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Extended Reality Technologies

XR includes VR, AR, and MR, providing immersive
experiences for natural interaction.
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Challenges of immersive service Delivery

Massive Bandwidth Requirements >
360VIDEO ||\
« 360° video captures the entire EXPLAINED !

environment, even though users view
only part of it at any moment.

* To avoid visible pixelation in head-
mounted displays, 4K-8K+ resolution is

often required.

 This leads to extremely high bitrates, ——
2¢~2,000 1,000 500 —
stressing networks and increasing E00 5000 1300 @
delive ry costs. 2000 G000 3000 360 DEGREE FIELD OF VIEW

14,000 7,000 3,500
16,000 8,000 4,000 «TRUE4K

Ina360 Video - only the 90 jlewer is available at any
i ired for True 4K video is 16,000 pixels by 8,000 ixels.

’ RIZE EXPLORE OUR 360 VIDEO PRODUCTS
AND TRAINING AT 360RIZE.COM
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Challenges of 360-degree-video Delivery

 Inefficient Data Usage (Viewport Problem)

* Only 10-20% of the video sphere is visible at

once.
* Yet, traditional streaming delivers the entire
frame, wasting bandwidth.

* Limited bandwidth
* Need for real-time rendering on resource-

constrained devices.

P/ DAIHOC BACH KHOA HA NOI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
5




Challenges of Point Cloud Video Delivery

High data rates (up to 6Gbps) ) streaming server
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FROM MOTIVATIONS TO ACTIONS:

ADAPTIVE STREAMING TECHNIQUES TO SOLVE THE
XR ISSUES
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A need of Adaptive Streaming Solutions

High data rates (up to 6Gbps) o @ treaming server

y e Segl- Segl- Segl- Segl-
R2 R3 R4 R5
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-R1 R2 R3 R4 R5
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Seg4 Seg4- Seg4- Seg4- Seg4-
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Original
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— Need for adaptive streaming solutions
* To manage quality, to balance
. quality, bandwidth
Streaming ’ « To meet user experience under
client . .
Market the stringent requirements of XR
Laea;:ﬁgc BACH KHOA HA NOI application
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Challenges of Adaptive Streaming Solutions

Viewport-adaptive streaming exists but is difficult Main.tgining Iate.ncy. I:?elow

to implement accurately and at scale. 20 mllllsecon?ds is critical to
. Additional tational head ensure motion-to-photon
'tional computationa o.ve.r €d responsiveness and user

* Head/Eye movement prediction comfort in XR experiences.

Point cloud-adaptive streaming Low-latency delivery is especially hard on mobile
networks or congested Wi-Fi

« Limited processing power, to handle tile-
based or multi-object volumetric streams

efficiently

» Fast rate of 6Gbps at 30 frames per second & g
x ‘w;'

over bandwidth-constrained networks.

Motion-to-photon latency i
Motion Photon
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Challenges of Adaptive Streaming Solutions

* QoE degradation with stalling and temporal
quality variation
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How Adaptive Point Cloud Video Streaming cause QoE degradation

Chunk #1

Encoding
(MPEG-PCC)

Chunk #2

Oriinal
point cloud
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How Adaptive Point Cloud Video Streaming cause QoE degradation

Key factors influencing QoE: temporal quality variation and stalling

Quality ¢

level Quality %
Chunk #1 Chunk #3 level )
RS Stalling event
RS » ° ‘. o: * o °

1

R2 boceeao - ]
Chunk #4 Chunk #5

\ Time Time

switching

A 4
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Ow Users’ Quality of Experience is affected

TEMPORAL STALLING
QUALITY VARIATION. |  AND BUFFERING

* N W, »
@ STALLING 4
. LOADING... | *
—

EFFECT oF TEMPORAL QU Y VARIATION

l: Frequent quality switcl hes negativel t user satisfaction ! #
[ % ¢
N s Y L :
r. .

Stalling and temporal quality variation complicate
adaptive streaming for immersive media users.

Playback interruptions cause significant degradation in
user experience during adaptive point cloud streaming.

Frequent quality switches negatively affect user
satisfaction by disrupting perceived video consistency.




Therefore

In adaptive streaming, we must trade off between the balance between
computational complexity and visual quality in adaptive volumetric
streaming.

Adaptive Volumetric Streaming Trade-Off
Balancing Computational Complexity vs Visual Quality
. High Quality $ Low Quality |

. | ‘ Heavy Processing Low Processing
| High Bandwidth Usage Low Bandwidth Usage

e & Adaptive Adjustmeng¢
" High Visual Detail -
s STLw
z =\ -

<«

Better Qualﬁ\, : ¥wer Complexity :
L

High Computational Load Low Computational Load

Computational Complexity &= =
B G -
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Background: What is volumetric video?
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Background: Type of Volumetric video?
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Background: Volumetric video streaming

 Large data capacity
A shot of a single person requires at least
3.5 Gbps to stream without freezing!!! _

four people require 19.2 Gbps 1.

* High computational load

The decompression time for one frame
must, on average, be shorter than the
display time of that framel1.2].

Reference:

[1]. 8i VFBv2 ,
[2]. MPEG-DASH Video “longdress”

(8iVFB v2 1))
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Background: State of the Art

. 3D tiling!34.5.6.7.8,9], 7 : High Quality
1 : Medium Quality
@ : Low Quality

* Viewport Adaptive Streaming.
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Background: State of the Art

* The quality of the 3D tiles will be adapted based on the
viewing distance and the visible area. [10. 11]
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Background: State of the Art

Server
Real-Time Viewport
Tiling Encoding Movement & —’| / Render & Display
)
/
X A ::\l:twoi:k Viewport Decoded Point
pacity e
GoF k C Tile: R Prediction Cloud Buffer
fes 5 Selected ‘ Tiles mation / T
sl
e ted Tile l [
H .~ | Cell Combination |
HTTP Interface l A e Visibility Aware
aptation Optimization T
1 [\ . -
—-— Requested Cell Decoding
B \ _//
il Client T~ ="
x(k,c1) | Remote Server I
HTTP Interface 7 DRL Based
et Real-time Solver (Sec. V)
A= VIVO system [10
Rolling POT Framework (Sec. IV) Sy S e

Decoder
&
Render

POT framework [5]
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Background: State of the Art

* Current systems support streaming single-object scenes
[ J [3’ 47 5a 6’ 77 8’ 9]

« With the 3D tiling technique, a larger number of objects must be
decompressed independently, creating a burden on the viewer’s
device.

— How to stream multi-object scenes?

— How to optimize resources for decompressing multi-object scenes?

22



Objective: Streaming multi-object volumetric video

#1: Splitting into many tiles

Requires more
decompression, making
it easier to freeze

Adapts well and makes
resource optimization
easier.

\/




Objective: Streaming multi-object volumetric video

#2: Splitting into fewer tiles
 Requires less

decompression, making
freezing less likely /g — S AN é

« Adapts poorly and makes
resource optimization
difficult

24



Objective: Streaming multi-object volumetric video

#3: No tiling

* Requires little
decompression, making
freezing unlikely

« Adapts well and is easy to
optimize for resource
usage

25



Simple compression techniques

LoD (Mesh): reducing the edges

and vertices while keeping the “5

visual quality at a certain level.
69,451 2,502 251 76

triangles triangles triangles triangles

Subsampling: keeping only a
subset of the point cloud based
on some rules.




Advanced compression techniques

y

Octree Coding (point cloud): insert
each 3D points into a Octree and
output the serialized octree in a
bitstream.

NN

Projection-based coding (point
cloud): project 3D surfaces of a
point cloud into 2D plane, and use
2D video compression to compress.




Advanced compression techniques

NeRF: a 3D representation and also A COMPRESSION TECHNIQUE'!

Images of the object taken from multiple angles

i

View position + direction

Feed Forward
Neural Network
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What is 360-degree video?
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What is 360-degree video?




360-degree video background

360° Video Mapping Techniques to convert <l >
spherical video into rectangular video RN .
before encoding: N L

 cylindrical mapping B

« cubic mapping )

* pyramid mapping

i ,—f¥~\ + - *y
( ] / \\‘ +y +7 *y +y
- -xf:i.::__ 1. ::;: + | - I-X +z . I*X , I-Z
_‘i\___y_,/ y
Pyramid Projection Cubemap Projection - CMP
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360-degree video background

Viewport/Field of View concept y

Vertical
130-135 degqrees __--a_

200-220 Yy G
degrees both o . .
eyes / Lo \
Binocular ! G __ .: _____ \\
120 LS Y
degrees 5\ ---------- : i:%._._._._._._.:.)'_ ..... >
g ' R e i A.:' ___________ - ! z
X ‘/ \\\ _______ -
Horizontal Field of View Vertical Field of View Viewport
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Problem statement

360-degree key features

« Users can freely rotate their heads
to explore the video in all
directions.

« 360° video is usually captured and

delivered at ultra-high resolution
(>4K).

* Live 360° video streaming
demands high bandwidth

4
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How to live stream 360-degree
video over mobile networks?

with good QoE

Low-latency playback without
buffering or stalls

Efficient resource usage
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Remember this diagram before we start

Volumetric
Region-of-
Interest (ROI)
Prediction

Viewport Bandwidth
Prediction estimation

QoE

modelling

Adaptive streaming

!

Improve QoE




Background on QoE and QoE modelling
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Needs for QoE modelling

g/

Applications tha
VR content has large file sizes require real-time

Reducing Adaptive methods for
the size of video/image adjustment Method evaluation

VR content (or tuning)

Ensuring
user
experience

Subjective Obijective

With a large number of - Does not require user involveme:t
participants

Direct observation and evaluation a

Conducted on a computer

Time-consuming J

Requires initial research but helps
and costly

redluce costs in the long term
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Subjective QoE assessment

Quality QoE Subjective Measurement

Exce”ent MOS Rating by Users
GOOd Video Stream 3 - J'_,.!_T
Fair R

s : Buffering...
VIDEO STREAMING

PO or SERVER Clear Video Delayed Noisy / Distorted

Bac e

a b ON B

(.:/'./ Buffering

% ' delay

L. > 1 Distortion /
m noise
‘C" Packet loss

Excellent

e Excellent @ Good Fair o Bad

ry

>

Delay / Noise / Distortion ====p-
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Objective QoE assessment is a cure

Objective

Mapping - Does not require user involvement
- Conducted on a computer

Time-consuming Requires initial research but helps
and costly reduce costs in the long term

Subjective
With a large number of

participants
Direct observation and evaluation

MOS = f(Objective parameters)

DAI HOC BACH KHOA HA NOI
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Objective QoE assessment

PSNR, SSIM, etc.

Original Distorted

Original (Undistorted)
Media/Input t k

No-Reference (NR)

-

Reduced-Reference (RR)

BY

Feature-based, Reduced-reference NR quality metrics (BRISQUE, NIQE)

Full-Reference (FR)

) B

Cuplity Distorted
PSNR, SSIM, osed,

Inputs Inputs Inputs '~ o
» QoS Metrics Feature-ose, e Media features
® Delay, Jitteri Reduced-reference e Blockiness, Blur

® Packet loss quality e Texture

/ DAI HOC BACH KHOA HA NOI

Full-Reference (FR) Methods

Require access to the original (undistorted)
signal.

. PSNR (Peak Signal-to-Noise Ratio)
. SSIM (Structural Similarity Index)

. MS-SSIM (Multi-Scale SSIM)

. VQM (Video Quality Metric)

.  VMAF (Video Multi-Method
Assessment Fusion)
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Objective QoE assessment

Reduced-Reference (RR) Methods

Use partial information about the
original signal.

" Quality Output:

PSNR, SSIM, etc.

Original Distorted

Original (Undistorted) . .
Media/Input 7 R . Feature-based quality metrics
Full-Reference (FR) Reduced-Reference (RR) No-Reference (NR) . Reduced-reference video quallty

?’ﬂ models

& [

Cuplity Distorted

PSNR, SSIM, osed, Feature-based, Reduced-reference NR quality metrics (BRISQUE, NIQE)
Inputs Inputs Inputs Il
» QoS Metrics Feature-osed, e Media features
® Delay, Jitteri Reduced-reference e Blockiness, Blur
® Packet loss quality e Texture
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Objective QoE assessment

[ Quality vl..liv:putzr

PSNR, SSIM, etc.

Original Distorted
Original (Undistorted)
Media/Input ’ k

Reduced-Reference (RR) No-Reference (NR)

BY

Feature-based, Reduced-reference NR quality metrics (BRISQUE, NIQE)

Full-Reference (FR)

) B

Cuplity Distorted
PSNR, SSIM, oseq,

Inputs Inputs Inputs 7=
» QoS Metrics Feature-ose, e Media features
® Delay, Jitteri Reduced-reference e Blockiness, Blur

® Packet loss quality e Texture

No-Reference (NR) / Blind Methods

Use only the received signal.

. Blockiness, blur, noise estimators

. NR video quality metrics (e.g.,

BRISQUE, NIQE)

. Deep-learning-based quality

predictors
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Example 1: objective assement for 360-degree image

EN_, w2)MAX?

=1[V(Xn)_g(xn)]2 w2

WVPSNR = 10 logy5x

-1 _ Jex ,
b |fex (cosey)?
c 1
Spatlal gons‘gai’t . e2 Ln(C—TO)/ cycles ) .,
encitivi = .
frequency(fc) e a(e+e2) ‘degree ©
J

[1] Sanghoon Lee, M. S. Pattichis, and A. C. Bovik, " Foveated video compression with optimal rate
PAI HOC BACH KHOA HA N&Yiro/, IEEE Transactions on Image Processing, Volume 10 Issue 7, July 2001, Pages 977-992
A
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Example 1: objective assement for 360-degree image

Coefficient e e
o aussian riltering ror 360lib
Determll‘lat Image Blurring Softvlvare [3]
ion Process — |
Blurred

original
image

360°image viewport

360 extraction
[3] Joi.nt Videg Explora.tion Team, deg ree Curve ﬁttiﬂg
“360Lib." [Online]. Available: Images hé d Si

. . VOl .
differ in g P OO Coefficient
: : diem MOS : o
[2] P.913, Recommendation ITU-T, Comp|eX|ty , fOT 360 lmage
"Methods for the subjective : d tvong ung
. ) : , Time, an

assessment of video quality, audio )
quality and audiovisual quality of

Internet video and distribution Absolute Category
quality television in any . <.
environment,” 2014 Ratmg .. i Toi vy PCC
method[2] v&i 5 muc
diém 1-5.
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https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/tags/360Lib-2.0.1/
https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/tags/360Lib-2.0.1/
https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/tags/360Lib-2.0.1/
https://jvet.hhi.fraunhofer.de/svn/svn_360Lib/tags/360Lib-2.0.1/

Example 2: QoE modelling for point cloud

Step 1 Step 2

Construct a QoE

database for
Point cloud video

— Model QoE

Construct a large Using machine learning to
QoE database develop prediction models
Evaluate impacts of temporal Develop models for predicting users’
qguality variation and stalling on Quality of Experience given the
QokE in adaptive point cloud impacts of temporal quality variation
video streaming in a VR setting. and stalling.
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Example 2: QoE modelling for point cloud

Step 1

Construct a QoE

database for
Point cloud video

Construct a large
QoE database

Evaluate impacts of temporal
qguality variation and stalling on
QotE in adaptive point cloud
video streaming in a VR setting.

% DAl HOC BACH KHOA HA NOI
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Example 2: QoE modelling for point cloud:Construction of QoE database

4 original point cloud videos
from 8i Voxelized Full Body
Dataset:

» Each video is 10 second long
at 30 frames per second

« Each video is divided into

(a) Longdress (b) Loot (¢) RedandBlack (d) Soldier five 2-second chunks. and
each chunk is encoded into
Quality | GQP | TQP | Loot | RedandBlack | Soldier | Longdress five quality levels (versions)
R1 32 42 2.27 3.38 4.37 4.64 .
R2 3% | 37 | 348 188 6.96 707 using MPEG V-PCC
R3 24 32 5.62 7.55 11.58 14.05 compression standard
R4 20 27 9041 12.76 19.95 25.97
RS 16 22 16.67 22.91 35.29 46.77

V | VINUNIVERSITY



Test Stimuli Patterns for Temporal Quality Variation

29 stimuli with various temporal quality variation patterns

are generated for each point cloud video by

concatenating chunk versions based on pre-defined

patterns:

« Constant (5 patterns): All chunks have the same quality level
of either R1, R2, R3, R4, or R5.

« Spike (4 patterns): R5-Rx-R5-Rx-R5, where Rx is either R4,
R3, R2, or R1.

* InverseSpike (4 patterns): Rx-R5-Rx-R5-Rx, where Rx is
either R4, R3, R2, or R1.

« SingleDrop (12 patterns): R5-Rx-R5-R5-R5 or R5-Rx-Rx-R5-
R5 or R5-Rx-Rx-Rx-R5

« Singlelncrease (4 patterns): Rx-R5-Rx-Rx-Rx with Rx is
either R4, R3, R2, or R1.

Quality

Chunk #1

Chunk #3 Chunk #5

Chunk #2 Chunk #4

L s 4

Chunk #1

Chunk #5

§y—e

Chunk #2 Chunk #3Chunk #4

Time

Time



Stalling Patterns in Test Stimuli

33 stalling patterns are generated for each point cloud video at R5 with 8 stalling
durations of 0.25s, 0.5s, 0.75s, 1s, 1.5s, 2s, 3s, and 4s:

« Single-Stall (16 patterns): either at the end of the first chunk or the end of the fourth
chunk

« Double-Stall (8 patterns): 2 stalling occur either at 1) the end of the first and third
chunks or 2) the end of the second and third chunks. Stalling in a stimulus has the
same duration of either 0.25s, 0.5s, 1s, or 2s.

« Triple-Stall (6 patterns): 3 stalling occur either 1) the end of the first, third, and fourth
chunks or 2) the end of the first, second, and third chunks. Stalling in a stimulus has
the same duration of either 0.25s, 0.5s, or 1s.

« Quadruple-Stall (3 patterns): A stalling occurs at the end of all chunks except the last
one. Stalling in a stimulus has the same duration of either 0.25s, 0.5s, or 1s.

‘ Total test stimuli: (29+33) *4 = 248



Test Environment and Test Procedure

Unity and HTC Vive Pro
headset

43 participants between 19 and
45, all with normal or corrected-
to-normal vision.

At least 17 participants rate
each stimulus.

Each stimulus’s mean opinion
score (MOS) is calculated as the
average score given by all valid
participants.

(a) A test stimulus from the par- (b) The rating window.
ticipant’s viewpoint.



Test Results

——Loot ——RedandBlack ——Loot —RedandBlack
—+—Longdress ——Soldier —+Longdress ——Soldier
1

(3]

Mean Opinon Score (MOS)

LT T

1 /]
0.8 0.8 - Loot  RedandBlack Longdress  Soldier
pe TR . -
8 0.6 < i1 = (a) Test stimuli with temporal quality variations
a
0.4 ©04 - 5
0.2 0.2 - 7
o
0 0 = T T
Mean Opinion Score Mean Opinion Score g 3
£
(a) Test stimuli with temporal quality (b) Test stimuli with stalling CE 71 J_ l
variations g 1
] T

Loot  RedandBlack Longdress  Soldier

(b) Test stimuli with stalling



Example 2: QoE modelling for point cloud

Step 2

— Model QoE

Using machine learning to
develop prediction models

Develop models for predicting users’
Quality of Experience given the
impacts of temporal quality variation
and stalling.

* - ~ ~
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QoE Modeling for Temporal Quality Variation

6 features for GQP and TQP: 4 features for bitrate:
. N 1
‘ 1 NUTS
" = < ) _(GOP; + TQP;) (1a) =N Zl’z (22)
=1 =
1 & 2 b = 1 iv:(r,,' - ;1?’”’)2 (2b)
2P = ~ > (GoP; + TOP; — 2{") (1b) N
=1 ’lgr = min(ry,re,...,rN) (2¢)
r¥ = min(GQPy + TQPy,....,GOPy + TQOPy) (Ic) .
r, = max(ry,re,...,TN) (2d)
3 = max(GQP,; +TQP,,...,GOPyx + TOPy)  (1d)
N-1
v = WGQP; 41 + TQP; — GOP; — TQP,))  (le)
i=1
N-1

v =" UGQP, + TQP, — GOP,, — TQP,.,)) (1)
i=1



QoE Modeling for Temporal Quality Variation

The user’s QoE is predicted as a weighted sum of the extracted features :

6

4
~Pred __ 2 : ap , ,.9p }: br  br

To learn the appropriate values of the model parameters, the least square method is
utilized and the mean square error with L2-regularization is used as the loss function
to avoid over-fitting:

Ng 6

4
1 Pred ,QP 2 b
b Z(QOE - PoBA=aly (BT Jz::l w!

i=1 §=1




QoE Modeling for Stalling

5 features for stalling:

N
l'i = E S;
i=1
N
ry = E 1(s;)
i=1
r3 = min(sy, So, ..., SN )
ry = max(sy, S2,...,5N)

N
r: = E 1(s;) x 2071
i=1

(5a)

(5b)

(5¢)
(5d)

(Se)



QoE Modeling for Stalling
Let x denote the input feature vector, the proposed QoE model F(x) is a weighted

sum of M base learners (i.e., decision trees) hm(x):

M

Flz)= ¥ duhno)

i—1

The multiplier ym and the base learner hm(x) are the model’s parameters and are
learned iteratively using gradient tree boosting learning method [18].

QoEFred = Fys(x)



Performance Evaluation of the Proposed QoE Models

* The constructed QoE database is randomly split into a training set containing 80%
of the samples and a test set containing the remaining 20% of the samples.

 The performance of the QoE prediction models is measured in Pearson Linear
Correlation Coefficient (PLCC), Spearman’s Rank Order Correlation Coefficient
(SROCC), and Root Mean Squared Error (RMSE).

Point Cloud Video

QoE Model #1 (Temporal Quality Variation)

QoE Model #2 (Stalling)

Training Set

Test Set

Training Set

Test Set

PLCC | SROCC | RMSE | PLCC | SROCC | RMSE | PLCC | SROCC | RMSE | PLCC | SROCC | RMSE
Longdress 0.98 0.98 0.24 0.97 0.97 0.26 0.99 0.99 0.09 0.95 0.94 0.24
Loot 0.97 0.94 0.25 0.97 0.92 0.25 0.99 0.99 0.08 0.95 0.93 0.22
RedandBlack 0.98 0.98 0.20 0.97 0.97 0.25 0.99 0.98 0.11 0.95 0.95 0.26
Solider 0.98 0.97 0.30 0.97 0.96 0.32 0.97 0.96 0.16 0.93 0.88 0.31
All 0.97 0.96 0.25 0.96 0.94 0.27 0.99 0.99 0.11 0.94 0.94 0.26

V | VINUNIVERSITY
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Example 3: Retina-Based QoE Modeling

BLURRED VIEWPORT MOS CURVE
VIDEO 360 DISPLAY CALCULATOR FITTING
— — —>
Extent ACR Five
viewport method parameters
A fIogi?’(ic
unction
A
Cropping into tiles
Blur and combine
VIDEO 360 PCCC, RMSE
RAW FILE SRCC, WEIGHT

I%ﬁ DAI va WMAWII NIIWMA 11/M IYWwI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
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Example 3: Retina-Based QoE Modeling

Angular deviation from the region center

Deviation 0,25 25,4 4,9 9,30 30,00

\ Pen{oveﬁ " /’J /
v' A new QoE metrics for 360-degree video "m7°/ A
v'To find a new mapping function to predict N Purperiphett -

QoE score based on QoE metrics. i i

The retina is divided into five regions

/ DAI HOC BACH KHOA HA NOI

- HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY




Example 3: Retina-Based QoE Modeling

Chi s6 (U Q1) dudc dinh nghia nhy sau:

.
WZUQI =) wU QI
k—1 e

40, Xy
(67 +07) x [(X)* + (V)]

M

M: The number of pixels in each image.

o,: Correlation loss value..

o,: Luminance distortion..

o,,. Correlation distortion..

X: is computed as the average of{x; |[i=1, 2, 3, ..., N}
y: is computed as the average offy; | i=1, 2, 3, ..., N}

BACH KHOA

DAI HOC BACH KHOA HA NOI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY




Example 3: Retina-Based QoE Modeling

MOS Assessment Criteria Table

e
m SUEIlLS MOS = oy (; + ) +ouWZUQI + 05

Very blurry / very | + e WEUCI-0s
uncomfortable

2 Blurry and uncomfortable Where
3 Slightly blurry and slightly

uncomfortable a;=1,2,3,4,5 are parameters that are
4 Slightly blurry but not precomputed in advance.

uncomfortable
5 Very good

v A five-parameter logistic function is used to predict MOS (Mean Opinion
Score 2 values from the WZUQ)I value.

/7 DAl HOC BACH KHOA HA NOI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY




Evaluation of a New QoE Modeling Approach

= 1,0
z
(o 0,8 a
is|

= 06 o L G ;.
; o I"‘-Io..-:"l . _ =
= 2 o e -l -
5 0,4 :.'0. -l:..““':“‘. a G’.., ';. =
= 0,2 ° 8
S

0,0

1 2 3 4 3
MOS

95% confidence interval of 240 MOS value

DAI HOC BACH KHOA HA NOI

- HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY




Evaluation of a New QoE Modeling Approach

Experimental setting: 360-degree videos used in the experiment

(a) Diving_1 (b) Diving_2 (¢) Paris_1 (d) Paris_2

(¢) Rollercoaster 1 (f) Rollercoaster 2 (g) Venice_1 (h) Venice 2 _—



Evaluation of a New QoE Modeling Approach

Characteristics of the four 360-degree videos used for the experiments

den ngu

VIDEOS | YOUTUBE ID | MO TA NOI DUNG VIDEQ | CHUYEN DONG
. HOAT PONG
Diving 20zlksZBTiA | Ban ngay, canh bién Thap
g B Cic diém tham quan 6 Paris, £
Paris EkshFcLESPU |~ sty i kbhcdinha ba Thép
RollerCoaster | 81sB-P8SnGSM Tan Iu?n e Cao
ban ngay
i s-AJRFQUALE Toa nha ¢ Venice, ngoai troi, Thip

P/ PAI HOC BACH KHOA HA NOI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY




Evaluation of a New QoE Modeling Approach

Two performance metrics are considered:
Pearson Correlation Coefficient (PCC), Root Mean Square Error (RMSE).

y¥ (M; - M)(MOS; - MOS;)

v'/ Z,\ 1(3’7;75, MOS; ): PCc

iy’ N VX (o 312X (Mos; - MO8,
Trong do: trong do M, va MOS dudc tinh nhy sau:
* N: la s6 lugng bic anh; . 1 N . | N
« MOS;: 1a gid tri dy doan MOS ciia bic anh i Moy ,.)-,'M" . MOS=% ‘)-, MOS:,
* MOS;: 1a gid tri MOS thuc té cta anh i; vai:
* Cubi cung, sau khi fit véi MOS, ta thu dugc két qua cic gid tri trong s6 cla ting . )
vung trong anh va c6 dugc phép do ZWU Q. * N: 1a 50 lugng bic anh;

« M;: la gid tri ty 1€ tin hiéu-ty 1& nhiéu cia video theo trong s6 cia anh thi i.

DAI HOC BACH KHOA HA NOI
BACH KHOA

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY




Evaluation of a New QoE Modeling Approach

Bang 2.4 Gia tri PCC cua cic chi s6 danh gia chat luong khich quan vdi tirng video. X i s s ) L
’ Bang 2.5 Gia tri RMSE cua cac chi s6 danh gia chat lwgng khach quan vdéi tirng

Videos video.
Metric Video #1 | Video #2 | Video #3 | Video #4 Videos
MSE [40] 0620 | 0270 | 0.135 | 0.793 Metric | Video #1 | Video #2 | Video #3 | Video #4
SSIM [26] 0.019 0.096 0.132 0.449 MSE [40] 0375 | 0395 | 0505 | 0.295
MS-SSIM [27] 0.002 0.098 0.125 0419 SSIM [26] 0.478 0.408 0.505 0.433
UQI [28] 0.212 0.409 0.410 0.790 MS-SSIM [27] | 0.478 0.408 0.505 0.440
VIFp [30] 0.000 0.615 0.436 0.743 UQI[28] 0.467 0.374 0.464 0.297
VIF [30] 0.012 0.210 0.282 0.101 VIFp [30] 0.478 0.323 0.458 0.325
NQM [31] 0.214 0.093 0.174 0.316 VIF [30] 0.478 0.401 0.489 0.482
IW-PSNR [32] 0.096 0.121 0.340 0.066 NQM [31] 0.467 0.408 0.502 0.460
IW-SSIM [32] 0.021 0.142 0.260 0.087 IW-PSNR [32] | 0.476 0.407 0.479 0.484
FSIM [33] 0295 0114 0.077 0439 IW-SSIM [32] | 0478 0.406 0.492 0.483
ESIMc [33] 0262 0154 0,060 0,500 FSIM [33] 0.457 0.407 0.508 0.436
SR.SIM [35] 0339 5140 0353 0370 FSIMCc [33] 0.461 0.405 0.508 0.420
RESIM [34] 5,030 3007 3501 0355 SR-SIM [35] 0.464 0.406 0.493 0.451
ADDSSIM [36] | 0212 0153 0,080 0391 RFSIM [34] 0.476 0410 0.499 0.459
et : : : ADD-SSIM [36] | 0.467 0.405 0.508 0.446
PSIM [37] 0319 | 0203 | 0400 | 0.786 PSIM [37] 0453 | 0401 | 0467 | 029
WSNR [31] 0.236 0.170 0.229 0.337 WSNR [31] 0465 0,404 0.496 0457
FMSE [39] 0246 | 0.103 | 0.126 | 0463 FMSE [39] 0463 | 0408 | 0505 | 0.430
FPSNR [38] 0.245 0.095 0.092 0.340 FPSNR [38] 0.463 0.408 0.507 0.456
F-SSIM [29] 0.232 0.177 0.087 0.212 F-SSIM [29] 0.465 0.404 0.507 0.475
GSIM [41] 0.221 0.166 0.083 0.199 GSIM [41] 0.466 0.404 0.508 0.475
PSNR [12] 0.318 0.251 0.063 0.450 PSNR [12] 0.453 0.397 0.508 0.433
ZWE [13] 0.244 0.217 0.000 0.791 ZWF [13] 0.469 0.401 0.716 0.384
WZUQI 0.888 0.808 0.844 0.885 N WZUQI 0.348 0.301 0.362 0.344




Remember this diagram before we start

QoE

modelling

‘A
Y

Volumetric
Region-of-
Interest (ROI)
Prediction

Viewport

Prediction

A
<@
Sy

Adaptive streaming

!

Improve QoE

Bandwidth
estimation
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SYSTEM ARCHITECTURE FOR VOLUMETRIC STREAMING

Server

Sequence #1

Sequence #2

Sequence #N

LoD#1.bin {cost, value}
LoD#2.bin {cost, value}

Storage

Segment #1

Segment #2

Segment #L

bbox#1.0bj

LoD#N.bin {cost, value}
LoD#1.bin {cost, value}
LoD#2.bin {cost, value} bbox#2.0bj
LoD#N.bin {cost, value}

(-3

o

]
LoD#1.bin {cost, value}
LoD#2.bin {cost, value} bbox#N.obj

LoD#N.bin {cost, value}

\ 4

Request
processing

BAIHOC
p

7

A

Client
\Y . N
Renderer - .Po > Viewport estimation
viewling vector
A . .
Estimated MVP matrix
v
Bounding boxes )
g _ Visibility Estimated
computation screen area
Metadata _ LoD Version B
selection
. LoD versions selection
»  Request handling |«
Estimated
[ N By e bandwidth
Average download speed CRLE T

per request

¢

BACH KHOA
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Proposal: System Architecture

Server Client

viewing vector - MVP matrix
bbox#1.obj seq*.LoD#1.bin L)
|

—— |
b seq”.LoD#s.bin ¢}

Storage

PoV J Estimated J

LoD#1.bin {cost, value}
LoD#2.bin {cost, value}

Sequence #1

LoD#N.bin {cost, value}  /

Estimated

LoD#1.bin {cost, value}

° >
Sequence #2 | LoD#2.bin {cost, value; bbox#2.0bj ° screen area
- Segment #L |
LoD#N.bin {cost, value} | —
{selected LoD
° > . <
5 versions}
\
LoD#l.b%n {cost, value}
Sequence #N LoD#2.bin {cost, value} bbox#N.obj Reque§t < R {Seq* LoD#s bln}
, processing - :
LoD#N.bin {cost, value} 1 I 21
_ Bandwidth
- estimation

BACH KHOA
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Proposal: Storage

1 Sampling ] MPEG - VPCC :
versionl.bin
version4.bin

Original version Compressed data

*

4

72



Viewport estimation

Estimated
~ P(t.) — P(t, — At) PoV
P(te) — P(tc) + v . (te _ tc) Current Pov—l ; Ir
P
Current >
viewing vector
— AO
Estimated viewing vector ~
P(te) = Ra (G (b = t)) * V()
Actual viewing vector At

73



Bandwidth estimation

M

M
2l

R =

——Maximum bandwidth (Mbps) —=-Estimated download speed (Mbps)

ek
D A N X O
S O O O O
L 1 3 1 3 Ll

Bandwidth (Mbps)

30

Time (s)
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Version selection

Optimize " Where:
oV = Z wnV(mny,) M : Number of point clouds
with: m N : Number of versions per point cloud
M
z C(m,n,,) < RA n,.: Selected LoD version for the point cloud m
m=1 V(m, n) : “value” of version n of Point cloud m.
_ay C(m, n) : “cost” of version n of Point cloud m. (bitrate
Wi = Y a, sau ma héa ngudn).

R?% : Available bandwidth of the client.

a,, : Estimated screen area of Point cloud m.
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Version selection

Version adaptation

Dynamic Programming based solution

Maximize
M .
OV - z Wm ¢ V(ml nm) A
= R
Vi YN
: FOK
z c(m,n,,) < R?
m=1

N versions for point IV[=N*M
V(m,n) = PSNRb(bm, n) cloud m |E| =N A M

=20 log RMS(m,n)

76



Visibility area Computation

Algorithm 1: Dynamic Programming-based Solution

Version adaptation: saput vl (Emm i 4 (mp)) K0
Output:Optimal LoD versions selection yg

xs—{hxe={hVeo

Dynamic Programming based solution 2 initialization(G, R%);
3 pulse(0, 1, y, R4, Vv, Xs);
Maximize 4 return x; _
M s Functio
6 if checkDominance(pmn, y) == true OR
oV = Wy V(m, nm) checkFeasibility (pmn, y, R?) == false OR
- checkBounds(pmn, ¥, V) == false then
. m=1 7 | return;
with: s | end
M o | ¥ <xun Recursive BFS
< a 10 if m == M then A
C(m) nm) — R 11 xs < x’s - O(|V|+|E|) = O(N M)
m=1 12 V «— OV(xs);
13 return;
V(m,n) = PSNR(m,n) 10 | ene
bb 15 Florke—ltoN =
_ 0. m :
= 20 - log RMS(m, 1) gl 9>

18 return

BACH KHOA
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Version selection

Version adaptation:

Lagrange Multiplier - based solution

Minimize:

M
oV = 2 Wy, - V(m,n,,)
m=1

V&i: 2]

M
Z c(m,n,) <R
m=1

V(m,n) = RMS(m,n)

@ Original Data
—— Fitted Curve: V™ (m, x)

® Original Data

{ —— Fitted Curve: C~(m, x)

% 100 A
o
Qo
z
© 80+
60
®
40 4
T T T T T T T T T T T T T T
1.0 15 2.0 2.5 3.0 3.5 4.0 1.0 15 2.0 2.5 3.0 3.5 4.0
x (version) x (version)

) A
V(im,x) = ~ + Bm

C(m,x) =Cm-x+ Dm

BACH KHOA




Version selection

Algorithm 2: Lagrange Multiplier-based Solution
Input : {C(m,n)}, {wn}, {An}, {Bm}. {Cn},
o1 RS
Version adaptation Output: LoD version

1 xs + {}
2 LagrangeSelect((2,

Lagrange Multiplier - based solution 3 return ys;

4 Function LagrangeSelect(€, x., R®):
Minimize s | do
6 TouchBound < false;
EM v | T et
3 update(ys|[m|); N\
OV = W, * V(m’ nm) 9 if xs[m] < 1 OR x,[m] > N then O(M 2)
10
m=1 11
V&i: 12
M 13
14
Cim n < R4 15 end
Z ( ’ m) 16 while Touch Bound == true;
m=1 17 Xs < RoundHatfopiys), R* < 0;
A 18 Form < 110 M do
> m A u u 2 p &
V(im,x) = — +Bm and C(m,x) =Cm-x+Dm * eLdR « B+ C(m, xs[m]);
X
21 if R* > R“ then
2 | xs < int(xs);
1< xm <N 23 end

nnnnn 24 return
BACH KHOA
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Performance Evaluation: Experimental Environment

Reference Methods:

* Equal: Evenly distributes the available network
resources among the Point Clouds within the
viewport.

* Hybrid [11]: Determines the quality of each
Point Cloud heuristically based on its position in
the ranking list of projected screen area.

HHHHHHHH 80



Performance Evaluation: Fixed network (Constant bandwidth)

—— NAVA Hybrid —#— NAVA ——Equal
(DP-based) (LM-based)
41
——)
2 40 ff‘—
g 39
38 A
7 e —
4 37 & S —h
36 T T r
50 60 70 80 90

Network bandwidth (Mbps)

Scene 1

—— NAVA Hybrid —#— NAVA —&—Equal
(DP-based) (LM-based)
44
2 43
~
4
Z 42 L
A~
—— —h—
4 1 L L] L] L] 1
50 60 70 80 90

Network bandwidth (Mbps)

Scene 2

81



Performance Evaluation: Mobile Network

ek
o) o0 S
- e} S
1 L 1 L 1

Bandwidth (Mbps)
~

\®)
-

10 15 20 25 30 35 40
Time (s)

S
(9]
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Performance Evaluation: Mobile Network (Fluctuating bandwidth)

Method Avg PSNR (dB) Avg #Stall Avg Stall Duration (s)
NAVA (DP-based) 44.22 8.5 1.1675

NAVA (LM-based) 44.17 7.25 1.0875

Hybrid 43.72 13 1.5475

Equal 42.18 0 0
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Performance Evaluation: Processing time

BW 10 sequence 12 sequence 14 sequence 16 sequence 18 sequence |20 sequence
40Mbps | 4.5/ 0.40 2.08/0.47 0.59/0.54 0.59 /0.58 0.37/0.63 0.69 /0.52
50Mbps | 7.31/0.39 5.72/0.46 6.52/0.52 6.15/0.55 0.71/0.57 0.65/0.51
60Mbps | 6.85 / 0.39 6.49 /0.46 17.86/0.52 |17.30/055 |13.39/0.57 |0.68/0.51
70Mbps [ 4.32 /0.37 4.70/0.41 21.94/0.47 |20.92/049 |60.93/0.54 |6.75/0.46
80Mbps | 2.07 / 0.33 2.72/0.38 17.60/043 |[17.27/0.46 |[133.75/0.48 |66.13/0.45
90Mbps [ 1.31/0.28 1.56 /0.35 10.52/0.39 [10.96/0.43 |[136.93/0.46 |205.94/0.41

Average processing time (milliseconds) of the DP-based /
LM-based solution:

Il DP-based
Il LM-based

200
175
150 -
125 |
100 |
75 F
50
25
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Server Client

Request Request Viewport Bandwidth Visibility LoD Renderer
processing handling estimation estimation computation selection
T I I T I I T
| | | | | | |
Session initializati ) | | | | | |
| | | | | | |
: GET metadata, bounding boxes _ _ _ _: : : : : :
Ly oomemm==== =777 | | | | | |
< | I | | I |
l metadata, bounding boxes : : : : : :
M | | | | |
| | | | | | |
| | | | | | |
| | | I metadata | | |
| | | | | | |
| | | bounding boxes| | | |
| [ I I 1 | |
t t t t t t |
| ] ] | | ] |
First segment ) | | | | | |
| | | | | | |
I GET sequence*.LoD#1.bin - | | I | I I
I e sEmm T 1 | | | | |
l------"77 | | | | | |
| | | | | | |
: sequence*.LoD#1.bin : : : : : :
M I I | I I
| | | | | | |
| | | | sequence*.LoD#1.bin | |
| I f f T f
! ] ] ] I ]
| | | | | |
loop J [Untill=L] | | | | |
| | | | |
l l downloalp speeds ! ! l
| | L | |
| | | | |
| | | Estinhated bandwidth |
| | | I T 1
| | | | l. . |
| | L L PoV, yiewing vector |
| | | | |
| | estimated viewport | |
| | T I |
| | | | |
| | | | screen areas |
| | | | |
: | | Selectbd LoD versions |
I f t t T
| . | | | | |
| GET sequence*.LoD#n.bin __ _ _ 4 | | | |
| eemmmmmmTT T | | | | |
< | [ | I [
| . | | | | |
sequence®.LoD#n.bin | | | | |
M I I | I
| | | | |
| | | | « . |
| | | | sequence*.LoD#n.bin |
| | | | | |
| | | | | |
| | | | | |
| | | | | | 8 6



ADAPTIVE 360°
VIDEO STREAMING




CURENT STREAMING METHOD

8K ERP 360° video
e e HTTP Server

T

N e ‘fﬁ net
0 |

DASH
encapsulation

A

Transmitted Tiles

| — \
)<= .8

C.’

Encoding

Inside-viewport Bitrate
Representation
Segment Selection
' E E Sphere -
Time -
e 4 ) T
g4, _—” =(X,Y,2)
Viewport 2
DASH VR Player
Source:

https://www.semanticscholar.org/



https://www.semanticscholar.org/

VIEWPORT ADAPTIVE STREAMING

HTTP Server

Cropping totiles Segmentation

m[—;@ and encoding
360 video - L PG
S | g

( Render Client \

\ Rate
oo Adaptation fe= f=» Internet

T
t
v

Viewport Throughput
-—— = - Adaptation

\ User’s orientatio;l.I /

% Cf'\ur/‘ﬂ:
E https://slideplayer.com/slide/13895227/
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What to adapt while streaming

Prioritizes visual quality in the user’s

viewpo rt Prioritizing in the User's Viewport
Adaptive 360° Video Streaming

Adaptive systems dynamically: 3
. ° ° ° ¢ PR
 Stream high-quality video tiles for the g | .,
Cu rrent (Or predicted) VieWport Low Resolution o 7% : - EocusArea High Resolution
 Stream lower-quality tiles for non- - | ~ o
viewed regions = e HighBtate == D]

Optimized Quality Lower Data Usage
Efficient Streaming

This preserves perceived quality while
reducing bandwidth usage.

AAAAAAAA



VIEWPORT ADAPTIVE STREAMING

Field of View
Left Tile (FoV) RightTile

Vol




Viewport Prediction

] Viewport center

' Sample point

Historica
viewport scanpath

.

Predicted
viewport scanpath

}

Ground truth
= viewport scanpath

Video display time t

S PR H =Torisment O Pap— +F

Comparing the viewport scanning speed over the past H seconds to
% predict the viewport scanning speed in the next F seconds.




Viewport Prediction

Temporal Motion Behavior

/ /f/‘" % \\
Viewport / 4 R N\ ¢ —————r'—p
/ 5 \ ' : .
N -l \ . Prediction : Segment
/,v s'\ _:‘ : n\v " '
e - A . honzon . duration
: ; 5 - ’ : ‘ »
- =
y 0 t t+m t+m+s
\
\ y
& 5
X
. % o \\
o =

The user’s viewport at time t Problem Formulation of the Viewport Prediction




Viewport position Prediction: Approach based on head movement

Algorithm 1: Udc tinh viewport

Input: g, v;. 1. d;. M,

Output: {M,.q,}

forr =1to N do

Calculate v, =0o(v;)

Calculate q; =0 (q;)

Calculate M, = tanh(M,)
Calculate d; =o(d;)

Calculater, =o' (v, +M,_,)
Calculate n, =tanh (v + (r; @ q;))
M; = ((r; * q¢) @ My_1) + (v @M,)
a, = n, +d, * tanh(M,)

10 end

11 return M,, q,

E R T T B PR

Supplemented with reset gates- r,,
n; to control how many previous
states are retained.

(a) Budc 01: Thém cdng r, (b) Budc 02: Thém cong n,



Evaluation of the head-movement based Viewport position Prediction

Proposed _ LAST __| LINEAR LSTM

Position of Accuracy
viewport 1

Position of Accuracy
viewport 2

94.28

94.04

84.64 76.58 85.33 75.76

84.38 80.93 84.38 75.51

Achieving an improvement of 10% to 19.70% compared to existing

methods.




Bing 3.3 P chinh xic (%) ciia HEVEL véi cic phuong phap tham chiéu

Videos GRU | RNN | GLVP | HEVEL
BAR 61.65 | 62.12 | 74.21 84.54

Algorithm 2: Viewport Estimation

Ocean 60.52 [ 71.30 | 73.21 | 85.86 Input: ¢; 1, hy 1, x;
Po. Riverside | 88.65 | 87.23 | 90.11 | 91.62 Output: ¢,. h,. y,
Sofa 7421 | 58.16 | 74.21 | 85.86 for 1 — d
Turtle | 72.57 | 71.62 | 7421 | 7558 1 forz=1to N do
Average | 70.09 | 68.62 | 76.64 | 84.54 2 Calculate iy, =6(W;q @ (hy_1.X;) + big
3 Calculate ig, =tanh(W;g @ (h;—1,x:) + big
4 | Calculate i, = ig, * ig,
Bing 3.4 RMSE ciia HEVEL véi cic phuong phap tham chiéu 5 Calculate f, =6(W; @ (h,_.x,) + by
Videos | GRU | RNN | GLVP | HEVEL 6 | Calculate ¢, =c,y * fi +is
BAR 0.266 | 0.264 | 0.221 | 0.194 7 | Calculate ogr =6(Woa @ (he—1.%;) + boa
Ocean 0.271 [ 0230 [ 0.224 | 0.191 8 Calculate og, =tanh(W,g @ ¢, +b,p
Po. Riverside | 0.185 | 0.188 | 0.182 | 0.179 . Calculate by, y, = 0 * 0p,
“Sofa 0.221 [ 0282 [ 0.221 | 0.191 | d -
Turtle 0.226 | 0.229 [ 0.221 | 0.217 »
Average | 0.234 | 0.239 | 0.214 | 0.194 1 ¢y, ey




Adaptive streaming system

Video capture

Video

Segmentation
J

Temporal segments '\

Tiles
Generation

po Y

Spatial tiles

Coding

(Scalable Video
(SVC)

Multiple layer

'|  Buffer and e

Bandwidth movement

traces data

SERVER CLIENT

il

Adaptive Video Remote Video
Transmizsion Reception

—

BBAG J

Video display

[ g Enbancement laver
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Version adaptation based on buffer level

o . o o o . urrent playback
v’ The objective is to minimize the T ime
. base layers of k_th enhancement
occurrence of re-buffering events. segment Bour = Bnax ayers ofsegment
Initial buffering ] BL1 BL2 BL3 1st Stage )
v’ The buffer is divided into four ° ~ rme
ranges—critical, low, medium, and sovmiontttsaisos [T e
. . #2 I ' ; |
high—based on predefined A g
thresholds denoted as B, B\, =
2 Download BL of seg [ BLL BL2 B3 | B4 |
Bhlgh’ va BmaX " tIO to‘i' T i }Bcur Sl;min Tir;e
| EL_g__k | EL3 k EL.t.'t_k |
Curenctutr< R
[ B2 k | EI3 k t|1 EL4_l | Beur "
. = g Snigh Se . E2 | E3 | El4
Re-fill buffer by BLs BLL | B2 | B3 | B4 | BL5 | BL6
Dangerous Low Medium High | | | | | >
ty t,+ T Time




QoE modelling

QoFE = Z(a x bitratey — B x rebuf fery —y x smoothy,)
k

v'Rebuffer, denotes the re-buffering duration at segment k

2 IBL ’ Iscgmc'ml- (BL > ’.wgnu'nl)
rebuf fery =

v'Smooth k denotes the bitrate difference between two consecutive segments R,

va Rk+1
smoothy =| Ry — Ry |

v'Given the network conditions and the user’s viewport, determine the optimal set
of layer values {l,1,,...,I\} to maximize the user’s Quality of Experience (QoE).




Select layer for tiles

Algorithm 3: Liwa chon layer cho cdc tile

lnput: N, Ri-hr”h ’ Rl.n ks vk~ Wp ( Vk ) ) ma‘- Bhigh- Brur
Output: {/,}1<n<n
1 < 0forl1 <n<N;
hresh N In=1 pl,.
2 AR « Rihresh _ N gl 1 gl

n=1
3 Sap xép tile theo w: sortedTile « sort(w,(V,,)):
4 By + Mic bo dém hién tai;

sforl=1to L-1do

[ foreach n € sortedTile do

7 if B.ur = Bhigr then

8 ifl,<L-landR; .|, <AR then
’ AR ¢~ AR =Ry, \ px

10 I, 1,41

1 else

12 AR <~ AR~ Ry ,

13 In €~ [n

14 end

15 else if Bj,, < Beur < Bhign then

16 if I,, < L—1and R;n, lnk < AR then
17 AR <~ AR — Ry, n i

18 In €~ [n

19 else

20
21

AR+ AR —R;, |,
Iy 1,—1

22 end

23 else

24 for j=1,.j>0:j——do

25
26
27
28

ifl, <L-1and Rj 1.t < AR then
AR+ AR—R;
ln

end

29 end

30 end
31 end
32 end

33 return {/,}1<p<nN:

%
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Experimental settings

* The end-to-end latency is set to 10ms

* The number of throughput samples S is

setto 3

(a) Bar (b) Porto Riverside

» The coefficient values a, 8, and y are set

to 1; 1.85; and 1 respectively as in [110]).

(d) Turtle

360-degree videos used

[110] C. Zhou, Y. Ban, Y. Zhao, L. Guo, and B. Yu, "Pdas: Probability-driven adaptive
streaming for short video,” in Proceedings of the 30th ACM International Conference
on Multimedia, ser. MM '22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 7021-7025. [Online]. Available:
https://doi.org/10.1145/3503161.3551571




Experimental settings

Average bitrate of a tile corresponding to the

five test videos (kbps)

Average tile bitrate (kbps)

Statistical table of the bandwidth trace dataset

(Mbps)
. . Long Island .
7Trainl | 7Train2 | Bus57 | Bus62 RailgRoa d QTrain

Average 6.81 9.07 247 0.09 4.29 8.49
Median 5.28 8.42 0.008 | 0.003 3.08 7.75
Max 31.40 25.40 23.20 | 8.26 16.50 28.40

Min 0.02 0.02 0 0 0 0
STD 5.51 6.26 496 0.49 3.90 6.39

Scalable Porto

- Bar | Turtle | Rive- | Sofa | Ocean
Layer .

rside

Enhancement | o), | 355 | 554 | 131 | 263
Layer 4

Enhancement | .| 505 | 154 | 67 | 207
Layer 3

Enhancement | .1 | ¢ | o | 33 | og
Layer 2

Enhancement | o | 41 | 24 | 80
Layer 1

Base Layer | 101 30 27 19 46

%
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Performance evaluation

Average bitrate (BR) and average buffer level (BL) (s) Average QoE under a simple bandwidth scenario
over time of the proposed and reference methods

under a simple bandwidth trace.

Video don gian Turtle | Sofa | Bar | Porto Riverside . Avg. QoE
Avg. viewport BR | 50.48 | 19.38 | 61.81 3243 Video TLGA | SVSH | S-VAS [ BBAG
TLGA Avg. BL 2.71 | 280 | 343 2.83 Turtle 1285 | 4382 | 43.05 | 5587
Min BL 0 1 0 2 — Mt Mt -
Avg. viewport BR | 159.25 | 85.30 | 151.01 13391 Sofa 9.77 | 38.80 | 40.66 || 43.90
SHVH Avg. BL 290 | 232 | 220 2.24 Bar 8.28 65.20 | 44.05 || 85.69
Min BL 2 l I l Porto Riverside | 13.26 | 63.44 | 63.83 || 86.59
Avg. viewport BR | 154.90 | 88.93 | 170.85 148.07
S-VAS Avg. BL 233 | 3.00 | 211 2.33
Min BL 1 2 1 1
Avg. viewport BR | 183.78 | 97.31 | 214.09 155.65
BBAG Ave. BL 3.06 | 3.14 | 3.74 3.13
Min BL 2 2 3 2

BACH KHOA




THANK YOU FOR
YOUR ATTENTION!

@) hust.eduvn @ fb.com/dhbkhn



