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Abstract—Recent advances in real-time object detection have
been driven by YOLO models, which effectively balance accuracy
and speed. However, architectures optimized under a fixed search
configuration often show limited adaptability when applied to
diverse deployment targets. To address this limitation, this paper
introduces a target-adaptive YOLOv9 neural architecture search
(NAS) algorithm that applies NAS to the neck block of YOLOv9
through a once-for-all supernet. By defining multiple search
scopes with varying exploration ranges, the framework enables
the automatic generation of sub-networks tailored to different
target requirements without additional retraining. Experimental
results demonstrate that the small configuration achieves 73.4%
precision and 53.2% mAP50, confirming an effective balance
between accuracy and model efficiency. The proposed approach
facilitates scalable deployment across diverse target settings by
flexibly adjusting the architectural search range.

Index Terms—Neural Architecture Search, NAS, YOLO,
YOLOv9NAS, Target-Adaptive YOLOv9NAS

I. INTRODUCTION

Recent progress in computer vision has concentrated on
structural innovations that enhance object detection perfor-
mance [1], [2]. The “you only look once (YOLO)” family
has established itself as a prominent framework due to its
single-pass detection capabilities, demonstrating both speed and
accuracy in real-time applications [3], [4]. While deeper or
more complex architectures can improve accuracy, such designs
often lack adaptability across different deployment targets with
varying requirements [5]. Neural architecture search (NAS)
provides an effective solution by automatically discovering
optimal network architectures tailored to specific datasets and
objective functions, thereby reducing reliance on manual design
while improving efficiency and accuracy [6]–[9]. However,
existing NAS methods typically employ a single fixed search
configuration, which limits their ability to generate architec-
tures suited to multiple target scenarios. As a result, models
optimized under a single search setting may not generalize well
when applied to diverse target configurations.

This paper presents a target-adaptive YOLOv9NAS algo-
rithm that addresses this limitation by enabling architecture
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search under multiple exploration ranges. The algorithm ap-
plies NAS to the neck block of YOLOv9, which integrates
multi-scale feature representations and plays a central role
in determining detection accuracy [4]. The neck block pro-
vides manageable search-space complexity while preserving
high exploration efficiency, making it a suitable region for
architectural optimization. The proposed framework adopts a
once-for-all supernet that trains a unified network containing
all candidate sub-network paths, allowing the direct extraction
of sub-networks corresponding to different target scopes with-
out additional retraining [10]. Four search scopes (i.e., small,
medium, large, and full) are defined by varying the exploration
range within the supernet. Each module in the neck block
corresponds to a feature fusion stage, where combinations of
kernel sizes (i.e., 3×3, and 5×5) and activation functions (i.e.,
ReLU, LeakyReLU, and Mish) are explored. By adjusting the
search range for each target scope, the framework automatically
identifies architectures that reflect the characteristics of each
target setting [2], [6].

The contributions of this paper are twofold. First, NAS
is applied to the YOLOv9 neck block to jointly optimize
structural efficiency and detection performance within a well-
defined search space. Second, a target-adaptive NAS framework
is introduced, enabling the generation of multiple target-specific
architectures from a single once-for-all supernet by varying
the exploration ranges across search scopes. This approach
supports flexible deployment across diverse target scenarios
while maintaining stable detection performance.

II. RELATED WORK

A. Neural Architecture Search

NAS automates network design through three fundamen-
tal components: search space definition, search strategy, and
performance evaluation. Traditional NAS methods train each
candidate architecture independently, incurring prohibitive com-
putational and temporal costs [8], [9], [11]. One-shot NAS
addresses these inefficiencies by constructing a supernet that
encompasses all candidate architectures, allowing for the si-
multaneous evaluation of multiple sub-networks through weight
sharing within a unified training process. Differentiable archi-
tecture search (DARTS) employs continuous relaxation to the
search space and optimizes architecture parameters via gradi-
ent descent. However, this approach is hindered by excessive
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memory consumption and training instability. ProxylessNAS
employs binary path selection, where only one candidate path is
activated per training iteration, resulting in superior memory ef-
ficiency and training stability. This methodology has influenced
subsequent one-shot NAS frameworks that strike a balance
between search effectiveness and computational tractability.

B. YOLOv9 Algorithm

YOLO constitutes a state-of-the-art framework for real-time
object detection, performing simultaneous predictions of ob-
ject locations and class probabilities through a single forward
pass [3], [4]. The architecture consists of three components: the
backbone extracts feature maps from input images, the neck
integrates multi-scale features for enhanced contextual repre-
sentation, and the head generates final predictions for object
localization and classification. Successive YOLO versions have
demonstrated progressive improvements in detection accuracy
and computational efficiency. YOLOv9, the latest iteration,
extends the YOLOv8 architecture with enhanced performance
on high-resolution images and complex visual scenes [4]. NAS-
guided optimization in YOLOv9 enables improved real-time
inference while preserving the balance between detection ac-
curacy and computational speed. This architectural refinement
addresses the trade-off between model capacity and inference
efficiency across diverse deployment scenarios.

III. TARGET-ADAPTIVE YOLOV9NAS ALGORITHM

A. YOLOv9NAS

YOLOv9NAS applies NAS exclusively to the neck block
of YOLOv9, automating structural selection within the multi-
scale feature integration module to optimize the component
most critical to the speed-accuracy trade-off [4]. The neck is
selected as the search target due to its computational inten-
sity and capacity for substantial performance gains without
disrupting the overall detection pipeline. The search space
comprises two design dimensions: convolution kernel sizes
(i.e., 3 × 3, and 5 × 5) and activation functions (i.e., ReLU,
LeakyReLU, and Mish). This deliberate restriction prevents
exponential growth in training time and computational cost
while maintaining sufficient architectural diversity based on
validated reference structures. Model training adopts a one-
shot supernet framework where a single supernet containing all
candidate operations is trained once with shared weights across
all paths. Binary path activation ensures that only one path is
computed per iteration, thereby enhancing memory efficiency
and training stability. The architecture parameters represent the
selection probabilities for each path. The loss function incor-
porates hardware-aware regularization based on computational
cost, feature map resolution, and memory usage, prioritizing
constraint-aware optimization over unconstrained exploration.
In conclusion, a lightweight model is extracted by retaining
only the selected path from the trained supernet, while the
unchanged backbone and head enable direct reuse of existing
pipelines and pretrained weights. This modular design enables
straightforward adaptation to diverse deployment environments
through the replacement of neck subnetworks alone, preserving

preprocessing and postprocessing chains. YOLOv9NAS is char-
acterized by four key properties: localized neck optimization,
compact search space with kernel and activation variations, one-
shot training with binary path selection, and explicit hardware
cost normalization for resource-constrained deployment.

B. Target-Adaptive YOLOv9NAS Algorithm

Conventional NAS methods typically optimize architectures
under a single fixed search setting, which limits their adapt-
ability when applied to diverse deployment targets with vary-
ing structural requirements. The proposed target-adaptive NAS
framework addresses this limitation by utilizing a once-for-all
supernet that can generate multiple sub-networks from a single
trained model. Four target scopes (i.e., small, medium, large,
and full) are defined by assigning different exploration ranges
within the supernet. During training, one scope is sampled per
mini-batch, and the architecture probability distribution is nor-
malized over candidate paths belonging to the sampled scope’s
designated search range. After training, the path with the high-
est selection probability within each scope is fixed, resulting in
four distinct architectures tailored to their corresponding target
settings. This design enables scope-specific model generation
while maintaining architectural diversity across different target
configurations.

The training process consists of four sequential stages. Su-
pernet pre-training stabilizes shared parameters across multiple
epochs using the standard YOLOv9 loss. The subsequent target-
adaptive search phase samples one scope per mini-batch and
activates a single path corresponding to the exploration range
defined for that scope through binary gating during backprop-
agation. Path fixation and fine-tuning then identify the highest-
probability path for each scope and refine accuracy through
additional training. Finally, the export procedure produces
specialized weights for the small, medium, large, and full
configurations, all sharing the same backbone and head while
varying only the neck block. Although binary path selection
may risk premature convergence by concentrating probabilities
on a limited set of paths early in training, stabilization strategies
such as entropy normalization, balanced scope sampling, and
random path masking can effectively mitigate this issue. By
isolating the neck block as the search region while preserving
the backbone and head, the framework enables modular adapta-
tion across multiple target scenarios without altering the overall
detection pipeline.

IV. EXPERIMENTS

This section describes the experimental setup and results for
the target-adaptive YOLOv9NAS algorithm. YOLOv9-M serves
as the baseline architecture, with NAS exploration confined to
module-level operations within the neck block. All experiments
employ consistent datasets, training configurations, and hyper-
parameters to ensure a fair comparison across four target scopes
(i.e., small, medium, large, and full), corresponding to distinct
hardware constraints.
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TABLE I: Target-Adaptive YOLOv9NAS Optimal Architecture

Scope Architecture

Small “m_13”: 1 , “m_16”: 0, “m_19”: 0, “m_22”: 0, “m_28”: 0, “m_31”: 0, “m_34”: 2, “m_37”: 1
Medium “m_13”: 2 , “m_16”: 0, “m_19”: 2, “m_22”: 0, “m_28”: 0, “m_31”: 2, “m_34”: 2, “m_37”: 0

Large “m_13”: 2 , “m_16”: 3, “m_19”: 3, “m_22”: 0, “m_28”: 0, “m_31”: 3, “m_34”: 0, “m_37”: 1
Full “m_13”: 2 , “m_16”: 0, “m_19”: 2, “m_22”: 0, “m_28”: 0, “m_31”: 0, “m_34”: 2, “m_37”: 0

TABLE II: The Performance of Target-Adaptve YOLOv9NAS

Scope Precision (%) Recall (%) mAP50 (%)

Small 73.4 46.6 53.2
Medium 68.9 41.8 47.6

Large 68.5 41.3 46.9
Full 67.1 42.8 48.5

A. Experimental Setup

Experiments were conducted on an NVIDIA RTX 4090 GPU
with an input resolution of 640 × 640 and a batch size of 16.
The Adam optimizer was configured with a learning rate of
0.01, momentum of 0.937, and weight decay of 0.0005, with
all scopes trained and evaluated on the COCO dataset.

B. Performance

Table I presents the optimal architecture configurations iden-
tified through NAS exploration for each target scope. The small
scope primarily selects simpler operations, indicating that its
restricted exploration range naturally leads to more compact
structural choices. In contrast, the large and full scopes, which
allow broader exploration, tend to adopt more diverse and
structurally expressive operations. This pattern demonstrates
that the search process reflects the characteristics of each scope
by adjusting the exploration range, rather than relying on
a single, unified configuration. Through this mechanism, the
target-adaptive NAS produces distinct architectures for each
scope from a shared Supernet, ensuring structural diversity
across multiple target settings.

Table II summarizes detection performance using precision,
recall, and mAP50 metrics across the four target scopes. The
small scope achieves the highest performance, with 73.4%
precision and 53.2% mAP50, resulting from a simplified ar-
chitecture that reduces redundant paths and enhances feature
utilization. The medium, large, and full scopes show slight
variations in precision while maintaining stable recall, reflecting
structural differences derived from their respective exploration
ranges. The full scope achieves 48.5% mAP50 and demon-
strates consistent performance due to its broader architectural
configuration. Overall, compact architectures tend to yield
higher precision within restricted exploration settings, while
larger scopes provide more extensive feature combinations
enabled by broader search space definitions.

V. CONCLUSION

This paper presents a target-adaptive YOLOv9NAS algo-
rithm that applies NAS to the neck block by defining different
exploration ranges for multiple target scopes. The once-for-
all supernet enables the automatic generation of four distinct
architectures without additional retraining, allowing each scope
to reflect structural characteristics derived from its designated
search range. Experimental results show that the small scope
achieves 73.4% precision and 53.2% mAP50, demonstrating
the effectiveness of a compact architecture produced through
restricted exploration. These findings confirm that adjusting
the search range for different target scopes is a practical
and scalable approach for generating diverse object detection
models within a unified NAS framework.
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