979-8-3315-7896-1/26/$31.00 ©2026 IEEE

Radio Point Cloud-based Positioning and Mapping

Kyeong-Ju Cha*, Hyunwoo Park*, Soonmin Hwang' and Sunwoo Kim*
*Department of Electronic Engineering, Hanyang University
TDepartment of Automotive Engineering, Hanyang University
{lovelyckj, stark95, soonminh, remero} @hanyang.ac.kr

Abstract—This paper proposes a point cloud-based radio posi-
tioning and mapping algorithm that enables geometry-aware re-
construction from channel impulse responses (CIRs). Traditional
radio simultaneous localization and mapping (SLAM) algorithms
rely on predefined virtual anchors or scattering models, which
restrict their ability to represent arbitrary geometries. The
proposed algorithm directly infers reflection points from multi-
antenna CIR measurements, aligns them via a UE-to-global
transform, and aggregates their global positions over time to
construct a flexible radio point cloud map. Simulation results in
a simplified urban scenario show 0.4 m UE localization RMSE
and 0.25 m mapping Chamfer distance, confirming that the point
cloud-based approach enables geometry-aware radio sensing.

Index Terms—Radio point cloud, positioning and mapping,
integrated sensing and communication.

I. INTRODUCTION

Integrated sensing and communication (ISAC) systems re-
quire fine-grained sensing capabilities beyond simple obstacle
detection, in order to support environment-aware services [1],
[2]. A central example of such capabilities is simultaneous
localization and mapping (SLAM), which jointly estimates
the user’s position and a geometric representation of the
surrounding environment [3]. Most existing SLAM methods
rely on vision or LiDAR sensors to construct dense point
cloud maps, but their performance degrades in featureless,
reflective, or transparent environments [4]. Motivated by the
robustness of radio propagation to illumination and texture
variations, radio SLAM has been investigated within the ISAC
framework, leveraging multipath channel measurements to
extract geometric information from existing wireless infras-
tructure [5].

Radio SLAM methods have been developed to improve
mapping accuracy while reducing computational cost. Random
finite set (RFS)-based approaches [6]-[9] jointly estimate
propagation landmarks as multi-object states while handling
association uncertainty. More recent methods include vector-
type belief propagation (BP) SLAM [10], which requires par-
ticle filtering at considerable computational cost, and set-type
BP SLAM [11], which adopts a set-theoretic message-passing
formulation but remains sensitive to noise accumulation. An
end-to-end learning-based radio SLAM [12] processes raw
channel impulse responses (CIRs) with a Transformer en-
coder, avoiding explicit channel-parameter estimation. Despite
these architectural differences, existing methods still represent
the environment as a discrete set of predefined propagation
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landmarks, which biases the map toward piecewise-planar
structures and makes curved or highly irregular geometries
difficult to capture.

This paper proposes a radio point cloud-based positioning
and mapping algorithm that does not rely on predefined
landmark types. Unlike existing radio SLAM methods, the
proposed approach uses a Transformer-based sensing network
that takes multi-antenna CIR measurements as input and
directly estimates ranges to the base station (BS) and dominant
reflection points (RPs) in a UE-centric coordinate frame. From
these direction-wise range estimates, UE-centric BS and RP
positions are reconstructed and then aligned with the known
BS location to recover the UE trajectory and transform all RP
estimates into the global coordinate system. By aggregating
the globally transformed RP estimates over time, the method
constructs a radio point cloud that flexibly captures arbitrary
environmental geometries without explicit assumptions on
walls, corners, or scattering structures, enabling geometry-
aware mapping even in complex urban environments.

II. SYSTEM MODEL

Consider a scenario with a single BS and a UE for posi-
tioning and mapping of the surrounding environment. The UE,
equipped with a 2x2 antenna array, is mounted on a vehicle.
The vehicle moves along a predefined straight-line trajectory,
and the position of the vehicle at time step ¢ is represented
as Pue: = | Tug.: Yu,. || - In contrast, the BS is fixed over
time, and its position is denoted by pgs = [ Zgs ¥ss | |-

Signals transmitted from the BS can either reach the UE
directly or after being reflected by surrounding objects such
as walls, buildings, vehicles, or people. The physical locations
on these objects where the signal bounces are referred to as
RPs. Assuming that N dominant reflection points exist around
the BS-UE link, the propagation between the BS and UE
consists of N + 1 paths.The first path (n = 0) corresponds
to the line-of-sight (LoS) path, and the rest of the paths
(n = 1,2,...,N) are non-line-of-sight (NLoS) multipaths
associated with reflections at the RPs. The position of the n-th
reflection point is denoted by

PRP.nt = | TRPmt YRP.t | - (1

The multipath propagation characteristics determine the
wireless channel observed at the UE. Assuming a band-limited
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Fig. 1: Radio positioning and mapping algorithm architecture.

system with bandwidth B, the continuous-time CIR at time
step ¢ is modeled as [13]

N

hi(z) = Z Ot sinc[B (z — Tnyt)} 2)
n=0

where o, and 7, represent the amplitude and delay of the

n-th path at time step t, respectively. By sampling h;(z) at Z

points, the discrete-time CIR is obtained as

e = [m(0) ... h(Z—-1)]". 3)

III. RADIO POSITIONING AND MAPPING ALGORITHM

The proposed radio positioning and mapping algorithm
operates through a three-stage architecture, as shown in Fig. 1.
Each stage performs specialized processing to estimate the

UE position and construct a radio point cloud map of the
surrounding environment.

A. UE-centric Radio Sensing Network

At each time step t, the network takes the multi-antenna
CIR from the 2 x 2 antenna array as input and estimates the
BS and RP positions in the UE coordinate.

1) Input Embedding: Let ¢y, € RZ denote the discrete-
time CIR measured at the m-th antenna element of the UE at
time step t. These four CIRs are stacked column-wise to form
a multi-antenna CIR matrix

Z x4
Ci=[criciac3ca] €R

“4)

where each column corresponds to one receive antenna. Each
row of C; is linearly embedded into a dimensional feature
vector D by

X, = C/W,. € RZ*P (5)

where W, € R**? is the embedding matrix. By incorporating
the positional embedding, X; € R?*P is obtained as

X = Xe,t + Xpe (6)

where X,. € RZ*P is the positional embedding matrix. The
matrix X; € R?*P serves as the input to the transformer
encoder.

2) Transformer Encoder: The transformer encoder models
the dependencies within the embedded multi-antenna CIR. It
consists of L stacked layers, each containing a multi-head self-
attention (MSA) block followed by a feed-forward network.
In the [-th layer, the input is first projected into query(Qp),
key(Kp), and value(V},) matrices for each of the H attention
heads:

Q. =X"W¢ K,=X"WE, v,=x{"wW}

where Wg, WX W) are learnable projection matrices. For
each head, the attention is computed as

QK] ) v,
VA

where A denotes the dimensionality of the queries and keys.
The outputs from all H heads are concatenated and linearly
projected to produce a unified representation, which is then
passed through a feed-forward network. Residual connections
and layer normalization are applied around both the MSA and
feed-forward blocks to stabilize training. The final encoder
output is denoted by E;, and serves as a compact representa-
tion of the CIR.

3) Directional Query Decoder: The decoder adopts a set
of direction-wise queries to estimate ranges towards the BS
and reflection points in the UE-centric frame. The azimuth
domain is uniformly quantized into M = 36 directions with a
10° spacing © = {61,604, ...,0,} = {0°,10°,...,350°}. For
each direction §; € ©, two learnable query vectors are defined:
one associated with the BS and one associated with a RP
aBs,i, Arp,i € RP, Collecting all queries yields the decoder
: _ T T T T T
input Quec = | Qgs,1 --- 9s,m 9re,1 AdRrp, M ] e
R2M*D Given the encoder output E; € R#*P, the trans-

Attention(Qp, Kp, Vi) = softmax( @)
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former decoder applies cross-attention over E; with Qg as
queries and produces a set of latent vectors

H,; = Decoder(Qqec, E;) € R2M*D (8)

where the first M rows correspond to BS-related features and
the remaining M rows correspond to RP-related features. The
i-th BS and RP feature vectors at time step ¢ are denoted by

hgs +(0;) = Hy(i,:),

4) Range Regression and Masking: Each direction-wise
feature vector is mapped to a scalar range estimate through a
regression head. For direction #; € O, the BS and RP ranges
from the UE are estimated as

est(6;) = W]—grshBS,t<9i)a Trp+(0:) = Wl—{rPhRP,t(ei) (10)

where wpgs, Wrp € RP are learnable regression Vvectors.
Not all directions contain a valid BS or RP path. For
directions where no BS or RP is present, binary masks
mps,(0;), mrp¢(0;) € {0,1} are used to exclude the corre-
sponding terms from the regression loss, so that only directions
with a valid path contribute to the training objective.

5) UE-Centric Position Reconstruction: Once the direction-
wise ranges are obtained, BS and RP positions are recon-
structed only for directions with valid paths. Let ©85 = {0, €
O | mBs,t(ﬂi) = ].} and 951) = {01 €0 ‘ mRP,t(gi) = 1}
denote the sets of directions with valid BS and RP paths at
time ¢, respectively. In the considered scenario, O35 contains
a single direction 67 corresponding to the BS. The UE-centric
BS position is then given by

~UE |:72BS,t (9:) COS 9;:|

PBS.t = | g ,(07) sin 6]

hgp+(0;) = Hy(M +14,:).  (9)

(11

Similarly, UE-centric RP positions are reconstructed for all
0, € OFF as

. UE ~ UE _ |"rp,(6;) cosb;

Prp ¢ = Pret(0:) = |:f‘RP +(0;) sin Gi] ' 12)

B. Global Coordinate Transformation

This subsection aligns the estimated UE-centric BS position
with the known global BS location to obtain the UE position
and to transform all estimates into the global coordinate
system. Since both pps and f)lng"t represent the same physical
BS expressed in different coordinate frames, their alignment
determines the UE position. Given the UE heading R; €
R2*2, the UE position in the global frame is obtained by

PUE,: = PBS — Rtf’glss,r (13)

The same rigid transform is applied to the UE-centric RP
estimates. The corresponding global RP position is given by

Prpnt = RiDRp . ¢ + DUEL- (14)

By applying this transform jointly to the UE-centric BS and
RP estimates, the absolute BS and RP positions are obtained
in the global coordinate system.

TABLE I: Simulation Parameters

Parameter Value
Input dimension 400 x 4
Hidden dimension 256
Attention heads 8
Encoder layers 4
Decoder layers 4
Feedforward dimension 2048
Output activation Sigmoid
Optimizer AdamW
Learning rate 5x 1074
Batch size 128
Epochs 200
Loss function MSE + empty penalty

C. Radio Point Cloud Mapping

After transforming all estimated BS and RP positions into
the global coordinate system, the environment can be recon-
structed by aggregating the global RP estimates across time.
Let P, = {Drpnt | n € Ni} denote the set of RP positions
detected at time ¢, where AN; is the index set of valid RP
paths. As the UE moves along its trajectory, each timestep
contributes a new set of RP points whose union forms the
radio point cloud map

M=||P. (15)

=

t=1

Because each RP corresponds to a surface interaction point
between the transmitted signal and the environment, the ac-
cumulated point cloud implicitly captures the geometry of
surrounding structures such as walls and scatterers.

IV. CASE STUDIES

A simplified 2D urban-like scenario is considered. The
environment consists of one BS and two buildings that serve
as dominant reflectors. The BS is located at pgs = [0m —
100m]". Building 1 is modeled as a vertical line segment
around x = —45m and Building 2 around z = 40 m. RPs
are placed along these buildings at positions corresponding to
10° angular intervals from the UE perspective. A single UE
moves along a straight trajectory on the y-axis, beginning at
[0m —50m]" and ending at [0m — 10m]", and a total of
40 UE positions are sampled uniformly along this path.

The carrier frequency, sample rate, and bandwidth are set
to 28 GHz, 245.76 MHz, and 100 MHz, respectively. The
simulation parameters are shown in Table I. The network is
trained end-to-end using a combined loss function that consists
of regression losses and empty penalties:

Etotal = £BS + £RP + /\(EBS + £§£pty)

empty

(16)
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Fig. 2: UE position estimation RMSE and RP mapping Cham-
fer distance.

where the regression losses for BS and RP range estimates are
defined as

1 A
Les |@BS|Z Z |7Bs,¢(0:) — 7Bs,:(0:)]%,
t 197’,69?5
1 Z a7
Lre = 15xp Z Z |re,¢(0:) — e, (0:)]?
|ORP| — ocon

where rgs ;(6;) and rgp4(6;) denote the ground truth ranges,
and ©B5 and ORP represent the sets of valid directions for BS
and RP at time ¢, respectively. The empty penalties suppress
predictions in invalid directions:

T
1 .
ﬁlegnslply |éBS|Z Z 7es.¢(0:)°,
=1 6,68
T (18)
1
ﬁgrﬁpty = |ORP| Z Z 7re,(0:)
t=1 0; Eé]t{P

where ©25 and ORF denote the sets of empty directions at
time ¢. The empty penalty weight is set to A = 0.5.
Positioning and mapping performance are evaluated using
root mean square error (RMSE) and Chamfer distance [14],
respectively. The Chamfer distance quantifies the geometric
dissimilarity between two point sets by measuring the average
nearest-neighbor distance in both directions. For the ground
truth RP map M = {prpn: |n € Nyt =1,...,T} and the
estimated RP map M, the Chamfer distance is defined as

> min [[p — p|lz

pem PEM
1 (19)

Z in b~ pll2

where p and p denote RP positions in the ground truth
and estimated maps, respectively. The first term measures the
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Fig. 3: 2D visualization of UE positioning and radio point
cloud mapping.

average distance from ground truth points to their nearest
estimated points, and the second term measures the reverse
direction. This bidirectional formulation ensures robustness to
both missing detections and false alarms in the estimated point
cloud.

The positioning and mapping results in Fig. 2 show how
the errors vary over 40 time steps. The UE localization RMSE
stays within 0.1 m—0.6 m, indicating centimeter-level tracking
accuracy. The RP mapping error, measured by the Chamfer
distance, clearly converges from about 1.3m to 0.25m, val-
idating the effectiveness of point cloud aggregation whereby
multiple observations from different viewpoints progressively
refine the radio map. This combination of stable localization
and steadily improving mapping accuracy demonstrates that
the proposed method can simultaneously achieve reliable po-
sitioning and progressive environment reconstruction.

Fig. 3 visualizes the complete positioning and mapping
result, including ground truth buildings, the estimated UE
trajectory, and the estimated RPs. The estimated trajectory
closely aligns with the ground truth, with an average error
of 0.4m, while the estimated RPs form two distinct vertical
clusters that accurately represent the geometry of Buildings A
and B. Although individual RP estimates exhibit some scatter
due to measurement noise and the 10° angular quantization,
the aggregated point cloud successfully captures the building
structure, achieving a final Chamfer distance of 0.25 m. These
results highlight the flexibility of the proposed point cloud
mapping, which captures building geometry directly from
CIRs rather than through sparse landmark sets or simplified
geometric models.
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V. CONCLUSIONS

This paper presents a point cloud-based radio positioning
and mapping algorithm that directly estimates RP clouds
from multi-antenna CIR measurements. By combining a
Transformer-based sensing network with coordinate alignment
using known BS positions, the method jointly performs UE
localization and global point cloud map construction. Sim-
ulations in a simplified urban scenario demonstrate a UE
localization RMSE of about 0.04 m and mapping performance
converging to 0.025 m Chamfer distance, validating that envi-
ronmental geometry can be reconstructed directly from CIRs
without predefined landmark types or explicit wall and corner
models. Future work will extend the framework to multi-BS
scenarios and more complex urban environments.
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