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Abstract—This paper proposes a point cloud-based radio posi-
tioning and mapping algorithm that enables geometry-aware re-
construction from channel impulse responses (CIRs). Traditional
radio simultaneous localization and mapping (SLAM) algorithms
rely on predefined virtual anchors or scattering models, which
restrict their ability to represent arbitrary geometries. The
proposed algorithm directly infers reflection points from multi-
antenna CIR measurements, aligns them via a UE-to-global
transform, and aggregates their global positions over time to
construct a flexible radio point cloud map. Simulation results in
a simplified urban scenario show 0.4m UE localization RMSE
and 0.25m mapping Chamfer distance, confirming that the point
cloud-based approach enables geometry-aware radio sensing.

Index Terms—Radio point cloud, positioning and mapping,
integrated sensing and communication.

I. INTRODUCTION

Integrated sensing and communication (ISAC) systems re-

quire fine-grained sensing capabilities beyond simple obstacle

detection, in order to support environment-aware services [1],

[2]. A central example of such capabilities is simultaneous

localization and mapping (SLAM), which jointly estimates

the user’s position and a geometric representation of the

surrounding environment [3]. Most existing SLAM methods

rely on vision or LiDAR sensors to construct dense point

cloud maps, but their performance degrades in featureless,

reflective, or transparent environments [4]. Motivated by the

robustness of radio propagation to illumination and texture

variations, radio SLAM has been investigated within the ISAC

framework, leveraging multipath channel measurements to

extract geometric information from existing wireless infras-

tructure [5].

Radio SLAM methods have been developed to improve

mapping accuracy while reducing computational cost. Random

finite set (RFS)-based approaches [6]–[9] jointly estimate

propagation landmarks as multi-object states while handling

association uncertainty. More recent methods include vector-

type belief propagation (BP) SLAM [10], which requires par-

ticle filtering at considerable computational cost, and set-type

BP SLAM [11], which adopts a set-theoretic message-passing

formulation but remains sensitive to noise accumulation. An

end-to-end learning-based radio SLAM [12] processes raw

channel impulse responses (CIRs) with a Transformer en-

coder, avoiding explicit channel-parameter estimation. Despite

these architectural differences, existing methods still represent

the environment as a discrete set of predefined propagation
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landmarks, which biases the map toward piecewise-planar

structures and makes curved or highly irregular geometries

difficult to capture.

This paper proposes a radio point cloud-based positioning

and mapping algorithm that does not rely on predefined

landmark types. Unlike existing radio SLAM methods, the

proposed approach uses a Transformer-based sensing network

that takes multi-antenna CIR measurements as input and

directly estimates ranges to the base station (BS) and dominant

reflection points (RPs) in a UE-centric coordinate frame. From

these direction-wise range estimates, UE-centric BS and RP

positions are reconstructed and then aligned with the known

BS location to recover the UE trajectory and transform all RP

estimates into the global coordinate system. By aggregating

the globally transformed RP estimates over time, the method

constructs a radio point cloud that flexibly captures arbitrary

environmental geometries without explicit assumptions on

walls, corners, or scattering structures, enabling geometry-

aware mapping even in complex urban environments.

II. SYSTEM MODEL

Consider a scenario with a single BS and a UE for posi-

tioning and mapping of the surrounding environment. The UE,

equipped with a 2×2 antenna array, is mounted on a vehicle.

The vehicle moves along a predefined straight-line trajectory,

and the position of the vehicle at time step t is represented

as pUE,t = [ xUE,t yUE,t ]
⊤. In contrast, the BS is fixed over

time, and its position is denoted by pBS = [ xBS yBS ]⊤.

Signals transmitted from the BS can either reach the UE

directly or after being reflected by surrounding objects such

as walls, buildings, vehicles, or people. The physical locations

on these objects where the signal bounces are referred to as

RPs. Assuming that N dominant reflection points exist around

the BS–UE link, the propagation between the BS and UE

consists of N + 1 paths.The first path (n = 0) corresponds

to the line-of-sight (LoS) path, and the rest of the paths

(n = 1, 2, . . . , N ) are non-line-of-sight (NLoS) multipaths

associated with reflections at the RPs. The position of the n-th

reflection point is denoted by

pRP,n,t = [ xRP,n,t yRP,n,t ]
⊤. (1)

The multipath propagation characteristics determine the

wireless channel observed at the UE. Assuming a band-limited
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Fig. 1: Radio positioning and mapping algorithm architecture.

system with bandwidth B, the continuous-time CIR at time

step t is modeled as [13]

ht(z) =

N∑

n=0

αn,t sinc
[
B (z − τn,t)

]
(2)

where αn,t and τn,t represent the amplitude and delay of the

n-th path at time step t, respectively. By sampling ht(z) at Z

points, the discrete-time CIR is obtained as

ct =
[
ht(0) . . . ht(Z − 1)

]⊤
. (3)

III. RADIO POSITIONING AND MAPPING ALGORITHM

The proposed radio positioning and mapping algorithm

operates through a three-stage architecture, as shown in Fig. 1.

Each stage performs specialized processing to estimate the

UE position and construct a radio point cloud map of the

surrounding environment.

A. UE-centric Radio Sensing Network

At each time step t, the network takes the multi-antenna

CIR from the 2 × 2 antenna array as input and estimates the

BS and RP positions in the UE coordinate.

1) Input Embedding: Let ct,m ∈ R
Z denote the discrete-

time CIR measured at the m-th antenna element of the UE at

time step t. These four CIRs are stacked column-wise to form

a multi-antenna CIR matrix

Ct = [ ct,1 ct,2 ct,3 ct,4 ] ∈ R
Z×4 (4)

where each column corresponds to one receive antenna. Each

row of Ct is linearly embedded into a dimensional feature

vector D by

Xe,t = CtWc ∈ R
Z×D (5)

where Wc ∈ R
4×D is the embedding matrix. By incorporating

the positional embedding, Xt ∈ R
Z×D is obtained as

Xt = Xe,t +Xpe (6)

where Xpe ∈ R
Z×D is the positional embedding matrix. The

matrix Xt ∈ R
Z×D serves as the input to the transformer

encoder.

2) Transformer Encoder: The transformer encoder models

the dependencies within the embedded multi-antenna CIR. It

consists of L stacked layers, each containing a multi-head self-

attention (MSA) block followed by a feed-forward network.

In the l-th layer, the input is first projected into query(Qh),

key(Kh), and value(Vh) matrices for each of the H attention

heads:

Qh = X
(l)
t W

Q
h , Kh = X

(l)
t WK

h , Vh = X
(l)
t WV

h

where W
Q
h ,W

K
h ,WV

h are learnable projection matrices. For

each head, the attention is computed as

Attention(Qh,Kh,Vh) = softmax
(QhK

⊤

h√
A

)
Vh (7)

where A denotes the dimensionality of the queries and keys.

The outputs from all H heads are concatenated and linearly

projected to produce a unified representation, which is then

passed through a feed-forward network. Residual connections

and layer normalization are applied around both the MSA and

feed-forward blocks to stabilize training. The final encoder

output is denoted by Et, and serves as a compact representa-

tion of the CIR.

3) Directional Query Decoder: The decoder adopts a set

of direction-wise queries to estimate ranges towards the BS

and reflection points in the UE-centric frame. The azimuth

domain is uniformly quantized into M = 36 directions with a

10◦ spacing Θ = {θ1, θ2, . . . , θM} = {0◦, 10◦, . . . , 350◦}. For

each direction θi ∈ Θ, two learnable query vectors are defined:

one associated with the BS and one associated with a RP

qBS,i, qRP,i ∈ R
D. Collecting all queries yields the decoder

input Qdec =
[
q⊤

BS,1 . . . q⊤

BS,M q⊤

RP,1 . . . q⊤

RP,M

]⊤
∈

R
2M×D. Given the encoder output Et ∈ R

Z×D, the trans-
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former decoder applies cross-attention over Et with Qdec as

queries and produces a set of latent vectors

Ht = Decoder(Qdec,Et) ∈ R
2M×D (8)

where the first M rows correspond to BS-related features and

the remaining M rows correspond to RP-related features. The

i-th BS and RP feature vectors at time step t are denoted by

hBS,t(θi) = Ht(i, :) , hRP,t(θi) = Ht(M + i, :) . (9)

4) Range Regression and Masking: Each direction-wise

feature vector is mapped to a scalar range estimate through a

regression head. For direction θi ∈ Θ, the BS and RP ranges

from the UE are estimated as

r̂BS,t(θi) = w⊤

BShBS,t(θi), r̂RP,t(θi) = w⊤

RPhRP,t(θi) (10)

where wBS,wRP ∈ R
D are learnable regression vectors.

Not all directions contain a valid BS or RP path. For

directions where no BS or RP is present, binary masks

mBS,t(θi),mRP,t(θi) ∈ {0, 1} are used to exclude the corre-

sponding terms from the regression loss, so that only directions

with a valid path contribute to the training objective.

5) UE-Centric Position Reconstruction: Once the direction-

wise ranges are obtained, BS and RP positions are recon-

structed only for directions with valid paths. Let ΘBS
t = {θi ∈

Θ | mBS,t(θi) = 1} and ΘRP
t = {θi ∈ Θ | mRP,t(θi) = 1}

denote the sets of directions with valid BS and RP paths at

time t, respectively. In the considered scenario, ΘBS
t contains

a single direction θ⋆i corresponding to the BS. The UE-centric

BS position is then given by

p̂UE
BS,t =

[
r̂BS,t(θ

⋆
i ) cos θ

⋆
i

r̂BS,t(θ
⋆
i ) sin θ

⋆
i

]
. (11)

Similarly, UE-centric RP positions are reconstructed for all

θi ∈ ΘRP
t as

p̂UE
RP,n,t = p̂UE

RP,t(θi) =

[
r̂RP,t(θi) cos θi
r̂RP,t(θi) sin θi

]
. (12)

B. Global Coordinate Transformation

This subsection aligns the estimated UE-centric BS position

with the known global BS location to obtain the UE position

and to transform all estimates into the global coordinate

system. Since both pBS and p̂UE
BS,t represent the same physical

BS expressed in different coordinate frames, their alignment

determines the UE position. Given the UE heading Rt ∈
R

2×2, the UE position in the global frame is obtained by

p̂UE,t = pBS −Rtp̂
UE
BS,t. (13)

The same rigid transform is applied to the UE-centric RP

estimates. The corresponding global RP position is given by

p̂RP,n,t = Rtp̂
UE
RP,n,t + p̂UE,t. (14)

By applying this transform jointly to the UE-centric BS and

RP estimates, the absolute BS and RP positions are obtained

in the global coordinate system.

TABLE I: Simulation Parameters

Parameter Value

Input dimension 400× 4
Hidden dimension 256

Attention heads 8

Encoder layers 4

Decoder layers 4

Feedforward dimension 2048

Output activation Sigmoid

Optimizer AdamW

Learning rate 5× 10−4

Batch size 128

Epochs 200

Loss function MSE + empty penalty

C. Radio Point Cloud Mapping

After transforming all estimated BS and RP positions into

the global coordinate system, the environment can be recon-

structed by aggregating the global RP estimates across time.

Let P̂t = {p̂RP,n,t | n ∈ Nt} denote the set of RP positions

detected at time t, where Nt is the index set of valid RP

paths. As the UE moves along its trajectory, each timestep

contributes a new set of RP points whose union forms the

radio point cloud map

M̂ =

T⋃

t=1

P̂t. (15)

Because each RP corresponds to a surface interaction point

between the transmitted signal and the environment, the ac-

cumulated point cloud implicitly captures the geometry of

surrounding structures such as walls and scatterers.

IV. CASE STUDIES

A simplified 2D urban-like scenario is considered. The

environment consists of one BS and two buildings that serve

as dominant reflectors. The BS is located at pBS = [0m −
100m]⊤. Building 1 is modeled as a vertical line segment

around x = −45m and Building 2 around x = 40m. RPs

are placed along these buildings at positions corresponding to

10° angular intervals from the UE perspective. A single UE

moves along a straight trajectory on the y-axis, beginning at

[0m − 50m]⊤ and ending at [0m − 10m]⊤, and a total of

40 UE positions are sampled uniformly along this path.

The carrier frequency, sample rate, and bandwidth are set

to 28GHz, 245.76MHz, and 100MHz, respectively. The

simulation parameters are shown in Table I. The network is

trained end-to-end using a combined loss function that consists

of regression losses and empty penalties:

Ltotal = LBS + LRP + λ(LBS
empty + LRP

empty) (16)
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Fig. 2: UE position estimation RMSE and RP mapping Cham-

fer distance.

where the regression losses for BS and RP range estimates are

defined as

LBS =
1

|ΘBS|

T∑

t=1

∑

θi∈ΘBS
t

|r̂BS,t(θi)− rBS,t(θi)|
2,

LRP =
1

|ΘRP|

T∑

t=1

∑

θi∈ΘRP
t

|r̂RP,t(θi)− rRP,t(θi)|
2

(17)

where rBS,t(θi) and rRP,t(θi) denote the ground truth ranges,

and ΘBS
t and ΘRP

t represent the sets of valid directions for BS

and RP at time t, respectively. The empty penalties suppress

predictions in invalid directions:

LBS
empty =

1

|Θ̄BS|

T∑

t=1

∑

θi∈Θ̄BS
t

r̂BS,t(θi)
2,

LRP
empty =

1

|Θ̄RP|

T∑

t=1

∑

θi∈Θ̄RP
t

r̂RP,t(θi)
2

(18)

where Θ̄BS
t and Θ̄RP

t denote the sets of empty directions at

time t. The empty penalty weight is set to λ = 0.5.

Positioning and mapping performance are evaluated using

root mean square error (RMSE) and Chamfer distance [14],

respectively. The Chamfer distance quantifies the geometric

dissimilarity between two point sets by measuring the average

nearest-neighbor distance in both directions. For the ground

truth RP map M = {pRP,n,t | n ∈ Nt, t = 1, . . . , T} and the

estimated RP map M̂, the Chamfer distance is defined as

dCD(M,M̂) =
1

|M|

∑

p∈M

min
p̂∈M̂

�p− p̂�2

+
1

|M̂|

∑

p̂∈M̂

min
p∈M

�p̂− p�2

(19)

where p and p̂ denote RP positions in the ground truth

and estimated maps, respectively. The first term measures the
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Fig. 3: 2D visualization of UE positioning and radio point

cloud mapping.

average distance from ground truth points to their nearest

estimated points, and the second term measures the reverse

direction. This bidirectional formulation ensures robustness to

both missing detections and false alarms in the estimated point

cloud.

The positioning and mapping results in Fig. 2 show how

the errors vary over 40 time steps. The UE localization RMSE

stays within 0.1m–0.6m, indicating centimeter-level tracking

accuracy. The RP mapping error, measured by the Chamfer

distance, clearly converges from about 1.3m to 0.25m, val-

idating the effectiveness of point cloud aggregation whereby

multiple observations from different viewpoints progressively

refine the radio map. This combination of stable localization

and steadily improving mapping accuracy demonstrates that

the proposed method can simultaneously achieve reliable po-

sitioning and progressive environment reconstruction.

Fig. 3 visualizes the complete positioning and mapping

result, including ground truth buildings, the estimated UE

trajectory, and the estimated RPs. The estimated trajectory

closely aligns with the ground truth, with an average error

of 0.4m, while the estimated RPs form two distinct vertical

clusters that accurately represent the geometry of Buildings A

and B. Although individual RP estimates exhibit some scatter

due to measurement noise and the 10◦ angular quantization,

the aggregated point cloud successfully captures the building

structure, achieving a final Chamfer distance of 0.25m. These

results highlight the flexibility of the proposed point cloud

mapping, which captures building geometry directly from

CIRs rather than through sparse landmark sets or simplified

geometric models.
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V. CONCLUSIONS

This paper presents a point cloud-based radio positioning

and mapping algorithm that directly estimates RP clouds

from multi-antenna CIR measurements. By combining a

Transformer-based sensing network with coordinate alignment

using known BS positions, the method jointly performs UE

localization and global point cloud map construction. Sim-

ulations in a simplified urban scenario demonstrate a UE

localization RMSE of about 0.04m and mapping performance

converging to 0.025m Chamfer distance, validating that envi-

ronmental geometry can be reconstructed directly from CIRs

without predefined landmark types or explicit wall and corner

models. Future work will extend the framework to multi-BS

scenarios and more complex urban environments.
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