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Motivation: Radio Access Network

§ RAN (Radio Access Network) 
connects user equipment (UE) to 
the core network via radio links 
and backhaul (fiber/wireless)

§ Serves as the radio interface of 
a cellular network, enabling 
wireless access to network 
services

§ RAN evolution from 1G to 5G 
has significantly increased 
system complexity and capability
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[Source: TechTarget]
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§ Why do we need AI for RAN?

– Significantly increased complexity for 5G/5G-Adv and 6G networks

– Challenging KPIs: data rate, coverage, energy efficiency, latency, reliability, connectivity, etc. 

– Limitations of typical rule-based / model-based control

à No longer controlled by rules designed by humans à AI may be a solution

Motivation

3

[Source: Non-Orthogonal Physical Layer (NOPHY) 
Design towards 5G Evolution and 6G, IEICE Trans. 
Commun., 2022]
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Motivation

§ What we need is network intelligence
– Network intelligence (NI) is an enabling 

technology that allows communications 
service providers (CSPs) to capture 
subscriber-, service- and application-level 
awareness contained in network traffic. 

– This information is analyzed and exposed 
for integration with other applications in the 
back office, allowing CSPs to apply granular 
policies to influence customer experience 
and adapt to dynamic shifts in application 
and service usage. 

– The solution is based on nonproprietary 
hardware and software platforms and can 
be used by CSPs on any network.
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[Source: Gartner 2024]

<Core network and its connections>
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Motivation
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§ In the perspective of standards…
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Motivation
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[Source: Recommendation ITU-R M.IMT. Framework for 2030 and beyond]

IMT 2030 – usage scenarios IMT 2030 – 6G capabilities

§ In the perspective of standards…
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Motivation

§ 5G-Advanced vs. 6G
– AI-native 6G System

l AI is incorporated into major 
functionality from the very 
beginning of design and 
development of systems

7
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AI-RAN Reference Architecture

§ Non-RT RIC(RAN Intelligence Controller)/ Near-RT RIC/ RT
§ Data collection à analytics à decisions à control

8
[Source: M. Polese, et. al, “Beyond Connectivity: An Open Architecture for AI-RAN Convergence in 6G,” arXiv, 2025.  

* SMO: Service Management  and Orchestration
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AI/ML for AI-RAN

§ Representative Use Cases
– Prediction (traffic, mobility)
– Optimization (scheduling, power control)
– Anomaly detection
– Etc. 
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[Source: Integrating AI/ML in Open-RAN: Overcoming 
Challenges and Seizing Opportunities, AI-RAN Alliance, 2024]
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What about ingredients for AI/ML for networks? 

§ Data available in RAN
– UE-side: CQI, RSRP, SINR, mobility events
– gNB-side: scheduling, HARQ, buffer status
– Network level: traffic load, handover stats

§ Characteristics
– High-dimensional
– Spatio-temporal correlation
– Noisy and partially observable
– Non-stationary

§ Challenges in Using RAN Data
– Data sparsity and imbalance
– Label scarcity
– Privacy and real-time constraints

à Abundant data, but cannot be used directly
10

[P. Paymard, et. al., “Extended Reality over 3GPP 5G-Advanced 
New Radio: Link Adaptation Enhancements, arXiv, 2022]



Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University

In this tutorial, 

§ With two use cases 
– explicit consider communication and 

network constraints with AI/ML 
deployment 

– highlight tradeoffs between AI/ML 
algorithms

§ Use cases
– Slice classification 

l Feature extraction and explanation 
l Efficient AI/ML algorithms
l Model selection

– Network traffic anomaly detection
l Feature selection algorithms and 

explanation
l Extensive evaluation of anomaly detection 

algorithms

11
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Use Case 1 – ML with Efficient Features for Slice Classification

12

[Source: 5G network slicing: automation, assurance and optimization 
of 5G transport slices, Nokia] 
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Introduction
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§ Network slicing
– Partitioning physical infrastructure into multiple 

logical slices
l allows a single physical network to be 

partitioned into multiple virtual slices
l tailored to specific SLAs and KPIs (e.g., 

latency, throughput, reliability, capacity)
l enables service-specific optimization for 

diverse applications (public and private 
networks)

l Improves resource efficiency and flexibility by 
matching network behavior to application 
demands
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[Source: 5G Technology World, 2025]
– Representative service requirements

l enhanced Mobile Broadband (eMBB)
l Ultra-Reliable Low-Latency Communications (URLLC)
l massive Machine-Type Communications (mMTC)
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Introduction
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§ Why importance of network slice classification at RAN level?
– Starting point of slice-aware orchestration

l Guaranteeing Service Level Agreement (SLA) compliance and QoS management
l Enabling resource allocation and scheduling
l Ensuring isolation between slices 

– In RAN, RAN Intelligence Controller (RIC) can be responsible for slice 
classification

14
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Introduction
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§ RAN Intelligent Controller (RIC) in O-RAN architecture
– Responsible for AI/ML-driven control and optimization

DURU

xApp4

– Non-real-time RIC (Non-RT RIC)

l Hosting rApps for policy and model management

l Offline training and large-scale data analytics

– Near-real-time RIC (Near-RT RIC)

l Hosting xApps for real-time RAN optimization

l Online inference and control with ~1sec latency

– Central Unit (CU) and Distributed Unit (DU)

l Interfacing with RIC for real time actions

xApp5

xApp1 xApp2 xApp3
…

Non-RT RIC

rApp4 rApp5

rApp1 rApp2 rApp3
…

Near-RT RIC

Latency

>> 1 sec

1 msec~1sec

< 10msec

Intelligence layers

CU
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Challenges
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RU

Near-RT 
RIC xAppxApps

Non-RT 
RIC xApprApps

• AI/ML training

• AI/ML inference

gNodeB

DUCU

② retraining

① accuracy

 

§ Requirements in O-RAN slice classification
① High classification accuracy under strict latency constraints
② Frequent retraining and fast deployment 
③ Efficient operation by avoiding high-dimensional data exchange
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Challenges
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§ Requirements in O-RAN slice classification
① High classification accuracy under strict latency constraints
② Frequent retraining and fast deployment 
③ Efficient operation by avoiding high-dimensional data exchange

RU

Near-RT 
RIC xAppxApps

Non-RT 
RIC xApprApps

• AI/ML training

• AI/ML inference

[1] M. Belgiovine, et al., “MEGATRON: Machine Learning in 5G with Analysis of Traffic in Open Radio Access Networks,” in ICNC, 2024, pp. 1054–1058.
[2] J. Groen, et al., “TRACTOR: Traffic Analysis and Classification Tool for Open RAN,” in IEEE ICC, 2024, pp. 4894–4899.
[3] L. Bonati, et al., “Colosseum: Large-Scale Wireless Experimentation Through Hardware-in-the-Loop Network Emulation,” in IEEE DySPAN, 2021, pp. 105–113.
[4] C. Tassie, et al., “Leveraging Explainable AI for Reducing Queries of Performance Indicators in Open RAN,” in IEEE ICC, 2024, pp.5413–5418.
[5] M. Polese, et al., “ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms,” IEEE 
Transactions on Mobile Computing, vol. 22, no. 10, pp. 5787–5800, 2023.

gNodeB

DUCU

② retraining

① accuracy

 

§ Related work [1]-[5]

– Mainly focusing on classification performance
– Deploy deep learning (DL)-centric approaches

§ Limitations of recent work 
– Rarely considering training cost, retraining feasibility, and update overhead
– Lack of exploration of lightweight ML classifiers
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Goal
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§ Consideration of data characteristics and O-RAN deployment constraints in 
classification model selection
– Comparison of ML and DL classifiers

Machine learning (ML) Deep learning (DL)
Data 

processing 
ability

• Sufficient for simpler and structured 
data

• Domain-driven feature engineering

• Strong for complex and non-linear 
structured data

• Representation learning
Model 

complexity
• Low complexity
• Lightweight and fast

• High complexity
• Heavy computation

Systematic evaluation of ML and DL for O-RAN slice classification

[D. Choi, S. Park, J. Kwon and H. Park, "Few Features are Enough: Communication-Efficient AI-RAN," Conference on 
Neural Information Processing Systems (NeurIPS 2025) (AI and ML for Next-Generation Wireless Communications and 
Networking (AI4NextG)), 2025.]
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System Overview
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§ O-RAN architecture with data analysis function 

Fronthaul

F1

Near-RT RIC
xApps

Trained
Slice Classifier 𝒮!∗(#)

A1

CU
E2

RU
Slice A

Slice B
Slice C

UEs

Traffic dataAir 
interface

Non-RT RIC

Data Analysis
Function 𝑓(#) AI/ML-based 

Slice Classifier 𝒮!(#)

rApps
Offline training

Online inference

① Data collection at RAN 

l UE à RU à DU à RIC 

l Key Performance Indicators (KPIs) telemetry data 

𝒦 = {𝐤!,… ,𝐤"}  extracted at DU

DU

O1

KPI telemetry 
data𝒦
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System Overview
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§ O-RAN architecture with data analysis function 

Fronthaul

F1

Near-RT RIC
xApps

Trained
Slice Classifier 𝒮!∗(#)

A1

CU
E2

RU
Slice A

Slice B
Slice C

UEs

Traffic dataAir 
interface

Non-RT RIC

Data Analysis
Function 𝑓(#) AI/ML-based 

Slice Classifier 𝒮!(#)

rApps
Offline training

Online inference

① Data collection at RAN 

l UE à RU à DU à RIC 

l Key Performance Indicators (KPIs) telemetry data 

𝒦 = {𝐤!,… ,𝐤"}  extracted at DU

𝐤! 𝐤" 𝐤# 𝐲

𝒅!
𝒅"

𝒅$

instances
𝑇

…… … …… …

KPI features
𝑀

…

eMBB

URLLC

mMTC

𝐤& ∈ ℝ': KPI feature vector

𝒅( ∈ ℝ)
: traffic instancesDU 𝒅" ∈ ℝ#

O1

<KPI telemetry data𝒦>

Non-RT RIC

Data Analysis
Function 𝑓(#) AI/ML-based 

Slice Classifier 𝒮!(#)

rApps
Offline training
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System Overview
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§ O-RAN architecture with data analysis function 

Fronthaul

F1

A1

CU
E2

O1

RU
Slice A

Slice B
Slice C

UEs

𝑁

Air 
interface

Non-RT RIC

Data Analysis
Function 𝑓(#) AI/ML-based 

Slice Classifier 𝒮!(#)

rApps
Offline training

𝒦|%|

② Data analysis and model selection in Non-RT RIC

l Large-scale KPI telemetry data 𝒦	analyzed via data 

analysis function 𝑓(+)

§ 𝑁	:	index set of KPI features

§ 𝒦|/| = {𝐤0|𝑛 ∈ 𝑁} : compact KPI feature subset

l Slice classifier 𝒮#(+) trained/updated to optimal 

parameter 𝑤∗

l Transmitting 𝑁 to DU via O1

l Deploying 𝑤∗ to Near-RT RIC via O1

DU

Near-RT RIC
xApps

Trained
Slice Classifier 𝒮!∗(#)

Online inference

𝒅" ∈ ℝ#

𝑤∗
Model update 

overhead
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System Overview
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§ O-RAN architecture with data analysis function 

Fronthaul

F1

Near-RT RIC
xApps

Trained
Slice Classifier 𝒮!∗(#)

A1

CU

O1

RU
Slice A

Slice B
Slice C

UEs

Air 
interface

Online inference

③ Online inference in Near-RT RIC

l Reduced KPI vectors 𝒙% ∈ ℝ|'| continuously 

transmitted from DU via E2

l Near-real-time slice classification using 𝒮#∗(+)

DU

𝒙" ∈ ℝ|%|

Data 
exchange 
overhead

E2

𝑁

𝑤∗

Non-RT RIC

Data Analysis
Function 𝑓(#) AI/ML-based 

Slice Classifier 𝒮!(#)

rApps
Offline training
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Network Data Analysis
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§ Colosseum KPI dataset
– Two datasets from Colosseum testbed

l COMMAG [6] : 40 UEs per 4 base stations
l ColO-RAN [5] : 42 UEs in 7 base stations 
l Slice labels: eMBB, URLLC, mMTC

– 21 KPI measurements features
l Collected every 250ms
l Captured radio traffic characteristics 

< O-RAN compliant KPI features (𝑀 = 21) >

[5] M. Polese, et al., “ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms,” IEEE 
Transactions on Mobile Computing, vol. 22, no. 10, pp. 5787–5800, 2023.
[6] L. Bonati, et al., “Intelligence and Learning in O-RAN for Data-driven NextG Cellular Networks,” IEEE Communications Magazine, vol. 59,no. 10, pp. 21–27, 2021.
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Network Data Analysis
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§ KPI feature importance based on mutual information
– Measure the impact of individual KPI features 
– Mutual information value 𝐼! of feature 𝑗

l Statistical dependency between random variable 𝑘( and 𝑦
l Meaning: how much knowing one variable reduces the uncertainty of another
l Higher 𝐼( à Feature 𝑗 contributes more to slice classification 

𝐼( = 7
)∈𝒴

7
,"∈𝒦"

𝑃 𝑘( , 𝑦 	log
𝑝(𝑘( , 𝑦)
𝑝 𝑘( 𝑝(𝑦)

	
§ 𝑘&	: random variable of features
§ 𝑦		: random variable of label
§ 𝒦& : discrete sets of possible values for 𝑘&	
§ 𝒴  : discrete sets of possible values for 𝑦

𝐤! 𝐤" 𝐤# 𝐲

𝒅!
𝒅"

𝒅$

…… … …… …

…

eMBB

URLLC

mMTC

𝐤%: 𝑗-th KPI feature vector
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Network Data Analysis

25

§ KPI feature importance based on mutual information 

– Highly sparse distribution
l Only 7 KPI features showing strong dependencies 
l Consistent across two datasets collected in different experimental configurations

< 𝐼( of KPI features >
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Network Data Analysis
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§ KPI feature importance based on mutual information 

– Dominance of downlink/resource-related features
l Inherent asymmetry of mobile traffic which is downlink-heavy 

< 𝐼( of KPI features >

Downlink-related
KPIs

Physical resource 
blocks (prbs)
-related KPIs

A few KPIs include (nearly) all information for classification
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§ Slice class separability based on generalized Dunn’s index 
– Goal: measuring how clearly slice classes can be distinguished in feature space
– Generalized Dunn’s index 𝐷𝐼

l Separability in 𝑚 classes

§ Centroid-based distance: robust against outliers
§ Mahalanobis distance: separation based on the covariance structure of the data

l Meaning: ratio of minimum inter-class distance to maximum intra-class distance
l Higher	𝐷𝐼 à Better slice class separability 

l Inter-class distance

𝐷𝐼 =
min

!./01.2
𝛿(𝐶/, 𝐶1)

max
!.3.2

Δ(𝐶3)

Network Data Analysis

27

𝛿 𝐶/, 𝐶1 = dist(𝝁4# , 𝝁4$) Δ(𝐶3) = 2 + 7
𝐱%∈4&

dist(𝐱% , 𝝁4&)
|𝐶3|

l Intra-class distance

§ 𝐶	: cluster § 𝝁3	: centroids of cluster 𝐶 § dist(;,;) : Mahalanobis distance
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Network Data Analysis
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§ S
– Ranking features based on 𝐼!
– 𝐷𝐼 results with the number of KPI features (|𝑁|)

l Peak 𝐷𝐼 at small feature subset 
§ A compact subset of KPIs yields the best class separability.
§ |𝑁| = 2 in COMMAG, |𝑁| = 3	in ColO-RAN

l Decreasing 𝐷𝐼	as more features are added
§ Adding less-informative KPIs introduces noise and reduces 

separability.

§ Slice class separability based on generalized Dunn’s index

High-dimensional feature space is unnecessary to classify network slice!
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Experiments
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§ Experimental setup 
– Goal: comparing performance and RIC operation efficiency of ML and DL slice classifiers
– KPI telemetry dataset: COMMAG, ColO-RAN

l 68,163 and 78,702 instances in COMMAG and ColO-RAN, respectively
l Splitting into training, validation, and testing sets in a ratio of 60%, 15%, 25%

– Slice classifier 𝒮"(() 
l ML models: eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), 𝑘-Nearest Neighbors 

(𝑘-NN)
l DL models: Gated Recurrent Unit (GRU), Transformer, Convolutional Neural Network (CNN)
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Experiments
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§ Experimental setup 
– Classifier hyperparameter settings 

l ML models: minimal settings with default parameters
l DL models: extensive hyperparameter tuning

ML
XGBoost Early stopping
SVM RBF kernel
𝑘-NN 𝑘=5

DL

GRU Early stopping, Sliding window (length 10 and stride 1), Learning rate 0.001, 
ReduceLROnPlateau learning rate scheduler, 3 layers, Hidden size 128, Adam optimizer, 
Batch size 64, 1 linear layer

Transformer Early stopping, Sliding window (length 10 and stride 1), Positional encoding, Learning rate 
0.0001, LinearWarmupCosineAnnealing learning rate scheduler, Learning rate decay factor 
0.01, 3 layers, Hidden size 65, Adam optimizer, Batch size 64, 1 linear layer, 

CNN Early stopping, Sliding window (length 10 and stride 1), Conv2D layers with 4x1 kernel, 
Learning rate 0.001, ReduceLROnPlateau learning rate scheduler, 1 layer, Adam optimizer, 
Batch size 128, 2 linear layer
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Experiments
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§ Slice classification performance

– Overall high performance: all classifiers achieves high F1-scores with a few KPI features.
– Impact of feature number |𝑁|: performance improves rapidly up to 7 features, then saturates with 

marginal gains beyond that point.
– ML vs. DL classifiers: DLs show slightly higher performance on ColO-RAN, while ML models 

remain highly competitive on COMMAG.

(a) COMMAG (b) ColO-RAN
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Experiments
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§ Slice classification performance
– Average F1-socres (mean±std) of MLs and DLs

l Largest ML-DL performance gap
§ COMMAG: 0.034 (ML>DL)
§ ColO-RAN: 0.020 (ML<DL)

l Smaller performance gap in ColO-RAN than in 
COMMAG

v Key implication

l DL classifiers are more sensitive to data structure, requiring careful tuning for each data.

l Due to concise parameter settings, ML classifiers can provide practicality when training time and 

retraining overhead are critical.

ㄴ
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§ Efficiency in RIC operation 
– Training time (sec)

l Significant gap between ML and DL classifiers

l Compared to DLs, ML classifiers
§ Require nearly two orders of magnitude shorter 

training time.
§ Only take milliseconds to a few seconds.

Experiments

33

Near-RT 
RIC xAppxApps

Non-RT 
RIC

xApprApps

• AI/ML training

• AI/ML inference

retraining

v Implication for RIC operation

l Frequent retraining in non-RT RIC favors 

lightweight MLs.

l Reduced retraining overhead causes faster 

model updates and deployment.

O1
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Experiments
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§ Efficiency in RIC operation 
– Inference time (mean± std) (𝜇sec)

l All classifiers achieve similar inference latency.
l Compared to near-RT RIC maximum time 

constraint of 1 second, all operate less than 
0.2% of the limit.

Near-RT 
RIC xAppxApps

• AI/ML inference

latency constraint
(10ms to 1s)

v Implication for near-RT RIC

l Low-latency requirement is satisfied by both ML 

and DL.

l Inference speed is not the main differentiator in 

deployment.

§ Near-RT RIC can provide sufficient computational 

resources.



Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University

Experiments
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§ Efficiency in RIC operation 
– Memory usage and trained model file size

l Both ML and DL classifiers yield small memory usage.
l Trained model sizes are trivial compared to RIC server capacity. 

(a) Memory usage (mean± std) (MB) (b) Trained model file size (mean± std) (MB) 

Near-RT 
RIC xAppxApps

Non-RT 
RIC xApprApps

• AI/ML training • AI/ML inference

v Implication for deployment

l Key point of RIC operation is based on training time of classifiers! 
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Takeaway from use case 1
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§ Study data analytics approach and reevaluation of ML algorithms for efficient operation of 

slice classification in O-RAN architectures.
§ A small subset of KPIs can suffice for discriminative capability in slice classification. 

§ ML classifiers can achieve competitive performance while substantially reducing training 

time.
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Use Case 2 – Network Traffic Anomaly Detection

§ Goal: ML/DL-based 
network traffic anomaly 
detection
– As efficient architecture as 

possible 
§ Challenges

– High computational 
complexity

– Often tabular (structured) 
data 

§ Solutions
– Network data feature 

grouping or engineering 
via feature analysis 

37

[L. Fernández-Maimó, et. al., “Dynamic management of a deep 
learning-based anomaly detection system for 5G networks,” Journal 
of Ambient Intelligence and Humanized Computing, 2019]
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Challenges

38

§ Challenges of dimensionality reduction on network traffic data

– Considering network traffic data is class-imbalanced tabular (structured) data 

– Removing features with high redundancy or lack or relevance among them

– Maintaining performance equivalent to that of using all data before dimensionality reduction 

è Analyzing network traffic data and features based on the types of attacks 

è Grouping and selecting important features via attack-specific feature analysis 
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Attack-specific Feature Analysis Framework 

39

§ Overview of attack-specific feature analysis framework

[D. Choi, J. Rheey and H. Park, "Attack-Specific Feature Analysis 
Framework for NetFlow IoT Datasets," Computers & Security, 2025]
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Attack-specific Feature Analysis Framework 
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§ IoT network traffic dataset
– NetFlow[1],[2]-based standard feature set (39 features)

l Most widely used standard feature set with a variety of data features and bi-directional flow support 
l An industry-standard protocol for network traffic collection and network information analysis 

 

[1] I. Cisco, NetFlow Version 9 Flow-Record Format, White Paper, Feb (2007).
[2] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954,2004. URL: https://www.rfc-editor.org/info/rfc3954.
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Attack-specific Feature Analysis Framework 
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§ IoT network traffic dataset : NF-BoT-IoT-v2, NF-ToN- IoT-v2

– All existing IoT datasets provided in NetFlow for IDS 

a. NF-BoT-IoT-v2 : 4 attack types (DoS, DDoS, Reconnaissance, Theft) 

b. NF-ToN-IoT-v2 : 9 attack types (Backdoor, DoS, DDoS, Injection, MITM (Man-in-the-Middle), Password, 

Ransomware, Scanning, XSS(Cross-Site Scripting)) 

– Generated from the publicly available packet capture files (pcap) of the widely used IoT datasets

– Contains network traffic flows in IoT collected over realistic network environments and attack 

scenarios

[M. Sarhan, et al., “Towards a Standard Feature Set for Network Intrusion 
Detection System Datasets,” Mobile Networks and Applications, 2022]
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Attack-specific Feature Analysis Framework 
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§ IoT network traffic dataset : NF-BoT-IoT-v2, NF-ToN- IoT-v2

– NF-BoT-IoT-v2 

l Generated from Bot-IoT dataset

l Total number of traffic flows: 37,763,497 (37,628,460 (99.64%) attack traffic samples and 

135,037 (0.36%) benign traffic samples)

 
Class Number of samples Descriptions
Benign 13,859 Normal unmalicious flows

DoS 16,673,183 An attempt to overload a computer system's resources to prevent access to or availability of its data

DDoS 18,331,847 An attempt similar to DoS but having multiple different distributed sources

Reconnaissance 2,620,999 A technique also known as a probe, for gathering information about a network host

Theft 2,431 A group of attacks that aims to obtain sensitive data such as data theft and keylogging

[N. Koroniotis, et al., “Towards the development of realistic botnet dataset in the internet of things for 
network forensic analytics: Bot-IoT dataset,” Future Generation Computer Systems, 2019.]
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§ IoT network traffic dataset : NF-BoT-IoT-v2, NF-ToN- IoT-v2

– NF-ToN-IoT-v2 

l Generated from TON-IoT dataset. 

l Total number of data flows: 16,940,496 (10,841,027 (63.99%) attack traffic samples and 6,099,469 

(36.01%) benign samples)

 

Class Number of samples Descriptions
Benign 6,099,469 Normal unmalicious flows

Scanning 3,781,419 Techniques that aim to discover information about networks and hosts, also known as probing

XSS 2,455,020 A type of injection in which an attacker uses web applications to send malicious scripts to end-users

Password 1,153,323 A variety of attacks aimed at retrieving passwords through brute force or sniffing

Injection 684,465 A variety of attacks that supply untrusted inputs, aiming to alter the course of execution, with SQL and 
code injections being two of the main ones

DDoS 2,026,234 An attempt similar to DoS but having multiple different distributed sources

DoS 712,609 An attempt to overload a computer system's resources to prevent access to or availability of its data

Ransomware 3,425 An attack that encrypts the files stored on a host and demands for compensation in exchange for the 
decryption key

Backdoor 16,809 A technique that aims to attack remote-access computers by replying to specific constructed client 
applications

[N. Moustafa, “A new distributed architecture for evaluating AI-based security systems at 
the edge: Network TON IoT datasets,” Sustainable Cities and Society, 2021]
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§ Feature selection algorithms for measuring the feature importance 

– Feature selection algorithms based on filter approaches  

l Univariate methods can measure the correlation between each feature and label(normal/abnormal) feature.

l These methods solely consider feature values without the intervention of a model.   

[D. Choi, J. Rheey and H. Park, “A Study on Performance Improvement of Network Traffic Anomaly Detection via Progressive Feature Addition,” 2023 Winter 
Conference on KICS, Jan. 2023.] (Best Paper Award)
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§ Evaluation of IDS

– Reduce the dimension of the dataset including only 𝑘 important features

– Design an attack-specific anomaly detector with the reduced dataset using unsupervised 

learning-based IDS

l Isolation Forest: an ML algorithm for anomaly detection

l Autoencoder: commonly used DL architecture as an anomaly detector

– Compare anomaly detection performance via progressive feature addition
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Recall: Isolation Forest

§ Concept of Isolation and Tree
– Anomalies are ‘few and different’, which make 

them more susceptible to isolation than normal 
points.

– Tree structure can be constructed effectively to 
isolate every single instance.

§ Isolation Tree
– Anomalies are isolated closer to the root of the 

tree.
– Normal points are isolated at the deeper end of 

the tree.
§ Isolation Forest (iForest)

– iForest builds and Ensemble of iTrees.
– Anomalies have short average path lengths on 

the iTrees.

46
[F. T. Liu, K. M. Ting, Z.-H Zhou,, “Isolation Forest,” The 8th International Conference on Data Mining, 2008]

<Isolation Tree>

<Isolation Forest>
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§  Attack-specific feature analysis 

– Heatmaps present the attack-specific feature rankings for individual feature and feature 

selection algorithms. 

l The darker the color, the higher the rank  



Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University

Feature Analysis Results

48

§  Attack-specific feature analysis 

– NF-BoT-IoT-v2

l DoS

§ eight of top-10 feature combinations 

in PCC, T-test, ANOVA, and Chi-

square share a common set of 

features

§ relate to statistics of network flow 

duration, TTL (Time To Live), and 

TCP

l DDoS: The top-ranked feature, L7 

PROTO (f6), is consistent across all 

feature selection algorithms.



Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University

Feature Analysis Results

49

§  Attack-specific feature analysis 

– NF-BoT-IoT-v2

l Reconnaissance: 

§ Top-5 feature combinations for all feature 

selection algorithms include CLIENT TCP 

FLAGS (f4), SERVER TCP FLAGS(f56), 

and TCP WIN MAX IN (f78), which are 

oriented from TCP.

l Theft: 

§ PCC, T-test, and ANOVA are also of 

equivalent importance order across all 

features (except ANOVA ranks DST TO 

SRC SECOND BYTES (f86) as a fourth 

important feature) 
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§  Attack-specific feature analysis 

– NF-ToN-IoT-v2
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§  Attack-specific feature analysis 

– NF-ToN-IoT-v2

l Similar ranking is observed among 

feature selection algorithms as well as 

attack types. 

l Scanning and XSS attacks

§ highest-ranked features in all feature 

selection algorithms are exactly the same 

as each other (except Gini index).
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§  Attack-specific feature analysis 

– NF-ToN-IoT-v2

l DDoS, Password, Injection attacks

§ TCP-related features such as CLIENT 

TCP FLAGS (f9), TCP WIN MAX IN 

(f32), and TCP MAX OUT (f33), are of 

considerable impact.
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§  Attack-specific feature analysis 

– NF-ToN-IoT-v2

l DoS and MITM attacks

§ Similarities in top-10 combinations 

are found between the two attacks 

when the same feature selection 

algorithms are employed. 
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§  Attack-specific feature analysis 

– NF-ToN-IoT-v2

l Ransomware attack

§ TCP-related features tend to be the 

top-ranked features

l Backdoor attack

§ feature rankings are inconsistent in

PCC, T-test, and ANOVA, though 

PCC and T-test  rankings remain 

consistent and similar to ANOVA. 
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§  Attack-specific feature analysis 

– A discernible pattern in the feature selection algorithms across different types of attacks.

l PCC, T-test, and ANOVA demonstrate similar patterns regardless of the type of attack.

l MI and Gini index also exhibit a tendency to produce similar rankings. 

l In the case of Chi-square, some attacks have more similar rankings to PCC, T-test, and ANOVA than 

MI and Gini index.
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Progressive Feature Addition 

§ Autoencoder-based anomaly detection using important features

§ Results with synthetic dataset

56

[D. Choi, J. Rheey and H. Park, “Autoencoder-based Anomaly Detection using Network Traffic Feature 
Grouping,” The 3rd Korea Artificial Intelligence Conference, Sep. 2022.] (Best Paper Award)
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Progressive Feature Addition for IDS
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§ Attack-specific IDS based on Isolation forest and autoencoder  

– NF-BoT-IoT-v2

< Isolation Forest-based attack-specific IDS > < Autoencoder-based attack-specific IDS >

average accuracy 
over permutations
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§ Attack-specific IDS based on Isolation forest and autoencoder  

– NF-ToN-IoT-v2
< Isolation Forest-based attack-specific IDS > < Autoencoder-based attack-specific IDS >
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Results and Discussion - IDS

59

§ Attack-specific IDS based on Isolation Forest and autoencoder  

– Features are added incrementally in accordance with the common feature ranking in the case of 

feature selection algorithms with an identical ranking for 39 features.

l Autoencoder-based attack-specific IDS

§ Pros: can achieve the highest performance with a few numbers of 𝑘

§ Cons: generally reach peak performance by using the full feature set 

l Isolation Forest-based attack-specific IDS

§ Pros: can detect attacks with high accuracy even with a small number of 𝑘 for most attacks

§ Cons: may have capped performance 

l Important observation: a notable performance degradation when the size of 𝑘 is increased excessively, 

regardless of the feature selection algorithm
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§ To design ML/DL-based lightweight network traffic anomaly/intrusion detection system 
(IDS), we focus on efficient data manipulation approaches 
– Semantic feature grouping for network traffic data
– Dimensionality reduction via network traffic data feature analysis 

§ Propose an attack-specific feature analysis framework with NetFlow IoT datasets, NF-

BoT-IoT-v2 and NF-ToN-IoT-v2

§ We observe from extensive experiment results that
– Some features are commonly important across different types of attacks/feature selection 

algorithms
– For better improved and robust IDS, attack specific feature selection and design are still 

required
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§ For data driven AI-RAN, 
– Reference architectures for Open RAN and potential AI/ML deployment
– Network data available for analysis
– Communication and network constraints that need to be explicitly considered
– Tradeoffs between AI/ML algorithms
– Importance of feature extraction (feature reduction) for lightweight model design
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