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Motivation: Radio Access Network

= RAN (Radio Access Network) Basic RAN architecture
connects user equipment (UE) to
the core network via radio links
and backhaul (fiber/wireless)

= Serves as the radio interface of \ y
a cellular network, enabling | \ / I
wireless access to network \
. Remot'e — \ A ﬂ // — Remote
services radio \

= RAN evolution from 1G to 5G
has significantly increased - .
system complexity and capability - Core network |

/ radio
i ‘ . heads

[Source: TechTarget]
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Motivation

= Why do we need Al for RAN?
— Significantly increased complexity for 5G/5G-Adv and 6G networks
— Challenging KPIs: data rate, coverage, energy efficiency, latency, reliability, connectivity, etc.

— Limitations of typical rule-based / model-based control

Extreme high 6 G Extreme low N
data rate/capacity latency
- Peak data rate >100Gbps g « E2E very low latency <1ms
exploiting new spectrum bands « Always low latency

« >100x capacity for next decade ‘

~eMBB ‘ g

: Extreme high
reliability

» Guananteed QoS for wide range
of use cases (upto 99.99999% reliability)

» Segure, private, safe, resilient, ...

7o Extreme coverage J

* Gbps coverage everywhere
* New coverage areas, e.g.,
Sky (10000m), Sea (200nM), Space,

tc. .
°F Extreme low Extreme massive
energy & cost New combinations connectivity
of requirements : : .
Faleadl it for,ge\qwiswsﬁs/z,m‘:gve connectodidevics- [Source: Non-Orthogonal Physical Layer (NOPHY)
« Devices free from battery charging * Sensing capabilities & Design towards 5G Evolution and 6G, IEICE Trans.
high-precision positioning (cm-order) Commun 2022]

- No longer controlled by rules designed by humans - Al may be a solution
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Motivation

= What we need is network intelligence

: : : : Core Network(CN)
— Network intelligence (NI) is an e_nat?llng = oy o
technology that allows communications Q o Core Cloud ® Capability of training
. . B )
service providers (CSPs) to capture T v S0 % —

subscriber-, service- and application-level e s \ =
. . . A subnet wfith abundant - §=§
awareness contained in network traffic. -

computing power
— This information is analyzed and exposed
for integration with other applications in the )
back office, allowing CSPs to apply granular — msswesssy g 1
policies to influence customer experience Edge Clowd > limited computi
and adapt to dynamic shifts in application
and service usage.

— The solution is based on nonproprietary | |
hardware and software platforms and can <Core network and its connections>
be used by CSPs on any network. [source: Gartner 20241

e ——————— e —
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Motivation

= |n the perspective of standards...

OSI 7 Layers
THE OPEN BOOK STl 13 IPv6 " Future
- Internet
V. ’ ’ w Technologies
Packet -
‘8o~ ‘oo~ teChnologies 2005 SDN
° ? & IP NFV ‘ﬂ
CDMA /\ {L /Q/.
() ) &
|
1 ite 56
‘98 ‘2020 ‘2030(TBD)
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Motivation

= |n the perspective of standards...

< i "0;/,,&’
o™ ‘."Ce“a"os Of/M’ %‘»
. 2, %
| (7} Z
N Eomiotion Yo %,
2.

o <
(5}
Integrated Sensing / t \ Integrated Al P>
and . and
Communication

Communication

eMBB
IMT-2020
mMTC URLLC
» S
Massive ‘ . Hyper Reliable
Communication and Low-Latency ¢,
c Communication é’
P >
2
2
%
3

Ubiquitous
Connectivity

v,
%
27 )

IMT 2030 — usage scenarios

IMT 2030 — 6G capabilities

[Source: Recommendation ITU-R M.IMT. Framework for 2030 and beyond]
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Motivation

= 5G-Advanced vs. 6G

— Al-native 6G System

e Al is incorporated into major
functionality from the very

5G Ecosystem _
: Computing

beginning of design and 5G Al/ML
development of systems Data Generation 5 oty sl s Hardware

S‘tO I'age sets of applications : :
Existing
Interfaces

Computing Energy Efficiency
6G Al/ML

Data , 2 : =
. Bi-lateral interactions to optimize AVML Hafdwale SUStalnab”ny
Generatlon resources and performance

Storage Entrenched in design of 6G -
New Al/LM Interfaces Security

Privacy Enabling exstensive set of applications

®[{3 {ael<_ eol{3|{$]

Communication between Interfaces

Figure 1: 5G Al/ML and 6G Al/ML [1]
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Al-RAN Reference Architecture

= Non-RT RIC(RAN Intelligence Controller)/ Near-RT RIC/ RT
= Data collection = analytics - decisions = control

:_A_I_l;;v_s _______ ’--: i RAN Devs ke E | Operator EEI E
1 L 1
! 1
|

I
| Prioritize low-latency

I
1 g MM S g g

Operator Policy

Interface G L ‘
! Example

Al-RAN Orchestrator | UseCase |

Select Services Al-for-RAN B Al-on-RAN

-
° .
) 1] 3 Orchestration
e}
—i
Allocate Infrastructure Resources g Network
el e e e | Infrastructure
o * Al:XRvideo processing : !
3 * RAN: Al slicing i
aEa 1
m 1

Functions
* 60/40 split
Distributed Al-O-Cloud Infrastructure

Al-SMO

RAN
Workload
Automation
Al Workload
Automation

i,
———————

Al-RAN Site
Al-on-RAN Al-for-RAN
‘AI-RAN Site é [ AvmML Container | [ cu-up |- cu-ce |
L Al/ML Container
] AI/ML Container | DU
]
{ Ej%—"‘— Container Orchestration £3 €3 ~_|
P Compute RU ;
Near-RT RIC ' ‘Al-RAN Site %

[Source: M. Polese, et. al, “Beyond Connectivity: An Open Architecture for AI-RAN Convergence in 6G,” arXiv, 2025.
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Al/ML for Al-RAN

= Representative Use Cases
— Prediction (traffic, mobility)
— Optimization (scheduling, power control)
— Anomaly detection
— Etc.

Al-RAN
ALLIANCE

Integrating Al/ML in Open-RAN:|Overcoming Challenges and

Seizing Opportunities

Domain Adaptation for Effective Al in Open-RAN

1. Importance of Domain-Specific Training:

Description: The effectiveness of Al models in telecom applications depends on their exposure to
relevant domain-specific data during training.

Challenge: Ensuring that Al models have been trained on telecom-specific data to accurately perform
tasks such as network optimization, fault detection, and customer service automation.

Solution: Collaborate with telecom operators to access domain-specific datasets for training.
Develop partnerships with academic and research institutions to advance domain-specific Al
research.

2. Approaches to Domain Adaptation:

Transfer Learning: Utilizing pre-trained models and fine-tuning them on telecom-specific data to
enhance their performance in telecom applications.

Custom Training: Developing Al models specifically trained on telecom datasets to ensure high
accuracy and relevance.

Example: Implement transfer learning techniques to adapt pre-trained Al models to handle telecom-
specific tasks like network traffic prediction and anomaly detection.

[Source: Integrating AI/ML in Open-RAN: Overcoming
Challenges and Seizing Opportunities, AI-RAN Alliance, 2024]
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What about ingredients for AI/ML for networks?

= Data available in RAN
Other cells
Interference

------------------

— UE-side: CQIl, RSRP, SINR, mobility events /gNB
— gNB-side: scheduling, HARQ, buffer status

___________________

4
-

7]

Channel
measurement unit

Time-variant
wireless channel

XR packet scheduling
and transmission

." | !' |

— Network level: traffic load, handover stats | MCS mder] ose |

u CharaCte ”SthS § Link Ad . ,i Uplink reporting |, E CQI calculation i
) i . i ' aptation B delay © CQI index E and formatting |1

— High-dimensional L pouia s ; |

— Spatio-temporal correlation [ Outer Loop Link  |.l__| Uplink reporting [ Haro i

: : : Adaptati : : it | |

— Noisy and partially observable e T [ HARQeedback | memeemen |1

Up Down OLLA
- A Alnitial J

------------------------------------------

— Non-stationary \
= Challenges in Using RAN Data
[P. Paymard, et. al., “Extended Reality over 3GPP 5G-Advanced

— Data Sparsity and imbalance New Radio: Link Adaptation Enhancements, arXiv, 2022]
— Label scarcity
— Privacy and real-time constraints

- Abundant data, but cannot be used directly
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In this tutorial,

= With two use cases

— explicit consider communication and
network constraints with Al/ML
deployment

— highlight tradeoffs between Al/ML
algorithms

= Use cases
— Slice classification

Feature extraction and explanation
Efficient Al/ML algorithms
Model selection

— Network traffic anomaly detection

Feature selection algorithms and
explanation

Extensive evaluation of anomaly detection
algorithms

rructure !

: § * 60/40 split )
0 e Deploy in site 1 =2

——
—__—
-
- -
- - -

AlI-RAN Site @ | __ sipo---T '

. Container
Container DU

on-RAN Al-for-RAN
=
Container Orchestration O \@

Container CU-UP Ccu-cpP
Compute RU
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Use Case 1 — ML with Efficient Features for Slice Classification

— End-to-end network Slices —

slices

o O o

BMW BMW
nfotainenent HDmaps

Public
and

Al —
- RS RS D T IR IRSICTITON clouds
Edge Core ED
Operator Y

Multi-scurce PS video
artificial surveillance
Tenants intefligence
E2E network shices » [l ns1 ] ns2 B ns3 [ vss [ nss

[Source: 5G network slicing: automation, assurance and optimization
of 5G transport slices, Nokia]
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Introduction

= Network slicing 5G network slicing
“r . . . . 5G network slicing enables service providers to build virtual
— Partltlonlng phyS|CaI infrastructure into multlple end-to-end networks tailored to application requirements.
logical sli .
Og cal s CeS . Mobile Commtlmlcatlon
e allows a single physical network to be o S
partitioned into multiple virtual slices ==
. LS L 6 etai
e tailored to specific SLAs and KPlIs (e.g., M“:.f{'o"f Shipsing
latency, throughput, reliability, capacity) Rt AL
e enables service-specific optimization for R g
diverse applications (public and private L Infrastructure
networks)
. N Others Other
e Improves resource efficiency and flexibility by Shpliosticie
matching network behavior to application T PTG network
demands

. . . [Source: 5G Technology World, 2025]
— Representative service requirements

e enhanced Mobile Broadband (eMBB)
e Ultra-Reliable Low-Latency Communications (URLLC)

e massive Machine-Type Communications (MMTC)
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. RAN Intelligent
Introduction Controller (RIO

= Why importance of network slice classification at RAN level?

— Starting point of slice-aware orchestration Near-RT
e Guaranteeing Service Level Agreement (SLA) compliance and QoS management RIC i
e Enabling resource allocation and scheduling :
e Ensuring isolation between slices RAN
— In RAN, RAN Intelligence Controller (RIC) can be responsible for slice —= —=
classification — |_ e

Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University 14



Introduction

= RAN Intelligent Controller (RIC) in O-RAN architecture

— Responsible for Al/ML-driven control and optimization

Latency Intelligence layers
Non-RT RIC — Non-real-time RIC (Non-RT RIC)
IR S
"~ :Ap; """"" | :Ap; r p - >>1sec e Hosting rApps for policy and model management
e Offline training and large-scale data analytics
Near-RT RIC — Near-real-time RIC (Near-RT RIC)
XA XAPR2  xAPP3 . . .
“xtert | xbops — 1 msec~1sec e Hosting xApps for real-time RAN optimization
l e Online inference and control with ~1sec latency
U — Central Unit (CU) and Distributed Unit (DU)
I - <10msec
(@) e Interfacing with RIC for real time actions
RU A_ DU |
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Challenges

= Requirements in O-RAN slice classification NonRT &5

@ High classification accuracy under strict latency constraints AI\T/II\ﬁLt L

@ Frequent retraining and fast deployment . mOdelrinmg

3 Efficient operation by avoiding high=dimensional data exchange deployment [1]  fetraining
Near-RT -

RIC | XApps | /
» Al/ML inference l"

(® accuracy
(3 data
CAlliange H
gNodeB

Ccu —

J [iu y.

()
( A)Ru
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Challenges

= Requirements in O-RAN slice classification

Non-RT -
(D High classification accuracy under strict latency constraints RIC
@ Frequent retraining and fast deployment * AL training
® Efficient operation by avoiding high-dimensional data exchange de;,;;‘gg'ﬁ{! @ retraining
= Related work (1}5] Near-RT |
. . — RIC s 2
— Mainly focusing on classification performance + AWML inference 1
— Deploy deep learning (DL)-centric approaches ® accuracy
3) data
= Limitations of recent work m--a--uci
— Rarely considering training cost, retraining feasibility, and update overhead gNodes
CuU — DU
y/

— Lack of exploration of lightweight ML classifiers

[1] M. Belgiovine, et al., “MEGATRON: Machine Learning in 5G with Analysis of Traffic in Open Radio Access Networks,” in ICNC, 2024, pp. 1054—-1058.

[2] J. Groen, et al., “TRACTOR: Traffic Analysis and Classification Tool for Open RAN,” in IEEE ICC, 2024, pp. 4894—-4899.

[3] L. Bonati, et al., “Colosseum: Large-Scale Wireless Experimentation Through Hardware-in-the-Loop Network Emulation,” in IEEE DySPAN, 2021, pp. 105-113.

[4] C. Tassie, et al., “Leveraging Explainable Al for Reducing Queries of Performance Indicators in Open RAN,” in IEEE ICC, 2024, pp.5413-5418.

[5] M. Polese, et al., “ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms,” IEEE
Transactions on Mobile Computing, vol. 22, no. 10, pp. 5787-5800, 2023. Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University 17



Goal

= Consideration of data characteristics and O-RAN deployment constraints in
classification model selection

— Comparison of ML and DL classifiers

Machine learning (ML) Deep learning (DL)
Data « Sufficient for simpler and structured  Strong for complex and non-linear
processing data structured data
ability » Domain-driven feature engineering * Representation learning
Model * Low complexity * High complexity

complexity < Lightweight and fast Heavy computation

Systematic evaluation of ML and DL for O-RAN slice classification

[D. Choi, S. Park, J. Kwon and H. Park, "Few Features are Enough: Communication-Efficient AI-RAN," Conference on
Neural Information Processing Systems (NeurlPS 2025) (Al and ML for Next-Generation Wireless Communications and
Networking (Al4NextG)), 2025.]
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System Overview

= O-RAN architecture with data analysis function

Non-RT RIC
rApps
________________________ Offline training
Parcton > S AMLbesed |
| nden/O ' Sce Classfier 5, ()
A1 o1
Near-RT RIC [
XApps E2 ............................ CU |oeoeeeed
5 Online inference :
= Tl’alned | ‘IIE1I;IIII. :
i Slice Classifier S,,+() ! P DY
kA VR :| DU |:KPItelemetry
‘Qllll'l“ul-’.
Fronthaul data K
. — Air - | Trafic data
Slice A @Q interface :
UEs  SliceB & == RU

Slice C 3 (2 &

(@ Data collection at RAN

e UE2>RU->DU=>RIC

e Key Performance Indicators (KPIs) telemetry data

K =1k, ...,ky} extracted at DU
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System Overview

= O-RAN architecture with data analysis function

UEs

Non-RT RIC
rApps
''''''''''''''''''''''' ! Offline training -
Data Analysis A 5
Function f() 1 »  AlML-based |
T Slice Classifier S,,,(+)
o1i
U @ERM
" ER] l faun®
Fronthaul
. — Air - | Trafic data
Slice A @g interface '
SliceB R == RU

Slice C 3 (2 &

(@ Data collection at RAN

e UE2>RU->DU=>RIC

e Key Performance Indicators (KPIs) telemetry data

K =1k, ...,ky} extracted at DU

<KPI telemetry data K>

k; € R": KPI feature vector

k; | k, Ky| y
d; € RM d, eMBB
: traffic instances
d2 URLLC
d; mMTC
M

KPI features

T
instances

20
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System Overview

= O-RAN architecture with data analysis function

Non-RT RIC
I rApps
o 1 Offline training
" DataAnalysis Kiwi P T T [
I Function fe ] . AI/ML—based
e e e s e . Slice Classifier S, (*)
Model update | O1:
W overhead =
Near_RT RIC ................................................................
| xApps
5 Online inference
¥ Trained i
| SioeClassflers, () DU | i
N

2 Data analysis and model selection in Non-RT RIC

e Large-scale KPI telemetry data K analyzed via data

analysis function f(+)
N :index set of KPI features

Kin) = {kn|n € N} : compact KPI feature subset

e Slice classifier S,, (+) trained/updated to optimal

parameter w*
e Transmitting N to DU via O1

e Deploying w* to Near-RT RIC via O1
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System Overview

= O-RAN architecture with data analysis function

Non-RT RIC
rApps
"""""""""""" Offline training
Data Analysis ! G T
- W*
Near-RT RIC
| xApps - | — E
.. Onineinference - |, ¢ RN f
| Trained o
i Slice Classifier S,,-() ! Data -
b ST WA exchange DU
overhead <

3 Online inference in Near-RT RIC

e Reduced KPI vectors x; € R™! continuously

transmitted from DU via E2

e Near-real-time slice classification using §,,«(+)
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Network Data Analysis

" COIOsseum KPI dataset KPI features Descriptions
— TWO datasets from Colosseum testbed dl_mcs Downlink modulaFion and coding scheme
dl_n_samples Number of downlink samples
°® COMMAG 6] 40 UES per 4 base Statlons dl_buffer Downlink queue length in bytes
tx_brate_downlink  Downlink bitrate in Mbps
e ColO-RAN j5:42 UEs in 7 base stations tx_pkts_downlink ~ Downlink number of packets transmitted
tx_errors_downlink Downlink percent of packets with errors
() Slice |abe|S: eMBB, URLLC, mMTC dl_cqi Downlink channel quality indicator
ul_mcs Uplink modulation and coding scheme
— 21 KPIl measurements features ul_n_samples Uplink number of samples
ul_buffer Uplink queue length in bytes
e Collected every 250ms rx_brate_uplink Uplink bitrate in Mbps
i i Lo rx_pkts_uplink Uplink number of packets received
o Captured radio traffic characteristics rx_errors_uplink Uplink percent of packets with errors
ul_rssi Uplink received signal strength indicator
ul_sinr Uplink signal to interference plus noise
ratio
phr UE power head room

sum_requested_prbs Total requested physical resource blocks
sum_granted_prbs  Total granted physical resource blocks

dl_pmi Downlink precoding matrix indicator
dl_ri Downlink rank indicator
ul_turbo_iters Uplink turbo encoding iterations

< O-RAN compliant KPI features (M = 21) >

[5] M. Polese, et al., “ColO-RAN: Developing Machine Learning-Based xApps for Open RAN Closed-Loop Control on Programmable Experimental Platforms,” IEEE
Transactions on Mobile Computing, vol. 22, no. 10, pp. 5787-5800, 2023.
[6] L. Bonati, et al., “Intelligence and Learning in O-RAN for Data-driven NextG Cellular Networks,” IEEE Communications Magazine, vol. 59,no. 10, pp. 21-27, 2021.
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Network Data Analysis ki |k | | K|y
d, eMBB

= KPI feature importance based on mutual information 4,

— Measure the impact of individual KPI features p —

— Mutual information value I; of feature j

K;: j-th KPI feature vector

k]- : random variable of features

y :random variable of label
X : discrete sets of possible values for k;

Y : discrete sets of possible values for y

-3, 3, {252

YEY k€K

e Statistical dependency between random variable k; and y

e Meaning: how much knowing one variable reduces the uncertainty of another
e Higher I; > Feature j contributes more to slice classification
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Network Data Analysis

= KPI feature importance based on mutual information

<l of KPI features >

COMMAG M@Mﬁyq 0.00 0.02 0.03 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.0

11201)00.00 0.00 0.01

ColO-RAN 0.00 0.08 0.05 0.02 0.01 0.04 0.02 0.02 0.00 0.02 0.01 000 0.00 0.02
¢ 2 05 £ E|2 8 ¢ 8 & 2 F £ % 0E 2|8 5| %o
E &% § = =|[|Z2 2 B =& § & & & 5 9 E‘I ; 28 =
%‘I 5 < g g % °© E % < = i > = E = ° & o
& = & & |3 5 & g 2 s 2 2
[T~ B, - S, - | = © 5) 7] o =
=| GJI (IJI & —_ ’_sa Q‘l t‘, o I ot
o ) Lo (@) = | (<) = = 'E'
= g X | £ » K | & B
= (=1 b E o |
-QI EI | i-tl E
< z E B
5
7]
— Highly sparse distribution

e Only 7 KPI features showing strong dependencies
e Consistent across two datasets collected in different experimental configurations

Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University 25



Network Data Analysis

= KPI feature importance based on mutual information

<l of KPI features >

COMMAG 0.00 0.02 0.03 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.0 @ 0.00 0.00 0.01

ColO-RAN UAIR0.00 0.08 0.05 0.02 0.01 0.04 0.02 0.02 0.00 0.02 0.01 0.00 0.00 0.02

o8&%%%§8§§é—ééaéézgé'ﬂ.g

E 2 € = =13 B & & 5 5 5 £ @ &% 2|8 =8 8

| = = = a = | g = o N [ — | | | . |

= § & £ £ |53 = 5 = 3 2 3 3 3 < |7 2

° @ | |8 3 o S o " o S 9 2

) — o s = 2 & - ] =

c_-," © -cl Fcl ' C:| S é 2 o = E

= g &3 E 9 I ¢ = e

© g %‘1 g ?f.l 2 EI s 9 g

- -Q <]')| - .
Downlink-related ¥ B3 n g Physical resource

KPls 2 blocks (prbs)
-related KPIs

— Dominance of downlink/resource-related features
e Inherent asymmetry of mobile traffic which is downlink-heavy

A few KPIs include (nearly) all information for classification
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Network Data Analysis

= Slice class separability based on generalized Dunn’s index

— Goal: measuring how clearly slice classes can be distinguished in feature space
— Generalized Dunn’s index DI
e Separability in m classes

e Inter-class distance e Intra-class distance
: dist(x;, Uc,)
DI = 1<(?<%<m6< » Ch) 5(Cg,Ch) = dist(uc,, Ke,) A(C) =2- Z |Cl| :
max A(CZ) X;EC] :

1<lsm
= C:cluster = u.:centroids of cluster C = dist(-,) : Mahalanobis distance

Centroid-based distance: robust against outliers
Mahalanobis distance: separation based on the covariance structure of the data

e Meaning: ratio of minimum inter-class distance to maximum intra-class distance
e Higher DI - Better slice class separability
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Network Data Analysis

= Slice class separability based on generalized Dunn’s index
— Ranking features based on J;

— DI results with the number of KPI features (|N|) 016
e Peak DI at small feature subset

999 COMMAG
8%8% ColO-RAN

—0.4

A compact subset of KPlIs yields the best class separability. Q 012 %
IN| = 2in COMMAG, |N| = 3 in ColO-RAN SN~ &
e Decreasing DI as more features are added o i’z
Adding less-informative KPIs introduces noise and reduces E o E

separability. INE L |
0'04_..;;1.“,: ,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S 0.1

|
12 17 21
ber of KPI features (|N|)

8 gt

Nu

High-dimensional feature space is unnecessary to classify network slice!
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Experiments

= Experimental setup
— Goal: comparing performance and RIC operation efficiency of ML and DL slice classifiers
— KPI telemetry dataset: COMMAG, ColO-RAN

e 68,163 and 78,702 instances in COMMAG and ColO-RAN, respectively
e Splitting into training, validation, and testing sets in a ratio of 60%, 15%, 25%

— Slice classifier S, ()

e ML models: eXtreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), k-Nearest Neighbors
(k-NN)
e DL models: Gated Recurrent Unit (GRU), Transformer, Convolutional Neural Network (CNN)
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Experiments

= Experimental setup
— Classifier hyperparameter settings

XGBoost Early stopping
ML SVM RBF kernel
k-NN k=5
GRU Early stopping, Sliding window (length 10 and stride 1), Learning rate 0.001,

ReduceLROnPlateau learning rate scheduler, 3 layers, Hidden size 128, Adam optimizer,
Batch size 64, 1 linear layer

Transformer  Early stopping, Sliding window (length 10 and stride 1), Positional encoding, Learning rate
0.0001, LinearWarmupCosineAnnealing learning rate scheduler, Learning rate decay factor

DL 0.01, 3 layers, Hidden size 65, Adam optimizer, Batch size 64, 1 linear layer,

CNN Early stopping, Sliding window (length 10 and stride 1), Conv2D layers with 4x1 kernel,
Learning rate 0.001, ReduceLROnPlateau learning rate scheduler, 1 layer, Adam optimizer,
Batch size 128, 2 linear layer

e ML models: minimal settings with default parameters
e DL models: extensive hyperparameter tuning
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Experiments

= Slice classification performance

. _— (a) COMMAG | o (b)COO-RAN
0.9r ! . =
o o 0.9+ .
o 0.8} ] =}
S 07 3 0.8}
E o ‘ ¢—¢ CNN %% GRU +—¢ Transformer | E 0.71 ¢—0 CNN #—& GRU +—& Transformer |
0.6 | e—e XGBoost ®—a SVM e—e kNN 1 o—e XGBoost =8 SVM e—e kNN
. 1 L L L l L om— 1 | 0'6 111111 ra— L 1
05123456[1] 12 21 123456&] 17 21
Number of KPI features (|N|) Number of KPI features (| V)

— Overall high performance: all classifiers achieves high F1-scores with a few KPI features.

— Impact of feature number |N|: performance improves rapidly up to 7 features, then saturates with
marginal gains beyond that point.

— ML vs. DL classifiers: DLs show slightly higher performance on ColO-RAN, while ML models
remain highly competitive on COMMAG.

Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University 31



Experiments

= Slice classification performance

— Average F1-socres (mean+std) of MLs and DLs

e Largest ML-DL performance gap
-  COMMAG: 0.034 (ML>DL) ML classifiers DL classifiers

- ColO-RAN: 0.020 (ML<DL) § N|=21 0952+ 0.019  0.923 + 0.008

e Smaller performance gap in ColO-RAN than in Z % - ; gggg i 8'8;? 8'2?2 i 8'882
COMMAG : _ i ' ‘ ‘

< | IN[=21 0917 £ 0.005 0.932 + 0.001

S N| =17 0.916 £ 0.002 0.931 + 0.001

S N|=3 0.910 4+ 0.006 0.930 + 0.003
( )

“* Key implication
e DL classifiers are more sensitive to data structure, requiring careful tuning for each data.

e Due to concise parameter settings, ML classifiers can provide practicality when training time and

. retraining overhead are critical. )
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Experiments

= Efficiency in RIC operation

o . Non-RT
— Training time (sec) RIC PP
e Significant gap between ML and DL classifiers » AIML training
model M : -
deployment! retraining
: O1
| |  COMMAG |  ColO-RAN Near-RT
| [ IN|=7 |N|=21||N|=7 |N|=21 RIC  XAeps
XGBoost | 334ms  757ms | 197ms  546ms * AlML inference
S| svMm 7s 14s 11s 15s
® k-NN 28ms 2ms 33ms 2ms
(. S i )
GRU 12m 53s  15m 2ls | 8m 50s  16m 18s ¢ Implication for RIC operation
E Transformer | 32m 34s  31m 4s | 14m 59s 18m 50s
CNN 20m 35 18m 33s | 7m 54s  7m 50s e Frequent retraining in non-RT RIC favors
lightweight MLs.

e Reduced retraining overhead causes faster

\ model updates and deployment. y
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Experiments

= Efficiency in RIC operation
— Inference time (mean =+ std) (usec)

| COMMAG ColO-RAN
| | IN|=7 |N|=21 | [N|]=7 |[N|=21
XGBoost 1447 + 18 3175 + 403 | 1472 + 24 3223 + 421
g SVM 287 + 4 441 + 6 313+ 5 378 + 4
k-NN 592 + 14 385 + 402 | 594 +24 364 + 218
GRU 620+ 6 657 +78 | 632+20 615 + 38
51 Transformer | 867 +99 793 +56 | 702 +8 723 +51
CNN 79 + 2 139 + 13 81 + 3 142 + 14

e All classifiers achieve similar inference latency.

e Compared to near-RT RIC maximum time

constraint of 1 second, all operate less than
0.2% of the limit.

Near-RT
RIC  Pps

* Al/ML inference

latency constraint
(10ms to 1s)

\.

L)

L)

Implication for near-RT RIC

e Low-latency requirement is satisfied by both ML

and DL.

e Inference speed is not the main differentiator in

deployment.

= Near-RT RIC can provide sufficient computational

resources.
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Experiments

= Efficiency in RIC operation
— Memory usage and trained model file size

(a) Memory usage (mean = std) (MB)

* AI/ML training

deployment

model

Near-RT
RIC  XAePs

* Al/ML inference

(b) Trained model file size (mean =+ std) (MB)

| COMMAG ColO-RAN COMMAG ColO-RAN
| | IN|]=7 IN|=21| [N|=7 |N|=21 \|N|:7 |N|:21||N|:7 IN| =21
XGBoost 277 £ 0.04 269 + 0.09 | 361 £ 0.09 351 + 0.08 XGBoost 2.517 3.554 0.561 2.073
g SVM 209 + 0.11 295 + 0.00 | 372 + 0.01 384 + 0.06 g SVM 0.655 2.363 0.749 1.936
k-NN 204 + 0.03 315 +0.12 | 414 + 0.04 398 + 0.05 k-NN 6.107 8.009 7.007 9.248
GRU 300 £ 0.02 242 + 1.12 | 316 + 0.14 250 + 0.05 GRU 0.962 0.982 0.962 0.982
S Transformer | 323 £ 0.06 298 + 0.09 | 337 £ 0.05 307 £ 0.09 5] Transformer | 15.687 15.690 15.687 15.690
CNN 329 £ 0.01 317 + 0.00 | 326 + 0.14 339 + 0.02 CNN 1.925 5.753 1.925 5.753

e Both ML and DL classifiers yield small memory usage.
e Trained model sizes are trivial compared to RIC server capacity.

* Implication for deployment

e Key point of RIC operation is based on training time of classifiers!
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Takeaway from use case 1

» Study data analytics approach and reevaluation of ML algorithms for efficient operation of

slice classification in O-RAN architectures.

= A small subset of KPIs can suffice for discriminative capability in slice classification.
= ML classifiers can achieve competitive performance while substantially reducing training

time.
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Use Case 2 — Network Traffic Anomaly Detection

= Goal: ML/DL-based
network traffic anomaly
detection

— As efficient architecture as
possible
= Challenges

— High computational
complexity

— Often tabular (structured)
data

= Solutions
— Network data feature
grouping or engineering
via feature analysis

Evolved Packet Core (EPC)
Symploms /_‘—. > \
> | Network Mobile Edge
-» | Anomaly Orchestrator
Detection
Anomaly Anomaly Anomaly : - Rep
Symptom | Symp[pm > Decision ,
Deg?cnon Detection RAN-MEP Act-ons‘ b
[ 1 Security Managers Orchestration
Flow Flow Flow ——=u
Collector Collector | Collector RAN VIM I [ Monitoring
w_J Lepe )\ /

eNB‘%-%
[

PN oAy

[L. Fernandez-Maimg, et. al., “Dynamic management of a deep
learning-based anomaly detection system for 5G networks,” Journal
of Ambient Intelligence and Humanized Computing, 2019]

Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University 37



Challenges

= Challenges of dimensionality reduction on network traffic data
— Considering network traffic data is class-imbalanced tabular (structured) data
— Removing features with high redundancy or lack or relevance among them

— Maintaining performance equivalent to that of using all data before dimensionality reduction
=» Analyzing network traffic data and features based on the types of attacks

=» Grouping and selecting important features via attack-specific feature analysis
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Attack-specific Feature Analysis Framework

= Qverview of attack-specific feature analysis framework

Attack-specific Feature Analysis

Attack-specific datasets Calculating feature importance

using six feature selection algorithms

% . PCC T-test ANOVA
@ Chi-square  Gini index wlies

L Information )
Theft Backdoor DDoS  Scanning DoS ¢
A . r - - ~
T T T T | Ranking features by importance value |
[ Selecting k important features :
Dataset i
Entire
( ) Evaluation of intrusion detection A
NetFlow loT datasets using top k features
: :E_.I?OJ_:O.TI._@ Isolation Forest Autoencoder
-ION-lo 1=V (Machine learning) (Deep leaming)
\_ J

[D. Choi, J. Rheey and H. Park, "Attack-Specific Feature Analysis ) o ) o
Framework for NetFlow loT Datasets," Computers & Security, 2025] Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University 39



Attack-specific Feature Analysis Framework

= |oT network traffic dataset

— NetFlow2-based standard feature set (39 features)
e Most widely used standard feature set with a variety of data features and bi-directional flow support
e An industry-standard protocol for network traffic collection and network information analysis

Feature Description
f1 | PROTOCOL IP protocol identifier byte
£ | L7_PROTO Layer 7 protocol (numeric) f21 |RETRANSMITTED_IN_BYTES Number of retransmitted TCP flow bytes (src->dst)
3 | IN_BYTES Incoming number of bytes f22 | RETRANSMITTED_IN_PKTS Number of retransmitted TCP flow packets (src->dst)
4 | OUT_BYTES Outgoing number of bytes f23 | RETRANSMITTED_OUT_BYTES Number of retransmitted TCP flow bytes (dst->src)
f5 | IN_PKTS Incoming number of packets f24 | RETRANSMITTED_OUT_PKTS Number of retransmitted TCP flow packets (dst->src)
6 | OUT_PKTS Outgoing number of packets f25 |SRC_TO_DST_AVG_THROUGHPUT Src to dst average thpt (bps)
£7 | FLOW_DURATION_MILLISECONDS Flow duration in milliseconds f26 | DST_TO_SRC_AVG_THROUGHPUT Dst to src average thpt (bps)
fg | TCP_FLAGS Cumulative of all TCP flags 27 | NUM_PKTS_UP_TO_128_BYTES Packets whose IP size <= 128
fo | CLIENT_TCP_FLAGS Cumulative of all client TCP flags f28 | NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 and <= 256
f10 | SERVER_TCP_FLAGS Cumulative of all server TCP flags f29 |NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 and <= 512
f11 | DURATION_IN Client to Server stream duration (msec) £30 | NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 and <= 1024
f12 | DURATION_OUT Client to Server stream duration (msec) 31 | NUM_PKTS_1024_TO_1514 BYTES | Packets whose IP size >1024 and <= 1514
13 | MIN_TTL Min flow TTL £32 | TCP_WIN_MAX_IN Max TCP Window (src->dst)
f14 | MAXTTL Max flow TTL £33 |TcP_WIN_MAX_OUT Max TCP Window (dst->src)
15 | LONGEST_FLOW_PKT Longest packet (bytes) of the flow f24 | ICMP_TYPE ICMP Type * 256 + ICMP code
f16 | SHORTEST_FLOW_PKT Shortest packet (bytes) of the flow £35 | ICMP_IPVA4 TYPE ICMP Type
£17 | MIN_IP_PKT_LEN é?)r;er\(/);d the smallest flow 1P packet 36 | DNS_QUERY_ID DNS query transaction Id
f18 | MAX_IP_PKT_LEN Len of the largest flow IP packet observed ||f37 |DNS_QUERY_TYPE DNS query type (e.g. 1=A, 2=NS.)
£19 | SRC_TO_DST_SECOND_BYTES Src to dst Bytes/sec 38 | DNS_TTL_ANSWER TTL of the first A record (if any)
f20 | DST_TO_SRC_SECOND_BYTES Dst to src Bytes/sec f39 |FTP_COMMAND_RET_CODE FTP client command return code

[1] I. Cisco, NetFlow Version 9 Flow-Record Format, White Paper, Feb (2007).

[2] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954,2004. URL: https://www.rfc-editor.org/info/rfc3954.
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Attack-specific Feature Analysis Framework

= |oT network traffic dataset : NF-BoT-loT-v2, NF-ToN- loT-v2

_ 1ot i i [M. Sarhan, et al., “Towards a Standard Feature Set for Network Intrusion
A” eXIStlng IOT datasets prOVIded In NGtFlOW fOI' IDS Detection System Datasets,” Mobile Networks and Applications, 2022]

a. NF-BoT-loT-v2 : 4 attack types (DoS, DDoS, Reconnaissance, Theft)
b. NF-ToN-loT-v2 : 9 attack types (Backdoor, DoS, DDoS, Injection, MITM (Man-in-the-Middle), Password,

Ransomware, Scanning, XSS(Cross-Site Scripting))
— Generated from the publicly available packet capture files (pcap) of the widely used IoT datasets

— Contains network traffic flows in 10T collected over realistic network environments and attack

scenarios
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Attack-specific Feature Analysis Framework

= |oT network traffic dataset : NF-BoT-loT-v2, NF-ToN- loT-v2
— NF-BoT-loT-v2

_ [N. Koroniotis, et al., “Towards the development of realistic botnet dataset in the internet of things for
e Generated from Bot-/oT dataset network forensic analytics: Bot-loT dataset,” Future Generation Computer Systems, 2019.]

e Total number of traffic flows: 37,763,497 (37,628,460 (99.64%) attack traffic samples and
135,037 (0.36%) benign traffic samples)

Class Number of samples | Descriptions

Benign 13,859 Normal unmalicious flows

DoS 16,673,183 An attempt to overload a computer system's resources to prevent access to or availability of its data
DDoS 18,331,847 An attempt similar to DoS but having multiple different distributed sources

Reconnaissance | 2,620,999 A technique also known as a probe, for gathering information about a network host

Theft 2,431 A group of attacks that aims to obtain sensitive data such as data theft and keylogging
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Attack-specific Feature Analysis Framework

= |oT network traffic dataset : NF-BoT-loT-v2, NF-ToN- loT-v2
— NF-ToN-loT-v2

e Generated from TON-loT dataset [N. Moustafa, “A new distributed architecture for evaluating Al-based security systems at

the edge: Network TON loT datasets,” Sustainable Cities and Society, 2021]

e Total number of data flows: 16,940,496 (10,841,027 (63.99%) attack traffic samples and 6,099,469
(36.01%) benign samples)

Class Number of samples | Descriptions

Benign 6,099,469 Normal unmalicious flows

Scanning 3,781,419 Techniques that aim to discover information about networks and hosts, also known as probing

XSS 2,455,020 A type of injection in which an attacker uses web applications to send malicious scripts to end-users

Password 1,153,323 A variety of attacks aimed at retrieving passwords through brute force or sniffing

Injection 684,465 A variety of attacks that supply untrusted inputs, aiming to alter the course of execution, with SQL and
code injections being two of the main ones

DDoS 2,026,234 An attempt similar to DoS but having multiple different distributed sources

DoS 712,609 An attempt to overload a computer system's resources to prevent access to or availability of its data

Ransomware | 3,425 An attack that encrypts the files stored on a host and demands for compensation in exchange for the
decryption key

Backdoor 16,809 A telchnique that aims to attack remote-access computers by replying to specific constructed client
applications




Attack-specific Feature Analysis Framework

= Feature selection algorithms for measuring the feature importance

— Feature selection algorithms based on filter approaches
e Univariate methods can measure the correlation between each feature and label(normal/abnormal) feature.

e These methods solely consider feature values without the intervention of a model.

Fearson eS|
+  PCC measures linear correlation - ANOVA is used to test the difference « T-test can be utilized to decide whether
between two random variables between two or more means the means for two sets are not the same

o= E[(X — ux)(Y — piy)] o Y5 (i — 145)? T = |11 — 1o

Ox O c 2
X0y Yheo1 Mg Var var; ;2 N var; ,2
ny np

ChiSquare | Mutual informatior | Gindindex |

* Chi-square is used to evaluate the * Mutual information measures the mutual * Gini-index quantifies if the feature is able
independence between two events dependence between two random variables to separate instances from different class
g c c
2 X _
X2 = (0ij — Eij 1= Z Z Pry(xy) log <M> G = minp(W) (1 =) pCIW+ PR - ). p(cs|w>2)
E. . pX(x)pY(y) s=1 s=1
im1j=1 1,j yeEY x€X

[D. Choi, J. Rheey and H. Park, “A Study on Performance Improvement of Network Traffic Anomaly Detection via Progressive Feature Addition,” 2023 Winter
Conference on KICS, Jan. 2023.] (Best Paper Award)
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Attack-specific Feature Analysis Framework

= Evaluation of IDS
— Reduce the dimension of the dataset including only k important features

— Design an attack-specific anomaly detector with the reduced dataset using unsupervised
learning-based IDS
e |solation Forest: an ML algorithm for anomaly detection

e Autoencoder: commonly used DL architecture as an anomaly detector

— Compare anomaly detection performance via progressive feature addition
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Recall: Isolation Forest

= Concept of Isolation and Tree <Isolation Tree>
— Anomalies are ‘few and different’, which make
them more susceptible to isolation than normal / \
points. caiertosone / \ / N
— Tree structure can be constructed effectively to / \ /\
isolate every single instance. Inersareharder /\
= |solation Tree
— Anomalies are isolated closer to the root of the <lIsolation Forest>
tree.

— Normal points are isolated at the deeper end of e i - S - S L Thsss
the tree. °“"'e’
= [|solation Forest (iForest)
— iForest builds and Ensemble of iTrees.

— Anomalies have short average path lengths on
the iTrees.

[F. T. Liu, K. M. Ting, Z.-H Zhou,, “Isolation Forest,” The 8th International Conference on Data Mining, 2008]
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Feature Analysis Results

= Attack-specific feature analysis

— Heatmaps present the attack-specific feature rankings for individual feature and feature

selection algorithms.

e The darker the color, the higher the rank

Ranking HEHAOBOHOE LR EXE G 11222324252627282930313233343536373839

A BN N0/ 1(3] [2]8/4|5]07]9 R | IR 6 B | || e
T-test i D10/ 13| |2]8/4/5807]9 8 | O EEEEE -
ANOVA i 1013 |2]8/4/5007 908 | | O EENEN -

Chi-square [l il B> 2/3/9/46/7/8 10 | 7 1] | 10 [
Giniindex - [ EIMEIN" [CRNSONEHETENN 5] {4]2 B :

M- FHEENNOUNE 'EENEEN . 0 BEega. | om0 -

f1 f2 f3 f4 f5 f()' f'{' f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f2()' f27 f28 f29 f30 f31 f32 f33 f34 f35 f36 f37 f38 f39
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Feature Analysis Results

= Attack-specific feature analysis

— NF-BoT-loT-v2

e DoS

eight of top-10 feature combinations
in PCC, T-test, ANOVA, and Chi-
square share a common set of

features

relate to statistics of network flow
duration, TTL (Time To Live), and
TCP

e DDoS: The top-ranked feature, L7

PROTO (f,), is consistent across all

feature selection algorithms.

Ranking HEEHEABEHOECE B E T EC I 11222324252627282930313233343536373839

ANOVA Bl

Chi-square I
Gini mdex (1] |

f1 fz fi f4 f fb f fs f fl()fllflzflifl-lfl’:flbfltflsfl)fZ()fZI fZZfZSfoZ')fZ()fZ?fZ?SfZJfi()fil filfiifﬂfﬁfib fi'?fitifﬂ

(a) DoS

PCCHEL

T-test 1K}
ANOVA EIHY
Chi-square JIE} [5/2]4[6]8]
Gini index EHINENTFHENE NNHEEBO
M EBEETTENON . d IIEEIE

f1 f? f3 f4 f f() f7 f8 fJ f10 f11 fl" f13 f14 f1 f1() fl? flS fl.) f20 f21 f22 f23 f?-l f? f?() f27 f28 f?J f&O f&l f&Z f33 f34 f3 fd() f.i? f.58 f3)

mEgooToRm OEE N
4 Hu mEE

Hu el
EINEE -

(b) DDoS

Multiagent Communications and Networking Lab. (MCNL), Ewha Womans University 48



Feature Analysis Results

= Attack-specific feature analysis

— NF-BoT-loT-v2

: Ranking [ 7 ; T 7412223242526 2728293031 32333435 36373839
e Reconnaissance: ¢]1/2]3/4]5]6]7]8]91011121314151617181920

= Top-5 feature combinations for all feature Tf§§E= EEE=LJE==== =

ANOVA
selection algorithms include CLIENT TCP  chisquare E= EE&%E&E==E=

G iniex IMEONE NERNONND
FLAGS (f,), SERVER TCP FLAGS(f,,), . CERENNEHRNLNON B

. f1 fl fd f~1 f fb f7 f& fJ fl fllfl,Zfld fol flb f17f18f1)f20 lefZZ fZJ f24 fZ f’() f27 fZB fZJ f&() f.il fsz f33 f.iJ f& fdb f.57 fJS f&)
and TCP WIN MAX IN (f5,), which are

oriented from TCP.

(c) Reconnaissance

e Theft: £ee] 2 [ 7| (53[0 1(6/4[ [/ | DL S0 s R [ [
| cof C mHOEERRE L R o OB
- PCC, T-test, and ANOVA are also of Chi-square SN 0 T | BHZ N
Giniindex MEANE ENEBTTGNENEN A B B _Hnm
equivalent importance order across all U (5/1/8] [ Jolu6I7I | 2] [ 3 [ gemes 10 |

f1 f? f.‘j f4 fS fﬁ f? fS f‘J flU f11 f12 f13 fH f15 fl(i fl? flS f19 f20 f?l f22 f23 f‘24 f25 f26 f27 f28 f29 f30 f31 f32 f33 f34 f35 f36 f37 f38 f39

features (except ANOVA ranks DST TO
SRC SECOND BYTES (f() as a fourth

important feature)

(d) Theft
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Feature Analysis Results

= Attack-specific feature analysis

— NF-ToN-loT-v2

Ranking HBEBEABEEHEE X EE e G 71222324252627282930313233343536373839

PCcCEM BN 8] | [3[2]7] [1]6]8 g || [
T-test EJ || [ [ [ ]
ANOVA E [ ]
Chi-square B Bl
Gini |ndex. BB L[]
I]Il IEI. I |

fl f? f3 f-) f fb f7 fli f‘ f]0 f]l fl? f13 tn]-l flS fll) f]7 fl& flJ f20 f?l f22 f‘23 f24 f25 f?b f27 fZ& fZJ fﬁO f31 f32 f33 f34 f&ﬁ f3() f37 f38 fZJ

(a) Scanning

PCCHM ' HNON NETONBE B [ R 7 [ 8|
T-test EII || [0 4] | [
ANOVA EIN 0 N [ [ ug
Chi-square HIE] .Iﬂ. [ [ [ ]
Giniindex 3 EHNE HE El

[4]3 ]9 B
M BNEENN ﬂﬂl N7 b ﬂl II

fi £ f5 4 £5 f6 £7 f5 fo fiofn fu f13 fn fi5 fig fir fis f19 fzo f21 foz fzs fz4 fo5 fa for fas fag f30 f31 f30 f33 34 fsa f:m f37 38 f:ssz

(b) XSS

PCC T '
T-test B
ANOVA BT
Chi-square @

MiE

fl f? f'} fl f fﬁ f7 fX f‘l fl[) fll f12 fl'} f] 4 fl 5 flﬁ f17 f18 fl") f?ﬂ f?l f22 f?'l f?l f? 5 f?ﬁ f27 fZX f2‘) fm f’ll f’SZ f'ﬂ f’ll f’i 5 f’iﬁ f’17 f‘}% f’i‘l

(c) DDoS
PCCHM " " ' mﬂ C O HEE Y e
T-test B [ [ | [2[3 1
ANOVA lll [ | 23
Chi-square Il [3]8]6] | [2[1] | [ [l
Giniindex - ENNEN" EGEN (84 15| 13 IS 1 /10 1
BN 11518 | oo | | Jal |3 R 6| | B 2 |7 [

fl fo £5 f4 f5 £ f7 f5 fy fiofn f1’7 f13 f14 f15 F16 17 f18 19 Fo0 F1 20 fo3 £24 £o5 £o6 For Fas fog £30 £31 F30 f33 34 f;a f36 f37 35 f;q

(d) Password

Ranking HEHOBBHO B K EE e G e 71222324252627282930313233343536373839

PCCHIM ll [4[6]5[ [ ...ﬂ. o o i 8 |10 3 [ [
T-test E{ B ] 9| (810 3 [ [N
ANOVA l B 8110l 3 [ |
Chi-square || | ] |
Gini index @H 9] | 210/ |
M N EENe . EIN E. .ﬂﬂ
f1 £ £5 £y 5 f6 f7 f5 fy fwfnflz fisfiafisfio f17f15f10f211 le f22f15f24 fo5 fzbfnfzs fzg fmfslfsz fssfufsofse fwfxsf;u
(a) DoS
PCCHIM ‘Nl BXNEEE N ENC e EEE -
T-test | [4[8[c NN o0 [5]2] | || N BN EENrgae -
_ANOVA Yl || || N BN EErrgge -
Chi-square EJiY 5] [ [ 2] [T
Gini index [E] | | a HBEN -
M ...ﬂ.. IEEI Bio NN | | e

f1 £ f5 f4 5 fo f7 fs fo f10 11 f12 i3 F1afu5 Fr f17 18 f1g Fao For Fan fag fau fo5 fo6 for fas fag 30 fs1 f32 £33 f34 fs' f36 f37 f35 39

(b) MITM
PCCHIN W' HBOY HOOo pg o
Ttest (U W HEEOY HOO O
ANOVARIDIN BT HEES HOO BE |
Chi-square FOEBE  BER oW
Gini index (12 10[9 |6 [ 5 |

M- HHEENTGEN TENETTE

1 £y f3 £ f5 f6 £7 fs fo f10f11 f1o f1a f1a fu5 f16 fu7 fis F19 Foo For Foo Fog fao Fo5 Fog Fo fas fag £30 £31 £32 £33 £34 £35 £36 37 35 f39

(c) Ransomware

f1 fy f3 £ f5 f6 f7 fs £y f1o fn f12 f13f14 f15 f16 f17 f1s Frg Fao For Fan fag fos Fos Faog far fas fag 30 £31 f32 £33 34 £35 F36 f37 f35 g

(d) Backdoor

Pl ETBONNERONED HEE BN
Ttest i 78 N 23] -
ANOVA B | ] [2]5]

Chi-square [ ] BHEEEC

Gini index - NN N nRE e HE -

VBN 2 ias B GEN . FEE f

f1 £, f3 £y £5 £ £7 f5 £y f10f1y f12 SERSPRSER ST STRITS f19 fzu f21 f22 f?z f24 £25 £26 fa7 f25 20 £30 31 32 £33 f34 f’}a fse f37 fxs fsg

(e) Injection
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Feature Analysis Results

= Attack-specific feature analysis
— NF-ToN-loT-v2
e Similar ranking is observed among

feature selection algorithms as well as

attack types.
e Scanning and XSS attacks

= highest-ranked features in all feature
selection algorithms are exactly the same

as each other (except Gini index).

PCC T-test ANOVA Chi-square Gini index MI

TCP_WIN_MAX_IN (fs)
LONGEST_FLOW_PKT (f;5)

Scanning

Top-1 XSS

MIN_IP_PKT_LEN (f;;)  DNS_ID_QUERY (f35) IN_BYTES (f3)

Ranking HEHOHAHOBE X B E XSGR 11222324252627282930313233343536373839

Pecpm W
T-test L3
ANOVA AN

Chi-square E1id ﬂ.
Gini index il HIEINIE | | [3]6]7]4]

MIE  BTR IEII NENNEG B

fl f2 fd f-l f5 f() f7 f8 fJ f10 f11 flz fl.j f14 f1 5 f1() f17 flS flJ fZO fZl fZZ fZJ fhl fZJ fZ() f27 f28 fZ.) f&() f.il fJZ fdd f.54 f&) fdb f37 de fdJ

(a) Scanning

PCCHE 1 MEON NETONEE N HE g
Ttest EI B Ts] HO BEn-
ANOVA EI N Ts] 7]8 B

Chi-square EAE] EEOE BE BI
Gini index B EINE WM N

MENEETNE BoEm . BI ﬂl

fy £y f3 £y f5 £ f7 f5 fo f10f11 f1o f13 f14 f15f16 f17 f18 f19 fog for Foo Fog foy fo5 fog for f28 fag f39 f31 f39 f33f34 f3o fSG f37 fss fso

(b) XSS
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Feature Analysis Results

= Attack-specific feature analysis
— NF-ToN-loT-v2

e DDoS, Password, Injection attacks

= TCP-related features such as CLIENT
TCP FLAGS (f9), TCP WIN MAX IN
(f32), and TCP MAX OUT (f33), are of

considerable impact.

PCC T-test ANOVA Chi-square Gini index MI

Top-1 | TCP_WIN_MAX_IN (f;;2)| FLOW_DURATION MILLISECONDS (f;) | TCP_WIN_MAX_IN (fs) |

DDoS Top-5 fis, f14, f30, f33 Ig, I32, I33

Top-10 fy, f7. fs, fo, f10, f13, f1a, fi7, f30. fa3 f3. fo. 16. fi7. 32, fy3

Top-1 | CLIENT_TCP_FLAGS (f,) | | TCP_WIN_MAX_OUT (f3) | | TCP_WIN_MAX_IN (f3,) | L7_PROTO (£,)
Password ~ Top-5 Ti3. f14, T32. T33 Ip, I3, 15, I1g

Top-10 fs, fo, f10, fi3, f14, fi7, f32, 3 fo, fs, fy, f15, fis, f32, 33

Top-1 | CLIENT_TCP_FLAGS (fo) | TCP_WIN MAX OUT (fy;) | | TCP_WIN_MAX_IN (£3) |
Illj(}(‘ti()ll T()[)—5 113, fMA I39, I33 T4, 132

Top-10 fs. fo. fi0. f13. fia, fi7, fis, f32, f33 fs, 1, fs, fo, fi5. fis, f52, f33

Ranking HEBEHAOBEOHREOE R E e ir i rr222324252627282930313233343536373839

5SS O 6 [0 [3(8] | [2]4] [N]7] N B | Do) | R 1S B | [
T-test ENELY [6[o]3]8] | [2]a] 7] | [ [ | [1[5] [
_ANOVA STy EEEE--EE---- [ [ | [1[5] -
Chi-square B3 o= [o 2[5 | {7 BHeEEES
Gini index - 3 I I N 1 [ I I e I R 4 | [1]2]
M NEEENTEEN T YENEEE aiol | 8 (12§
f‘l fl f{ fil f f() f7 f?% f‘l fl()fllfliflifllfl)flhfl7flﬂ fl‘)fl()fll leflifllfl)le)f27fzﬁf2‘lfi()f¥l fizf{ifilf{)fi()fi7fﬂ§f{‘)
(c) DDoS
2SS RN (7 /1/6] | [4]5[9 108 "B | | (23 TP R
T-test il | [7]2]6] | [a|5[o 108 [ [ | (23] TR
ANOVA il | [7]1]6] | [a]5[o[N10/8] [ [ | [2[3 [ TR
Chi-square NIl EIEEE T N EIE e [ | [2{1] | | | }10]
Giniindex- HENEN EBEOEN NHED BE 13 R 1 10} 1

v HEENEN RN ENaWTE 6 LR 27 J

fl f2 f{ fl f f() f7 fX f‘) fl()fll f12f15f11f1xf1(1f17f18f1‘)f2()f21 f22f21f"lf2)f9()f”7f‘78f9‘)fi()fll f;zfnfnf;,f;()fwfmfm

(d) Password

pccil' '
T-test Bl
ANOVA B
Chi-square Sl
Gini index -
MI -

f1 f? fS f4 f" f\" f7 f8 f() f1!’) fll f12 f13 f14 15 fl(‘ f17 f18 f10 f20 f?l f22 f2$ f24 f2 > f?(i f27 f?S fQ() f30 f31 f32 f33 f34 f3 5 f3( f37 f&S f&‘)

(e) Injection
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Feature Analysis Results

Attack-specific feature analysis

NF-ToN-loT-v2

PCC T-test ANOVA

Chi-square

Gini index

MI

Top-10 fi, £s, f9, f10, f16, 17, f36 | f1, fo, f7, s, fu3, f14, fi7, £30. f36 | f1. £, £, fi7, f30, f36, f37

f3-, f4a f151 flb'a f17~, f18-, f25- f26 f32

e DoS and MITM attacks

= Similarities in top-10 combinations
are found between the two attacks
when the same feature selection

algorithms are employed.

Ranking HEHOBAHOBE X B E T E G R 71222324252627282930313233343536373839

Chi-square I 4]9] | |
Giniindex N EIETE HED
iy fh17] LN | L l.ﬂﬁﬂﬂ

Chi-square EJiY
Gini index [E]" [HE1

PCCEA

T-test E4I

ANOVA FIl

fl f2 fi f/l f"y fb f7 fS f‘) f1() f11 f12 fl’i fM fl 5 flﬁ f17 f18 fl‘) f2() f21 f22 f?? f24 f2) f% f27 f28 f29 f*)[) f%l fi? fii fM fi) fiﬁ fi? fiS f’ig

PCCEAM
T-test [
ANOVA Fi

i
M BRI A

fy £y f3 £y f5 £ f7 fg fg f19611 1o f13 f14 f15 f16 F17 f18 F1g Foo fa1 Fag fo3 fos Fo5 a6 For fog fag 3 f31 f3 f33 f34 fs) f36 f37 35 f39

(b) MITM
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Feature Analysis Results

= Attack-specific feature analysis

— NF-ToN-loT-v2

e Ransomware attack

TCP-related features tend to be the

top-ranked features

e Backdoor attack

feature rankings are inconsistent in
PCC, T-test, and ANOVA, though
PCC and T-test rankings remain

consistent and similar to ANOVA.

PCC T-test ANOVA Gini index MI

Chi-square

Top-1  CLIENT_TCP_FLAGS (fy) TCP_WIN_MAX_IN (fs) IN_BYTES (f;) TCP_FLAGS (fg)

Ransomware  Top-5 fg, f13 f3, fig, fo5
Top-10 fo, s, fo, f10, f13, f1a, f17, f32 f3, fs, £y, f15, fis, fo5, f33
Top-1 MIN_TTL (fy3) OUT_BYTES (f;) OUT_PKTS (f5)
Backdoor Top-5 fi3. f14 fg
Top-10 fo, s, f10, f13, f14, f32 f3, £y, 15, s, fo5, fog, f32

Ranking HEBABOHOE L K BE N EC T 1222324252627282930313233343536373839

PCCHEM B HHONW HOG BB & BB ¢
T-test Il B B

|
HE

'HOENEN N -
BHUEEEE = -
ANOVA I I
Chi-square SH | 6]
Gini index N3] (s8] BM1[2] |

B 1o PNel7] N |2 DR 3

fl f? f3 f4 f f(i f7 fS f( f10 fll f12 f13 f14 flo f.l(i f17 flS f19 f20 f21 f22 f2‘3 f24 f2o f?G f27 f28 f29 f30 f31 f32 f33 f‘34 f3a f36 f37 f38 f39

(c) Ransomware

Pl  HENHOONSNBESNODE ¢ BHn
Ttest llld  MENEHBCONSEENNEN H
ANOVARIED  HENBTONNHENNEN 3]

Chi-square E] 4]7] | 1] 2 [ EI HE
Giniindex HHHEHE NEN  OEN [8]9]3]
IR [2/1]9/5 00 [ Illllﬂ 34136 DU

f1 fo f5 f4 f5 fg f7 fg fo f19fn f12 f13f14 f15 f16 17 fis f1 9 f20 f21 f22 fa3 foy fos fog for fog Fag f3 f31 f30 f33 f34 f35 f36 f37 35 f39

(d) Backdoor
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Results and discussion — Feature analysis

= Attack-specific feature analysis

— Adiscernible pattern in the feature selection algorithms across different types of attacks.
e PCC, T-test, and ANOVA demonstrate similar patterns regardless of the type of attack.
e MI and Gini index also exhibit a tendency to produce similar rankings.

e In the case of Chi-square, some attacks have more similar rankings to PCC, T-test, and ANOVA than
MI and Gini index.
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Progressive Feature Addition

= Autoencoder-based anomaly detection using important features

= Results with synthetic dataset

accuracy

1.00+
0.95¢
0.90}

0.85
0.80

0.75}
0.70}
0.65}

0.60

0.55}
0.50},

O
o—o feature importance order |’
+— random order
A AN ANMMNMTNDNNOOMNDODODODO A NANMSSTNDNNONNODODOO
L I I B I I I B B B I I B B B B B e
number of features (k)

[D. Choi, J. Rheey and H. Park, “Autoencoder-based Anomaly Detection using Network Traffic Feature
Grouping,” The 3rd Korea Attificial Intelligence Conference, Sep. 2022.] (Best Paper Award)
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Progressive Feature Addition for IDS

= Attack-specific IDS based on Isolation forest and autoencoder
— NF-BoT-loT-v2

< Isolation Forest-based attack-specific IDS > < Autoencoder-based attack-specific IDS >
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Progressive Feature Addition for IDS

= Attack-specific IDS based on Isolation forest and autoencoder

— NF-ToN-loT-v2

< Isolation Forest-based attack-specific IDS > < Autoencoder-based attack-specific IDS >
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Results and Discussion - IDS

= Attack-specific IDS based on Isolation Forest and autoencoder

— Features are added incrementally in accordance with the common feature ranking in the case of

feature selection algorithms with an identical ranking for 39 features.

e Autoencoder-based attack-specific IDS

Pros: can achieve the highest performance with a few numbers of k

Cons: generally reach peak performance by using the full feature set

e |[solation Forest-based attack-specific IDS

Pros: can detect attacks with high accuracy even with a small number of k for most attacks

Cons: may have capped performance

e Important observation: a notable performance degradation when the size of k is increased excessively,

regardless of the feature selection algorithm
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Takeaway from use case 2

= To design ML/DL-based lightweight network traffic anomaly/intrusion detection system
(IDS), we focus on efficient data manipulation approaches
— Semantic feature grouping for network traffic data
— Dimensionality reduction via network traffic data feature analysis

= Propose an attack-specific feature analysis framework with NetFlow loT datasets, NF-

BoT-loT-v2 and NF-ToN-loT-v2

= \We observe from extensive experiment results that

— Some features are commonly important across different types of attacks/feature selection
algorithms

— For better improved and robust IDS, attack specific feature selection and design are still
required
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Conclusions

= For data driven AlI-RAN,
— Reference architectures for Open RAN and potential Al/ML deployment

— Network data available for analysis
— Communication and network constraints that need to be explicitly considered

— Tradeoffs between Al/ML algorithms
— Importance of feature extraction (feature reduction) for lightweight model design
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Thank you

For more information, please visit our homepage at
http://mcnl.ewha.ac.kr



