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Abstract—Variational quantum algorithms (VQAs) are among
the most promising near-term approaches for quantum machine
learning. For architectures that encode classical data and trainable
angles via unitary evolutions generated by Hermitian operators,
the expectation values of parameterised quantum circuits (PQCs)
can be written as finite Fourier series in input variables. In this
spectral view, the set of candidate frequencies is fixed by the
eigenvalue structure of the data-encoding Hamiltonians, while
the extent to which this spectrum is effectively usable depends
on how flexibly the associated Fourier coefficients can be tuned
through both the encoding and trainable circuit blocks; we review
how these design choices determine spectral richness, degeneracy,
coefficient correlations, and their trade-offs with trainability via
a Fourier-based account of barren plateaus. We further discuss
generalisation and function-approximation performance, including
conditions under which overparameterised PQCs can interpolate
noisy data yet maintain low test error and when angle-encoding
with data re-uploading can realise universal trigonometric approx-
imators for periodic functions. We conclude by highlighting open
problems in architecture design, scalable coefficient control, and
need for analysis on generalisation capabilities.

Index Terms—variational quantum circuit, quantum machine
learning, parameterised quantum circuit, barren plateau, Fourier-
series representation.

I. INTRODUCTION

Quantum devices are approaching regimes in which, for cer-
tain tasks, they may outperform classical supercomputers [1].
Nevertheless, near-term hardware is expected to remain in
the noisy intermediate-scale quantum (NISQ) regime: qubit
counts are modest, coherence times short, and gate errors
restrict feasible circuit depth [2]. Within these constraints,
variational quantum algorithms (VQAs) provide a pragmatic
approach. In a VQA, a parameterised quantum circuit (PQC)
is executed on quantum hardware multiple times to estimate
expectation values, while a classical optimiser updates the
circuit parameters to minimise a task-specific loss function.
The literature refers to such parameterised models variously
as variational circuits [3, 4], quantum neural networks [5,
6] or quantum circuit learning [7]. This hybrid division of
labour deploys quantum resources where they are effective
and keeps circuits shallow to mitigate limitations of NISQ
devices. Recent works highlight that supervised learning with
VQAs can exhibit resilience to noise [8] and has potential to
achieve quantum advantages [9, 10]. Accordingly, assessing
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the potential for quantum advantage in machine-learning tasks
within this paradigm has become an active research focus in
recent years [11-15].

Despite rapid progress, a comprehensive understanding of the
capabilities and limitations of VQAs is still being developed.
A growing body of work analyses key properties of a PQC
architecture and their interdependencies to characterise perfor-
mance trade-offs and to guide principled, application-specific
design. The most prominently discussed properties are ex-
pressivity, trainability, generalisation capability, and function-
approximation performance. A unifying lens for this interplay,
and the focus of this review, is the Fourier-series represen-
tation of PQC expectation values. For architectures in which
classical data and trainable angles are encoded through gates
of the form exp(−ixH) or exp(−iθH), these expectation
values can be expressed as finite trigonometric polynomials in
the input variables [16]. The set of frequencies characterises
the expressive range of a PQC architecture. The degree of
controllability over the Fourier coefficients, both individually
and in their correlations, determines how effectively that range
can be exploited during training. These connections make the
Fourier framework a natural choice for systematic assessment
of a PQC architecture.

The remainder of this review is structured as follows. Sec-
tion II derives the Fourier representation of PQC expectation
values and establishes notation. Sections III–V survey prior
work that applies the Fourier perspective to expressivity, train-
ability, and generalisation. Section VI outlines avenues for
future research.

II. PRELIMINARIES: EXPRESSING THE OUTPUT OF A
PARAMETERISED QUANTUM CIRCUIT AS A FOURIER SERIES

Schuld et al. [16] demonstrated that when classical inputs
are encoded into PQCs via time evolutions generated by one
or more Hamiltonians, the circuit’s output, an expectation
value, admits a finite Fourier series representation in those
input variables. In what follows, we adopt this framework to
derive this Fourier form and define the notations used for the
remainder of the review.

A. Basics of Parameterised Quantum Circuits

For a single real feature x ∈ R on n qubits, consider an
L-layer PQC that alternates a data-encoding unitary Sℓ(x) and
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a trainable block Wℓ(θℓ,ϕℓ). The PQC can be expressed as

U(x,θ,ϕ) = WL+1(θL+1,ϕL+1)

←−
L∏

ℓ=1

[
Sℓ(x)Wℓ(θℓ,ϕℓ)

]
,

(1)
where ←−

L∏
ℓ=1

Aℓ := AL · · ·A1, (2)

and θℓ, ϕℓ collect trainable parameters for layer ℓ.
Data encoding: Each encoding layer is characterised by a

Hermitian operator Hℓ = H†
ℓ :

Sℓ(x) = exp
(
− i xHℓ

)
, ℓ = 1, . . . , L, (3)

where Hℓ may be identical or differ across layers.
Trainable block: The trainable block on n qubits at layer

ℓ is

Wℓ(θℓ,ϕℓ) = Eℓ(ϕℓ)
n⊗

j=1

R(j)(θ
(j)
ℓ ), (4)

where each single-qubit unitary is a fixed-order Euler product

R(j)(θ
(j)
ℓ ) = Rx

(
θ
(j)
ℓ,x

)
Ry

(
θ
(j)
ℓ,y

)
Rz

(
θ
(j)
ℓ,z

)
. (5)

Rotation gates about an axis a are expressed in terms of Pauli
matrices σa as

Ra(θ) = exp
[
− i

θ

2
σa

]
, a ∈ {x, y, z}. (6)

In Eq. (4), Eℓ is a product of entanglers such as controlled-
rotation gates about each of the three axes with trainable angular
parameters ϕℓ and controlled-NOT gates.

If the initial state is prepared as |0⟩ and the circuit terminates
with an arbitrary observable M , the expectation value of the
PQC is

f(x,θ,ϕ) = ⟨0| U†(x,θ,ϕ)M U(x,θ,ϕ) |0⟩ . (7)

B. Derivation of the Expectation Value as a Fourier Series

In this subsection, to improve readability we suppress the
explicit dependence on the trainable parameters θ and ϕ.

For clarity, we first treat the case in which all data-encoding
layers use a common Hamiltonian H , i.e. Hℓ = H and
Sℓ(x) = S(x) := exp(−ixH) for all ℓ. Architectures with
layer-dependent encoding Hamiltonians can be handled by
diagonalising each Hℓ separately; this modifies only the book-
keeping of the eigenvalues and leads to the same Fourier
form [16].

Write the spectral decomposition H = V †ΣV with Σ =
diag(λ1, . . . , λd), where d = 2n is the Hilbert-space dimension.
Then S(x) = V †e−ixΣV . Insert this into Eq. (1) and absorb
the basis change V, V † into the trainable blocks:

W̃ (1) := V W (1), (8)

W̃ (ℓ) := V W (ℓ)V †, 2 ≤ ℓ ≤ L, (9)

W̃ (L+1) := W (L+1)V †. (10)

The PQC can be rewritten as

U(x) = W̃ (L+1) e−ixΣ W̃ (L) · · · e−ixΣ W̃ (1). (11)

Thus the x–dependence is fully carried by phases e−ixλm . This
change of basis does not restrict generality within the identical-
encoder setting and the argument extends straightforwardly to
layer-dependent encoders after diagonalising each Hℓ.

Expanding the prepared state U(x) |0⟩ componentwise and
collecting the x-dependent phases gives for the ith component

[
U(x) |0⟩

]
i
=

d∑
j1,...,jL=1

exp
(
− ix

L∑
ℓ=1

λjℓ

)
W̃

(L+1)
i jL

L∏
ℓ=2

W̃
(ℓ)
jℓ jℓ−1

W̃
(1)
j1 1.

(12)

Introduce the multi-index j = (j1, . . . , jL) ∈ [d]L where

[d]L := {(j1, . . . , jL) : jℓ ∈ {1, . . . , d} ∀ℓ}.

Define the eigenvalue sum

Λj :=
L∑

ℓ=1

λjℓ .

Using (7) and expanding f(x) in this basis yields

f(x) =
∑

k,j∈[d]L

ak,j e
i(Λk−Λj)x, (13)

with pair-weights ak,j depending only on the trainable unitaries
and the measurement. More explicitly,

ak,j =
∑
i,i′

(
αk,i

)∗
Mii′ βj,i′ , (14)

where

αk,i :=
(
W̃ (L+1)

)
i kL

L∏
ℓ=2

(
W̃ (ℓ)

)
kℓ kℓ−1

(
W̃ (1)

)
k1 1

, (15)

βj,i′ :=
(
W̃ (L+1)

)
i′ jL

L∏
ℓ=2

(
W̃ (ℓ)

)
jℓ−1 jℓ

(
W̃ (1)

)
j1 1

. (16)

Equations (13)–(16) show that the candidate spectrum of ac-
cessible frequencies is fixed entirely by the encoding scheme
employed: it is generated by the eigenvalues of the data-
encoding Hamiltonians Hℓ across all layers ℓ. In contrast, the
numerical values of the pair-weights, and hence of the Fourier
coefficients cω , are determined by the trainable blocks and the
measurement observable M . More specifically, by collecting
like exponents in (13), the frequency set is

Ω := {Λk − Λj : j,k ∈ [d]L} ⊂ R. (17)

The Fourier coefficient at ω ∈ Ω is the sum of all pair-weights
that induce that frequency:

cω =
∑

j,k∈[d]L

Λk−Λj=ω

ak,j. (18)
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With these definitions, the expectation value of the PQC can
be expressed as a finite Fourier series:

f(x) =
∑
ω∈Ω

cω eiωx. (19)

Since f is real, c−ω = c∗ω and 0 ∈ Ω; the spectrum is
symmetric.

This Fourier-series representation of the expectation value
extends straightforwardly to multivariate functions in which
several features are encoded via Hamiltonian evolutions; see
Appendix A of the original paper by Schuld et al. [16] for
details.

III. EXPRESSIVITY

Expressivity of a PQC through the Fourier lens is governed
by two factors: (i) the set of distinct accessible frequencies Ω
and (ii) the ability to independently steer the corresponding
Fourier coefficients {cω}ω∈Ω. In regimes where the spectrum
is sufficiently rich and the coefficients can be controlled with
enough flexibility, architectures of this type can act as universal
approximators for continuous functions on compact domains
under standard assumptions on periodicity and resource scal-
ing. However, near-term hardware constraints make resources
scarce, underscoring the importance of analysing the expressiv-
ity of a given PQC.

A. Set of Distinct Accessible Frequencies

The set of functions a PQC can represent as a function of
the input variables and trainable parameters is set by Ω. As
seen from Eq. (19), an expectation value can be expressed as
a finite trigonometric polynomial; hence the number of unique
frequencies |Ω| fixes the number of trigonometric basis func-
tions accessible by the model and determines the theoretical
limit of expressivity in this view. From Eq. (17), each ω ∈ Ω
is given by a difference between two eigenvalue sums across
encoding layers; degeneracies in these sums reduce the number
of distinct frequencies and therefore shrink |Ω|.

Concrete constructions that minimise these degeneracies have
been proposed in a variety of settings. Shin et al. [17] intro-
duced exponential data-encoding schemes based on scaled non-
entangling Pauli generators that realise nearly non-degenerate
spectra whose size grows exponentially with the number of
encoding gates. Similarly, Kordzanganeh et al. [18] analysed
sequential and parallel architectures whose |Ω| grow expo-
nentially. For a given value of N as a product between the
number of qubits Q and data-encoding blocks L, the sequential
architecture has N qubits and a single data-encoding block
applied on each qubit, whereas the parallel architecture has N
data-encoding blocks applied sequentially on a single qubit.
Their experimental results showed that the parallel architec-
ture approximates a top-hat function more accurately than the
sequential one. Holzer and Turkalj [19] summarised existing
data-encoding schemes that help reduce frequency degeneracy.

Beyond increasing the cardinality |Ω|, a quantum model
can learn which frequencies to emphasise within Ω. Jaderberg
et al. [20] showed that introducing a trainable scalar for

each data-encoding Hamiltonian enables rescaling of individual
Hamiltonian’s eigenvalues independently. By fine-tuning these
scalers during training, the model can realise non-uniformly
spaced frequency sets and adapt spectral richness to the task at
hand. This overcomes a limitation of PQCs without trainable
scalars in their data-encoding blocks, where Ω is constrained
to integer multiples of a base frequency. They demonstrated
the practical benefits of this frequency-pinching approach on
a real-world task by solving the Navier–Stokes equations and
reporting improved accuracy.

B. Ability to Control Fourier Coefficients

The second factor is the ability to control each Fourier
coefficient. This determines the effective expressivity. To fully
exploit the frequencies accessible to the quantum model, the
model must be able to control the amplitudes of each Fourier
basis function. The coefficients select a relevant subspace within
the full space spanned by the Fourier basis accessible to the
PQC.

Independent controllability over individual Fourier coeffi-
cients for a PQC whose Fourier space grows exponentially
would require resources to grow exponentially. This is not
feasible in practice. These resources include the classical
memory required to store the parameters and the classical
optimiser that must compute gradients of the loss with respect
to each parameter. With exponential growth of these resources,
the training process quickly becomes intractable because the
per-iteration training cost as well as the required memory space
increase linearly in |θ|. Moreover, NISQ hardware imposes
strict resource constraints. Finite coherence times and the accu-
mulation of gate errors with each operation cap the achievable
circuit depth [21]. Consequently, only a limited number of
qubits and gates, and thus trainable parameters, can be utilised
on current devices.

In practice, if one wants to train variational models efficiently
on classical hardware, it is natural to restrict the number of
tunable parameters to grow at most polynomially with system
size, i.e. |θ| = O(poly(N)). On the other hand, for exponential
data-encoding schemes one typically has |Ω| = O(exp(N)).
The discrepancy between these two scalings implies that, in
the asymptotic limit, there is no injective map from the set of
Fourier coefficients {cω}ω∈Ω to the parameter vector θ.

Hence the coefficients cω(θ) must be functions of a shared
pool of parameters in the trainable blocks, inducing correla-
tions among the coefficients of distinct Fourier terms. Strobl
et al. [22] quantified these correlations by sampling many
random parameter settings, evaluating the model on a Nyquist
grid, extracting the Fourier coefficients via a fast Fourier
transform (FFT), and forming the Pearson correlation matrix
across all coefficient pairs. The mean absolute correlation
over the spectrum defines the Fourier coefficient correlation
(FCC), a single-number summary of how strongly different
Fourier modes are tied together for a given PQC architecture.
Across several common PQC architectures, fingerprints differ
markedly, demonstrating circuit-dependent correlation struc-
ture. When fitting random 1D and 2D Fourier series whose
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frequencies match the model’s spectrum, FCC correlates almost
linearly with mean-squared error (MSE) between the target
and approximated functions: lower FCC corresponds to better
approximation of the function by the PQC. In contrast, no
clear correlation was observed between theoretical limit of
expressivity measured by |Ω| and FCC.

Another useful metric to analyse coefficient controllability is
the variance of the coefficients. For a fixed spectrum Ω and ob-
servable O, the variance Varθ[cω(θ)] over random PQC param-
eters quantifies how much a single coefficient can be changed
by tuning θ; small variance indicates poor coefficient-level
controllability at that frequency. Schuld et al. [16] observed
that with a fixed data-encoding Hamiltonian across the circuit,
Varθ[cω(θ)] tends to decrease with increasing frequency. This is
because the frequency of a mode is produced by differences of
eigenvalue sums Λk−Λj, where distinct paths are characterised
by j and k. The number of paths that realise a given ω typically
shrinks toward the spectral edges. As a result, the number of
pair-weights ak,j that contribute to a single Fourier coefficient
via Eq. (18) decreases as the frequency increases.

This logic leads to an important observation: controllability
over Fourier coefficients depends on the data-encoding blocks
as well as on the trainable blocks. The trainable parameters are
shared across modes, but a smaller number of distinct paths to
generate a given ω means fewer distinct parameter pathways
feed into the coefficient of that particular ω.

Mhiri et al. [23] formalised this both mathematically and
empirically. They defined the frequency generator R(ω) as the
set of all possible paths generating the frequency ω and the
cardinality |R(ω)| as the frequency redundancy.

Under the common 2-design assumption for the trainable
blocks, they show that

Varθ[cω(θ)] ∈ O
(
α |Re(ω)|

d

)
, (20)

where α :=
(
d∥O∥22 − Tr(O)2

)
/d2, d = 2n, and |Re(ω)| :=

|R(ω)|/d2 is the normalised redundancy. Thus, on average
over random parameters, modes with larger redundancy have
larger accessible variance, whereas low-redundancy modes
have strongly constrained controllability over their coefficients;
moreover, because d = 2n, all variances decay exponentially
in n.

Relaxing to ε-approximate 2-designs, Mhiri et al. also proved
upper bounds of the form

Varθ[cω(θ)] ∈ O
(
Qε(|Re(ω)|)

)
, (21)

where Qε is at most quadratic in |Re(ω)|. Hence, for any
fixed ε, the same inductive bias remains: lower |Re(ω)| im-
plies tighter variance constraints, and for many encodings a
broad subset of modes is likely to exhibit exponentially small
variance, which they termed vanishing coefficients.

They further distinguished coefficient-level concentra-
tion from model-level concentration, giving regimes where
Varθ[f(x, θ)] need not vanish exponentially even though many
cω(θ) do and vice versa. This clarifies how redundancy-driven
constraints shape effective expressivity.

Lastly, the authors introduced the idea of a global ℓ2 budget
on coefficients. Independently of parameterisation and encoding
schemes employed, if the data-encoding Hamiltonians are fixed,
one has the Fourier norm bounds

|f(x, θ)|2 ≤ ∥O∥2∞, (22)
∑
ω∈Ω

|cω(θ)|2 ≤ ∥O∥2∞, (23)

where ∥O∥∞ is the largest singular value (or absolute eigen-
value) of the observable O. The square of this quantity acts
as a global amplitude budget shared across all Fourier modes.
Combined with the redundancy-controlled variances, this im-
plies competition between modes: allocating significant weight
to some coefficients necessarily limits what remains available
to others. This budget constraint is orthogonal to spectrum size
and persists for any L and any choice of trainable unitaries.

In summary, there are structural trade-offs between the two
factors that affect the expressivity of a PQC: the spectrum of
accessible frequencies and the controllability of coefficients.
Encoding schemes that maximise |Ω| by removing degeneracies
improve basis richness but simultaneously push most |R(ω)|
to O(1), amplifying vanishing-coefficient effects unless the
trainable layers deviate substantially from 2-designs. Encoding
schemes with more degeneracy have smaller |Ω| but can yield
higher redundancy, which helps maintain variance in some
coefficients.

IV. TRAINABILITY

Trainability refers to how the statistics of the loss gradient,
typically Varθ[∂θjC], scale with the number of qubits n and
with circuit depth. McClean et al. [6] showed that, for a
broad class of randomly initialised parameterised circuits whose
parameter blocks approximate a unitary 2-design, the variance
of gradients of global cost functions decays exponentially in
n, i.e. Varθ[∂θjC] = O(2−n). This phenomenon is known
as a barren plateau (BP). Subsequent works identified several
mechanisms that can cause or aggravate BPs, including high
expressivity [24], extensive entanglement [25], properties of
the learning task [26], the choice of cost function [27], and
noise [28].

A. A Spectral Picture of Barren Plateaus

In Sec. II we expressed the PQC output as a Fourier series in
the input variables, f(x,θ,ϕ) =

∑
ω∈Ω cω(θ,ϕ) e

iωx. To un-
derstand trainability, it is convenient to examine its dependence
on a single parameter while holding all other quantities fixed.
Define

gi(ϑ) := f
(
x, θ1, . . . , θi−1, ϑ, θi+1, . . . , θL

)
, (24)

and expand gi into a Fourier series in ϑ,

gi(ϑ) =
∑
k∈Ω

c
(i)
k (ϑ) eikx, Pi :=

∑
k∈Ω

|c(i)k (ϑ)|2, (25)

where Pi is the total spectral power associated with the ith
parameter.
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Consider the ith trainable block Ui(θi) and the state
ρi−1(θ<i) entering that block. Following an analysis based
on second moments of the parameter ensemble, Okumura and
Ohzeki [29] bounded the deviation of Pi from its Haar-typical
value in terms of the block’s closeness to a unitary 2-design.
Specifically,

∣∣∣∣Pi −
1

2n + 1

∣∣∣∣ ≤ ϵ
(2)
Ui

(
ρi−1

)
, (26)

where the 2-design deficit is

ϵ
(2)
Ui

(ρ) :=
∥∥∥Φ(2)

Ui

(
ρ⊗2

)
− Φ

(2)
Haar

(
ρ⊗2

)∥∥∥
1
, (27)

with Φ
(2)
Ui

(X) denoting the ensemble-averaged channel

Φ
(2)
Ui

(X) := Eθi

[
U⊗2
i X(U†

i )
⊗2

]
, (28)

and Φ
(2)
Haar the corresponding Haar-twirl on two copies. Thus,

ϵ
(2)
Ui

≥ 0 and equals 0 iff the ensemble {Ui(θi)} forms an exact
unitary 2-design on the support of ρ. In the ideal 2-design limit
ϵ
(2)
Ui

→ 0, Eq. (26) yields
∑
k∈Z

|c(i)k |2 =
1

2n + 1
. (29)

Equation (29) shows that the total spectral power of gi is
exponentially suppressed in the number of qubits. Since the
set of accessible parameter frequencies typically grows with
depth, the average magnitude of nonconstant coefficients |c(i)k |
becomes exponentially small. As gradients are derivatives of
the Fourier series,

∂θif =
∑
k∈Z

ik c
(i)
k eikθi ,

this collapse of spectral power translates into exponentially
vanishing gradient statistics, giving a spectral view of barren
plateaus. In practice, this implies that resolving gradients to a
fixed relative precision requires a number of measurements that
grows exponentially in n when the trainable blocks approach a
2-design.

B. Problem-Specific Ansätze and Empirical Correlations

The spectral viewpoint unifies the trade-offs between expres-
sivity and trainability: as Ui(θi) approaches a 2-design, the
model explores larger swathes of state space but concentrates
spectral power near constants, making gradients small. Because
BPs depend on the joint choice of architecture, measurement,
cost function, and noise, there is no circuit family that is
uniformly optimal across all aspects of a PQC.

Empirically, studies comparing circuit templates report that
pushing expressivity too far can hurt downstream performance:
classification accuracy often saturates or even degrades at high
expressivity [30-32]. From the Fourier perspective, one inter-
pretation is that many learning targets occupy only a modest
spectral subset; architectures that drive spectra towards Haar-
like coverage simultaneously shrink |cω| for ω ̸= 0, hinder-
ing optimisation. This motivates problem-specific architecture

design that tailors the accessible spectra through both data
encoders and trainable layers to the task at hand rather than
maximising expressivity indiscriminately. Such tailored design
is regarded as one of the leading strategies against BPs [24,
33].

V. GENERALISATION CAPABILITY

From the Fourier viewpoint, models generalise best when
most of their spectral weight lies on task-relevant, typically
low frequencies that capture the coarse structure of the target
function, while avoiding over-emphasis on high frequencies
that encode small-scale fluctuations and noise. At the same
time, a controlled tail of higher frequencies can absorb label
noise without harming test error. This mirrors observations in
modern deep neural networks: highly overparameterised models
can still generalise, a phenomenon known as benign overfitting
(BO) [34].

Peters and Schuld [35] provided a characterisation of BO
for quantum models using the Fourier-series representation of
PQC expectation values. In their framework, the test error of an
interpolating model splits into (i) a variance term, where high-
frequency modes spike near training points to soak up noise,
and (ii) a bias term, governed by how much true low-frequency
signal bleeds into alias modes. Two practical messages follow:
(i) allowing many high-frequency alias modes can help by
concentrating noise locally while remaining smooth elsewhere;
(ii) if most spectral weight sits on the task’s low-frequency
band with a thin tail across aliases, and the circuit dimension
grows faster than the sample size, an interpolating PQC can
still achieve vanishing generalisation error.

The original Fourier-series view of PQCs already argued
that expected generalisation should guide PQC design along
with other circuit characteristics such as expressibility and
trainability [16]. Schuld et al. highlighted as a promising
research direction the development of modern generalisation
measures for PQCs that exploit their Fourier structure. To the
best of our knowledge, this task remains largely open and is a
promising direction for future work.

VI. CONCLUSION AND FUTURE DIRECTIONS

The Fourier–series viewpoint offers a compact account of
how PQC architectures behave across expressivity, trainability,
and generalisation. Spectral spread determines which functions
are representable, and coefficient controllability determines
whether that expressive range is usable. Spectral concentration,
whether induced by approximate 2-design behaviour or by
degeneracy, helps explain the emergence of barren plateaus.
Recent generalisation analyses likewise reduce to how a PQC
allocates effective spectral power and budget across frequencies,
with benign overfitting arising when low-frequency concen-
tration is paired with a sufficiently diffuse high-frequency
tail. Certain PQC architectures can act as universal function
approximators, subject to resource constraints inherited from
hardware limitations and architecture-specific scaling laws.

Interesting areas of research for future work include:

1058



1) Spectrum-aware encoder design: Methods for engineer-
ing Ω, e.g. tunable spectral scaling, controlled degener-
acy breaking, and systematic constructions that balance
the richness of the frequency spectrum with coefficient
accessibility.

2) Scalable coefficient control: A deeper understanding
of how parameter sharing, circuit depth, and entangling
structure influence variance and covariance of cω(θ), and
how to design architectures with favourable controllabil-
ity under NISQ constraints.

3) Generalisation beyond simple models: Fourier-based
analyses for deeper, multi-feature, and re-uploading ar-
chitectures, including PQC-specific generalisation metrics
that incorporate aliasing structure, degeneracy, and coef-
ficient constraints.

Overall, the Fourier framework condenses several seemingly
disparate behaviours of PQCs into a single analytic language.
As methods for spectral engineering and spectral diagnostics
mature, this perspective is well positioned to guide principled
PQC architecture selection and to clarify the practical capabil-
ities of near-term quantum machine learning.
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