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Abstract—This paper proposes a semantic localization
method for orthogonal frequency division multiplexing (OFDM)
transceiver systems with analog beamforming that simultane-
ously estimates user equipment (UE) position and classifies UE
type. The proposed approach employs beam sweeping at both
transmitter and receiver to extract angle and range informa-
tion from reflected signal paths. The received signals undergo
appropriate preprocessing before being fed into a classification
network to distinguish between human and robotic UE. The
classification capability stems from aperture-dependent scatter-
ing characteristics inherent to different UE types, which man-
ifest as distinguishable features in the received signal domain.
Simulation results demonstrate successful localization and type
classification, enabling radio-based environmental awareness for
location-based services and digital twin applications.

Index Terms—Semantic sensing, localization, OFDM, UE clas-
sification, beamforming.

I. INTRODUCTION

Semantic information, encompassing both positional data
and object type attributes, is becoming critical for beyond-
5G and 6G wireless networks [1]. While conventional lo-
calization focuses solely on position estimation, integrating
semantic awareness unlocks new possibilities for location-
based services and digital twin construction [2]. Radio-based
semantic localization, which simultaneously determines user
equipment (UE) position and classifies UE type through
wireless signals, presents a transformative opportunity for
comprehensive environmental awareness in next-generation
networks [3].

Existing localization methods for orthogonal frequency
division multiplexing (OFDM) systems primarily extract
angle-of-arrival (AOA) and time-of-arrival (TOA) information
through channel estimation [4] or beam-based approaches [5]-
[7]. However, these methods address only position estimation
without distinguishing UE types. Recent advances demon-
strate that different object types exhibit distinct electromag-
netic scattering characteristics [8], yet their integration se-
mantics remain unexplored. Additionally, radar-based object
tracking and classification research exists [9], but it uses
dedicated radar signals rather than communication waveforms,
precluding simultaneous data transmission.
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This paper proposes a semantic localization method that si-
multaneously estimates UE position and classifies UE type by
exploiting aperture-dependent scattering characteristics. The
proposed method employs beam sweeping at transmitter and
receiver to obtain angle and range information from reflected
paths. Received signals are preprocessed and fed into a clas-
sification network to distinguish human and robotic UE based
on their distinguishable scattering patterns. Simulation param-
eters are configured to match practical mmWave transceiver
system specifications, ensuring direct testbed applicability.
Performance evaluation encompasses both position-related
parameter estimation accuracy across different UE types and
classification accuracy under various conditions. The main
contributions are:

« the semantic localization method for analog beamform-
ing OFDM transceiver testbeds, enabling joint position
estimation and UE type classification.

o the classification framework exploiting aperture-
dependent scattering characteristics to distinguish UE
types from received signal features.

« validation demonstrating localization accuracy and clas-
sification performance for radio-based environmental
awareness.

Notations: For a matrix A, its Hermitian transpose and
transpose are respectively denoted as AY and AT. The
notation CA (s, 3) denotes the circularly symmetric complex
Gaussian distribution of a random vector with mean vector
and covariance matrix 3. I denotes the identity matrix. The
symbol 2 represents the imaginary unit of complex numbers,
(2 = +/—1). ||| returns Euclidean norm.

II. SYSTEM MODEL

Consider an OFDM transceiver system, where transmitter
(Tx) and receiver (Rx) are communicating each with N
antennas. Each user is equipped with a single antenna and
located in a 2-dimensional (2D) space with origin given by
the base station (BS) extremely large aperture array (ELAA)
and exhibits distinct reflection characteristics depending on
their unknown user type. Let p; € R?*! denotes the position
of the [-th UE, and p;; € R**! denotes the position of the
i-th scattering point associated with the [-th UE. For semantic
UE localization, the Tx and Rx perform beam sweeping and
the Rx receives the beam sweeping results as in Fig. 1.
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Fig. 1. Considered semantic UE localization scenario.

The beam sweeping result for the m-th subcarrier Z,, €
CN*N s expressed as

Z, =W'H,Fs, +n,, (D)

where W € CN*M js the combining matrix with Np
representing the number of beams, H,, € CV*V is the
channel between Tx and Rx, F € CNV*™s is the precoding
matrix, s,, is the tranmited signal for sensing satisfying
E(|s%;]) = 1/M, and n,, is the additive white Gaussian
noise. The combining matrix W and precoding matrix F' are
constructed from uniform linear array (ULA) steering vectors,
expressed as

W =F =[a(¢1) a(¢2) ... a(¢n) ] 2

where a(¢) — [1, ed™ cos(q&)7 . ej‘n'(N—l)cos(qb)]T c CNx1
denotes the steering vector for angle ¢. The angles {(Z)i}fvjl
are uniformly distributed over [30°, 150°].

The channel matrix H,,, models the multi-path propaga-
tion from UE reflections under line-of-sight (LOS) blockage
conditions, given by

L I
Hy, =Y > A/ Bim it mreh ) m 3)

=1 i=1

where I; is the number of scattering points of the UE [,
Bi,l,m € R is the radar cross-section (RCS) distributed as
a Chi-squared random variable with four degrees of free-
dom [10], h; ;. rx and h;; ., 7 denote the channel from
Tx/Rx to UE, respectively. Considering non-uniform spher-
ical wave model [11], the element of the channel vectors
Ri 1 mon,1x and h; g mon rx are expressed as

1

2

hi,l,m,n,Tx = \/ﬁ exp(_liup;ﬂx - Pi,lH) 4)
1 2

hz‘,l,m,n,Rx = \/ﬁ exp(—zi”p’mm - pz‘,l“) (5)

where p;, 1, and p;, g, are the n-th antenna position of Tx
and Rx for n € {1,2,..., N} respectively, a; i mn1x and
Q.1,mn.rx are the path loss, and A, is the wavelength of
the m-th subcarrier. The path 10ss & 1y n,Tx aDd Q% 1m0 Rx
follows [12]:

4 2
i1, Tx = ()\in;,TX - pi,l”) ©6)
2

4
Q4 lm,nRx = (/\iHP;z,Rx - Pi,l”) Q)
m

According to (6) and (7), signal paths characterized by more
than one bounce are neglected due to severe path loss.

For the noise 7, ,,, ~ CN (Onx1,02Inxn), its variance
for each subcarrier is 072] = kgTA¢F, where kg = 1.38 x
10723 (J/K) is the Boltzmann constant, T is the Kelvin
temperature, A¢ is the subcarrier spacing, and F' is the noise

figure of the BS [13].

III. SEMANTIC UE LOCALIZATION

The proposed semantic UE localization framework consists
of two stages: position estimation through beam sweeping
analysis and UE type classification via neural network infer-
ence. Position estimation extracts spatial parameters including
AOD, AOA, and bi-static range from the beam-swept re-
ceived signals. The classification stage then exploits aperture-
dependent scattering characteristics manifested in these sig-
nals to distinguish UE types. This section details both stages.

A. UE Localization

The beam sweeping result Z,, € CV*Ns for the m-th
subcarrier represents received power across all Tx-Rx beam
pair combinations, where the first dimension corresponds to
the Tx beam index and the second to the Rx beam index. By
stacking Z,,, across all M subcarriers, a three-dimensional
array Z € CNo>*NexM g constructed. Applying the inverse
fast Fourier transform (IFFT) along the subcarrier dimension
transforms the frequency-domain information into the bi-static
range domain as

Z - IFFTsubcarrier(Z) € (CNB X Nox M (8)

where the third dimension now represents bi-static range bins.
To estimate the AOD from the transmitter, the received
power is averaged over all Rx beam indices, yielding a matrix

P, € RNmx M

Np
1 ~
Pry(broo k) = 5 D 1A(br b, ) ©)

brx=1

where bry denotes the Tx beam index and k denotes the range
bin index. Fig. 2(a) illustrates the structure of P, which
represents the average power for each Tx beam across range
bins. The estimated AOD ¢ and bi-static range 7 are obtained
by identifying the peak location as

(ETX, lAc) = argmax Py (bry, k) (10)
bre,k
o=¢5 , =T} (11)
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Fig. 2. Cosine similarity heatmaps for two types of extended target users.

where ¢I3Tx is the steering angle corresponding to the bry-th
Tx beam and r;, is the range corresponding to the k-th range
bin.

Similarly, averaging over Tx beam indices yields Pry €
RN XM for AOA estimation:

Np
1 -
PRX(bRXak) = FB Z |Z(bTX7bRX7k)|2' (12)
brx=1
The estimated AOA 6 is determined by:
bry = argmax Pry(bpy, k), & = ¢y, - (13)

bRX

These estimated parameters (,0,7) characterize the UE
position relative to the transceiver system.

B. UE Classification

Different UE types exhibit distinct scattering characteristics
due to their varying physical dimensions. As illustrated in
Fig. 2, the power spectrum for a robot with 0.1 m aperture
width shows sharper and more localized features, while a
pedestrian with 0.6 m aperture width produces broader spec-
tral spreading in both Tx and Rx beam sweeping results.
This difference in spectral spreading arises from the aperture-
dependent scattering properties, where larger physical dimen-
sions result in more distributed angular reflections.

To exploit these distinguishable features for classification,
the proposed method constructs an input feature vector by
concatenating the Tx and Rx beam sweeping power pro-
files. Specifically, the power matrices P, € RM*M and
Py € RVaXM gptained from (9) and (12) are flattened and
concatenated to form the input feature vector x € R2NsxM
This vector encodes the spatial-spectral characteristics across
both transmit and receive angular domains.

Algorithm 1: Semantic UE localization

Input : Beam sweeping result

Output: Estimated AOD, estimated AOA, estimated
TOA, and classification result

Beam sweeping;

Measure beam sweeping results as (1);

Perform IFFT as (8);

Compute power matrices as (9) and (12);

Estimate ((ﬁ,é,f') following (11) and (13);

Classify UE type as (14);

QA U R W N =

A neural network classifier f,(-) with learnable parameters
w maps the input features to UE type probabilities:

5’ = fw(x)

where y € [0,1]¢ represents the predicted probability distri-
bution over C' UE classes (human and robot in this work).
The network is trained using the cross-entropy loss function

D C
1 c ~(C
Llw) = —55 D> vy log(dy)
d 1

(14)

15)

=1 c=

where D is the number of training samples, yflc) is the
ground truth label, and g)éc) is the predicted probability
for class c of the n-th sample. The predicted UE type is

determined by ¢ = argmax{(®). By training on diverse

scenarios with varying UE positions and types, the classifier
learns to distinguish aperture-dependent scattering signatures,
enabling semantic localization that jointly provides position
estimates and UE type classification. Algorithm 1 summarizes
the overall procedure for semantic UE localization.

IV. CASE STUDIES

This section validates the proposed semantic UE localiza-
tion method through comprehensive simulations configured
with a practical mmWave transceiver system specification.
Table I summarizes the key simulation parameters and the
classification network architecture.

A. Localization Performance

Fig. 3 illustrates the angle estimation root-mean-square er-
ror (RMSE) as a function of beam spacing angle for both robot
and pedestrian UE types. Since AOA and AOD estimation
exhibit similar RMSE values, their average is presented for
clarity. The results demonstrate that narrower beam spacing
yields significantly improved angle estimation accuracy, as
finer angular resolution enables more precise identification of
peak locations in the beam sweeping power matrix. Notably,
pedestrians with 0.6 m aperture width consistently exhibit
higher RMSE compared to robots with 0.1 m aperture width.
This performance degradation stems from the broader spec-
tral spreading caused by larger physical dimensions, which
reduces the sharpness of the spatial power profile and conse-
quently diminishes localization precision.
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TABLE I
SIMULATION PARAMETERS

Parameter | Description Value
N Number of antenna 8
- Carrier frequency 28 GHz
M Number of subcarriers 800, 1600, ..., 4000
Pr Transmit power 23dBm
L Number of users 2
T Kelvin temperature 290
Ag Subcarrier spacing 480 kHz
F Noise figure 7dBm
D Number of training samples 2000
- Learning rate 0.001
- Training epoch 100
Layer Parameters Activation
Input Shape: (2Ng, M, 1) -
Flatten - -
Dense Units: 1000 ReLU
Dense Units: 1000 ReLU
Dense Units: 2 Softmax
8
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Fig. 3. AOA, AOD estimation RMSE over beam spacing.

Fig. 4 presents the bi-static range estimation RMSE versus
bandwidth, with the beam spacing angle held constant. The
number of subcarriers varies from 800 to 4000, corresponding
to proportionally increasing total bandwidth. As expected,
wider bandwidth provides enhanced range resolution through
finer delay discrimination capability in the IFFT-transformed
range domain. Similar to angle estimation, pedestrians demon-
strate higher range estimation RMSE than robots across all
bandwidth configurations, reinforcing the observation that
larger aperture dimensions degrade localization accuracy for
both angular and range parameters.

B. Classification Performance

Fig. 5 depicts the UE type classification accuracy as a func-
tion of training epochs. The classifier converges to approxi-
mately 80 % accuracy for both pedestrian and robot types,
demonstrating effective discrimination of aperture-dependent

e
o

© Robot
¢ Pedestrian ||

0.25’

0.2

0.15

0.1

0.05

Bi-static range estimation RMSE [m)]

1.152 1.536 1.92

Bandwidth [GHz|

0 ‘
0.384 0.768

Fig. 4. Bi-static range estimation RMSE over bandwidth.
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Fig. 5. Classification accuracy for extended target users.

scattering characteristics from single-snapshot beam sweeping
measurements. While 80% accuracy represents promising
performance given the challenging single-observation sce-
nario, the result reveals substantial potential for improvement
through temporal fusion of multiple snapshots. Aggregating
observations across multiple time instances would enable
more robust feature extraction and statistical averaging, likely
driving classification accuracy toward higher levels.

The combined results validate that the proposed method
effectively performs joint localization and classification across
different UE types. The framework successfully extracts
position-related parameters (AOD, AOA, bi-static range)
while simultaneously distinguishing UE types through learned
scattering signatures, demonstrating feasibility for radio-based
semantic environmental awareness.

V. CONCLUSION

This paper proposed a semantic UE localization framework
for OFDM transceiver systems with analog beamforming that
simultaneously estimates position and classifies UE type by
exploiting aperture-dependent scattering characteristics. The
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method employs beam sweeping at the transmitter and re-
ceiver to extract AOD, AOA, and bi-static range information,
with a neural network classifier distinguishing UE types based
on their distinct scattering patterns. Simulations configured
with practical mmWave transceiver system specifications val-
idated the framework, demonstrating that narrower beam spac-
ing and wider bandwidth improve localization accuracy, while
larger physical apertures produce broader spectral spread-
ing that degrades localization precision but enables effective
classification at approximately 80 % accuracy from single-
snapshot measurements. This performance reveals substantial
potential for improvement through temporal fusion of multiple
observations, enabling radio-based semantic environmental
awareness essential for location-based services and digital
twin construction in next-generation wireless networks.
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