde 1ttlng
itting AT Tramst
Trans

Schematic diagram of measured downlink CSI
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(4) Experimental results: Measured and predicted data of first receiver antenna

1-st Receiving Antenna Imag Prediction

1-st Receiving Antenna Real Prediction

50 20

0 29

Schematic diagram of predicted downlink CSI method
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(5) Experimental results: Error heat map of first receiver antenna

I-st Receiving Antenna Real Predicted Value (grid map)
1-st Receiving Antenna Real Error (heat map)

I-st Receiving Antenna Imag Predicted Value (grid map)
1-st Receiving Antenna Imag Error (heat map)
2

~

1
~

Schematic diagram of error between measured and predicted downlink CSI method.
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(6) Experimental results for CV-3DCNN

Real-domain Neural Network CV-3DCN

Compared with real-domain neural network, the NMSE performance of our proposed CV-3DCNN
iImproved about 26.55%.

NMSE
0.0146
0.0138
0.0144
0.0099
0.0122
0.0116
0.0128

NMSE(dB)
-18.3565
-18.6012
-18.4164
-20.0436
-19.1364
-19.3554
-18.9849

0.9970
0.9972
0.9970
0.9980
0.9975
0.9976
0.9974

NMSE
0.0051
0.0070
0.0035
0.0041
0.0025
0.0030
0.0042

NMSE(dB)
-22.9243
-21.5490
-24.5593
-23.8722
-26.0206
-25.2288
-24.0257

0.9989
0.9985
0.9993
0.9991
0.9995
0.9994
0.9991
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Fully Convolutional Network for CSI limited feedback

INn FDD massive MIMO System

G. Fan, J. Sun, G. Gui, H. Gacanin, B. Adebisi, T. Ohtsuki, “Fully Convolutional Neural Network-Based CSI Limited Feedback for FDD Massive
MIMO Systems,” /EEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 672-682, 2022.
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(1) The steps of the Downlink CSI Limited Feedback

PlOt-VE upinccs ((g)
Downlink CS| Pilot-BS

gE EIN S - . . . .y

Vs \

Encoder | Decoder

I ) ) I

) ’o ‘ I ol !

) c — | 8 — el B

© 9o |& - ' 5 2 gl
U S5 s @ Downlink CS|| Q ~ c £ I B
— .'C-U' %_’ S_ c —I e o|l— % v |_> S

- - " _— C
E 0 & £ Limited Feedback | 3 Sl
L S : 8 oY | —__/
—/ ——/ N — /’

-_— e - - s - .

The working mechanism of downlink CSI limited feedback. -
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(2) Existing network structure

N

Input
Conv 3X3X%2

32X32X2

/2048

Reshape

-

=

Dense

~

Downlink CSI

Feedback

[

/

Feature
Extraction

Compression

(o)
AN (00} o0
) X X ¥ X
o Q. <
o X
S ) . mamm ) O ) O m) o 1) ©
() o)) > > © >
< N = 0O o > o c
o N9 &0 & o N
) 0 NnO 0O 99 &) o« O
S X X X X X
S8 ) \8 8§ 8
\ J &
Decompression Channel
Refinement

Existing network structure: CsiNet [1]

> Feature Extraction: Extracting features of Downlink CSI and generate two feature maps.
» Compression: Compressing the Downlink CSI and generate the codeword.

» Decompression: Mapping the codeword back into the Downlink CSI .

» Channel Refinement: Continuously refining the reconstructed Downlink CSI .

[1] C. K. Wen, W. T. Shih, and S. Jin, “Deep learning for massive MIMO CSI feedback,” /EEE Wireless Communications Letters, vol. 7, no. 5, pp. 748-751, 2018.
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(3) Exiting problems

* Too many parameters in Fully Connected layer (FC layer)
— high time complexity and space complexity

* 4G CSldimension: 32 X 32 X 2 —»2,048 [1]
* IfCR=1/4 - 2,048 :512 —» 1,048,576 — 2,097,152
 IfCR=1/64 — 2,048 : 32 - 65,536 —» 131,072

e 5G CSldimension: 72 x 28X 32 X2 —-129024
e |[fCR=1/8 - 129,024 :16128 — 2,080,899,072 — 4,161,798,144

FC layer

* The research is carried under 4G channel models, and has not been applied to 5G yet
— the simple CsiNet needs to be modified
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(4) Our proposed FullyConv network for CSI limited feedback

.............................................

(72, 14, 32, 2, 2)
(72, 14, 32, 2, 2)

“Ex2x2)

S
S
S
S
S

» 3D DeConv (3 X 3 x 3); LeakyReLU » 3D Conv (3 x 3 X 3); LeakyReLU Copy » LeakyRelLU === Feedback

Training Tips:
v 5G Downlink CSI matrix: (72, 14, 32, 2, 2)
where 72: Subcarriers, 14: OFDM symbols, 32: Transmitting antennas, 2: receiving antennas, 2: real and imaginary part
v' Feature Extraction module: composed of 7 3Dconv layers — the ability of feature extraction is stronger
v" Compression and Decompression modules : 3DConv layers and 3DDeConv layers

v Channel Refinement module : 2RefineNet blocks = 3RefineNet blocks, refining Downlink CSI

63
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(5) Baseline model: CsiNet 5G

Encoder j T Decoder
________________________________________________ .

| | V

I [ | I

| | - :

| ! | RefineNet |

| | 12 2 8 16 2 L

| | : !

| [ : [

| | ' | \\

| I | :

i i | N o
! feedback I | £ 1

! l " d bd —(Dmm 3 ) Output |

| | : N [N N N Z ! i

| | . N A S o |

: : T LEEE :

! ! I M M Ml N !

: :Codeword Codeword: :

| | l |

| | ! :

3DConv 3*3; batch norm ™ 3DConv 3*3; batch norm; LeakyReLU mm 3DConv 3*3; batch norm; Sigmoid

= Copy =) [ eakyRelU =) 3DConv 3*3; batch norm; LeakyReLU; $=(2,2,2),(4,4,4)...

The structure of CsiNet_5G

* CsiNet cannot be applied to the current 5G Downlink CSI, so we modify CsiNet to CsiNet 5G for 5G downlink CSI.
* The biggest difference between CsiNet_5G and CsiNet is that all convolution operations are 3DConv.
* The dimension of downlink CSl is too high to use FC layers, so the compression and decompression modules of

CsiNet_5G use convolutional layers.
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(6) Experimental results of FullyConv compared with baseline

Performances of the CsiNet 5G and the FullyConv.

Ratio methods Loss NMSE (dB)
18 CsiNet 5G  2.80 x 10— —22.5777
FullyConv 5.72 x 10— —28.4488
/64 CsiNet 5G 1.76 x 10—2 ~13.0397
FullyConv 4.99 x 1073 —18.8472
/128 CsiNet 5G1  1.87 x 10—~ —~12.8182
FullyConv  8.82 x 1072  —16.1094
11256 CsiNet_5G  2.30 x 10~* ~11.9154

FullyConv  2.05 x 102  —-12.4313
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(7) Experimental results of FullyConv compared with baseline

AWGN Channel When CR=1/8 S5 AWGN Channel When CR=1/64
-7.83 —8— Training and testing with noise 331 —8— Training and testing with noise
=& Training and testing without noise == Training and testing without noise
~10 4 —=5.0
7.5+
_15 p
- . —10.01
[a] s}
z Z
w W
2 g
-12.5
Z 50 b=
—=15.0 A
—-25
—=17.5 A
-19.28
-28;45 _28i45 _28i45 28‘.45 -28i45 -28i45 -28{15 -28i45 -28i45 0 0_-19i68 -lSiEIB -lSiEIB -19i68 -lSiEIB -19;68 -1%68 i -I¥68
T T T T T T T T T T T T T T T T T T
-10 -5 0 5 10 15 20 25 30 -10 -5 0 5 10 15 20 25 30
uplink channel SNR(dB) uplink channel SNR(dB)

Simulation results in AWGN channel when CR = {1/8,1/64}
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(8) Model complexity

The model complexity can be measured by time complexity and space complexity.

Time complexity refers to the number of floating-point operations (FLOPs) in a forward propagation of the
model after a single sample is input.

Space complexity refers to the total amount of memory exchange in a forward propagation of the model
after a single sample is input, which is the memory consumption of the weights of each layer of the model.

The Time complexity defines the training/prediction time of the model.

The space complexity defines the number of parameters of the model.
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(8.1) Space complexity

Number\CR 1/8 1/64 1/256
CsiNet_5G  4,161,953,180 520,365,692 130,195,604
FC layer 4,161,943,296 520,355,808 130,185,720
Proportion 99.9998% 99.9981% 99.9924%
FullyConv 50,170 50,390 50,610

The total weight parameters of all parameterized layers of the models

* CsiNet_5G far exceeds FullyConv in terms of parameters because of the FC layer.

* The FC layer occupies more than 99% of the parameters of CsiNet_5G.

* Due to the use of convolutional layers to compress and decompress downlink CSI, the amount of
parameters of FullyConv is much smaller than that of CsiNet_5G.
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(8.2) Time complexity

variable notations for computing
the time complexity

N L
Conv Layer Time Complexity ~ T HMi - K- Cin - Cout M;: i-th side of convolution kernel
i=1 j=1

K;: j-th side of output feature map

Dense Layer Time Complexity ~ T(P;, - Pyyt) Cin: input channels
Cout: OUtput channels

c /N G D P;,: input neurons of FC layers
Model Time Complexity ~ T Z l_[M” - 1_[ Kijj-C_1-C |+ Z(Pl_l - Py) P, output neurons of FC layers
=1 \ i=1 j=1 =1 C: number of convolutional layers

D: number of FC layers

Time complexities of the two models

CR=1/8 CsiNet_5G FC layer FullyConv

Flops 7.37 G 416G 3.21 G
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Deep Transter Learning for 5G Massive MIMO
Downlink CSI Feedback

J. Zeng, J. Sun, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, H. Sari, “Downlink CS| Feedback Algorithm With Deep Transfer Learning for FDD
Massive MIMO Systems,” /EEE Transactions on Cognitive Communications and Networking, vol. 7, no. 4, pp. 1253-1265, 2021.
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V. Deep Learning-based CSl Inferring Methods

(1) Background and problem

Acquisition of downlink channel state information (CSl) is an import procedure at the base station (BS)
for high quality wireless transmission in frequency division duplexing (FDD) communication systems.

Compared with the traditional methods, the deep neural network (DNN) can effectively compress the
downlink CSI, thus greatly reducing the feedback overhead. However, the generalization of DNN is
poor, hence it is necessary to train a DNN from scratch whenever there is a change in the wireless
channel environment.

Training a DNN from scratch requires huge data cost and time cost in 5G massive multiple-input
multiple output (MIMO) systems.

For a similar task, the deep transfer learning can obtain a model with excellent performance using a
small number of samples based on the pre-trained model.
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V. Deep Learning-based CSl Inferring Methods

(2) System model based on deep transfer learning

: Deep Neural Network
I

X | eredbackz
Input —\— Encoder > > DY Decoder —|——> Output

BS

The process of downlink CSI feedback using the DNN.

* At the UE (user equipment) side: the downlink CSl is inputted into the encoder of DNN for compression
S = fen(H)
* At the BS side: the low-dimensional codeword s is inputted into the decoder of DNN for recovering

H = fgqe(s)
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V. Deep Learning-based CSI Inferring Methods

(3) Deep transfer learning algorithm for CSI limited feedback

e 3GPP R15 defines a new channel model named
clustered delay line (CDL) in 38.901, which is
divided into CDL-A, CLD-B, CDL-C, CDL-D and

CDL-E according to simulated network
CDL-A CDL-B CDL-C cDL-D CDL-E
[ A A * L J

o © A A A A o o e ®
° A i * °

environments.

* Large number of samples of CDL-A channel are
used to train a DNN as the pre-trained model.

* Small number of samples of CDL-B, CDL-C, CDL-D, -
| re-trained Fine-tune New model
CDL-E channels are used to fine-tune the pre- model

trained model, respectively.

The deep transfer learning model for downlink CSI feedback.
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V. Deep Learning-based CSl Inferring Methods

(4) Experiment results

- The performance of the CDL-A model is obtained by Performance comparison between different models

training the DNN from scratch with 50000 samples, while . Channel model NMSE (dB) Tost Toss
: : CDL-A —28.449 5.72 x 104
the NMSEs of the other channel models are obtained using LB 6.0 .
4000 samples to fine-tune the CDL-A pre-trained model. 1/8 CDL-C —29.066 6.14 x 10~*
CDL-D —33.646 3.07 x 104
CDL-E —33.532 3.12 x 104
. . . CDL-A —16.940 7.62 x 10—3
* In different compression ratios y, the NMSEs of the CDL-B CDLB 135 70 % 10=2
and CDL-C models are similar to that of the CDL-A model, 1/64 CDLC —15.553 131 x 1072
. CDL-D —23.487 3.14 x 103
while the NMSEs of the CDL-D and CDL-E models are even CDL-E —23.177 3.36 x 10~3
CDL-A —16.109 8.82 x 1073
1/128 CDL-C —14.784 1.56 x 10—2
CDL-D —21.993 4.44 x 1073
* |n four different compression ratios, the training time of the CDL-E —22.077 4.34 % 107°
, , , , CDL-A —12.431 2.05 x 102
CDL-A model is about 40h using RTX 2080Ti GPU, while the CDL-B _8.454 5.84 x 102
. : : : 1/256 CDL-C —9.860 4.81 x 10~2
training time of the other channel models is about 4h20min DL 10381 o 05 x 10~
USing GTX 1080T| GPU CDL-E —18.299 1.03 x 10—2
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V. Deep Learning-based CSl Inferring Methods

(4) Experiment results

* With the sample size reduces from 4000 to 200,

the NMSEs of the CDL-B and CDL-D models

_ Performance comparison between different sample sizes (y = 1/8).
also gradually decline.

. CDL-B CDL-D
Sample size —— ——
° Wlth the reductlon Of the Sample size, the NMSE (dB) Tramning ime NMSE (dB) Training time
. ) | d I d d 50,000 —27.144 38h —32.212 35h20mim
tralnlng cost Is also gradually reauced. 4,000 —26.934 4h20min —33.646 4h20min
3,000 —26.570 3h30min —33.512 3h50min
* The reduction of sample size can further reduce 2,000 —26.070  2hl8min = —33.123  2h28min
H _ v bear 0 ¢ 1,000 —25.260 1h23min —32.538 1h23min
the training cost by bearing a small loss o 500 94493 h 3100 h
model performance. 200 —23.267 35min —31.392 35min
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V. Deep Learning-based CSl Inferring Methods

(4) Experiment results

Compression rate=1/8

—— (DL-A
—®— (DL-B-50000
—®— CDL-B-4000
—&— (DL-B-1000
—®— (DL-B-200

-23.267
Gsgin)
-25.26
{1h23min)
5.812(20h50min) —"6‘934

———(4h20inhy3sm)

28.448044h)

T T T T T T T T T
0 25 50 s 100 125 150 175 200
Epoch (CDL-B)

The NMSE of the CDL-B model during training process.
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V. Deep Learning-based CSl Inferring Methods

(4) Experiment results

Compression rate=1/8

—e— (DLA
07 —o— (DL-D-50000
—e— (DL-D-4000
—e— CDL-D-1000
—e— (DL-D-200
54
-10 1
15
20
25 1
28 449(44h)
30 1 i
Al MSmiﬂ]
a7 Phan €. 5381 W23 min
(Fh20min) 33181 3w o
35

T T T T T T T T
0 25 50 75 100 125 150 175
Epoch (CDL-D)

The NMSE of the CDL-D model during training process.

T
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V. Summary

* Background and Classification of ML for wireless communication
* AMC: LightAMC, Fede-AMC (SISO); ZF-AMC, Co-AMC, TL-AMC (MIMQO)
* SEl: Few-Shot SEl via Deep Metric Ensemble Learning

* CSlInferring: CSI prediction; CSI limited feedback (FCN, TL)

78



References

L. Liang, H. Ye, G. Yu, and G. Y. Li, “Deep-Learning-Based Wireless Resource Allocation With Application to Vehicular Networks,”
Proceedings of the IEEE, vol. 108, no. 2, pp. 341-356, Dec. 2019.

* Z.Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep Learning in Physical Layer Communications,” /EEE Wireless Communications, vol. 26, no.
2, pp. 93-99, Mar. 2019.

* Y. Wang, J. Yang, M. Liu and G. Gui, "LightAMC: Lightweight Automatic Modulation Classification via Deep Learning and Compressive
Sensing," /EEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3491-3495, Mar. 2020.

* Y. Wang, et a/, "Distributed Learning for Automatic Modulation Classification in Edge Devices,” /EEE Wireless Communications Letters,
vol. 9, no. 12, pp. 2177-2181, Dec. 2020.

* Y. Wang, J. Wang, W. Zhang, J. Yang and G. Gui, "Deep Learning-Based Cooperative Automatic Modulation Classification Method for
MIMO Systems," /EEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4575-4579, Apr. 2020.

* Y. Wang, et al, "Automatic Modulation Classification for MIMO Systems via Deep Learning and Zero-Forcing Equalization,” /EEE
Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5688-5692, May 2020.

* Y. Wang, G. Gui, H. Gacanin, T. Ohtsuki, H. Sari and F. Adachi, "Transfer Learning for Semi-Supervised Automatic Modulation
Classification in ZF-MIMO Systems," /EEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 2, pp. 231-239,
Jun. 2020.

* Y.Wang, G. Gui, Y. Lin, H.-C. Wu, C. Yuen, F. Adachi, “Few-Shot Specific Emitter Identification via Deep Metric Ensemble Learning,” /EEE
Internet of Things Journal, early access, 2022.

* Y. Zhang, et al, “CV-3DCNN: Complex-valued Deep Learning for CSI Prediction in FDD Massive MIMO Systems,” /EEE Wireless
Communication Letters, vol. 10, no. 2, pp. 266-270, Feb. 2021.

* G. Fan, J. Sun, G. Gui, H. Gacanin, B. Adebisi, T. Ohtsuki, “Fully Convolutional Neural Network-Based CSI Limited Feedback for FDD
Massive MIMO Systems,” /EEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 672-682, 2022.

* J. Zeng, J. Sun, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, H. Sari, “Downlink CSI Feedback Algorithm With Deep Transfer Learning for
FDD Massive MIMO Systems,” /EEE Transactions on Cognitive Communications and Networking, vol. 7, no. 4, pp. 1253-1265, 2021. 79



Thanks a lot for your attention
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