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Abstract—As network attacks grow in sophistication,
Intrusion Detection Systems (IDS) face a critical opera-
tional challenge: maximizing detection rates without gen-
erating an overwhelming number of false alarms. While
classical Long Short-Term Memory (LSTM) networks are
effective for analyzing sequential traffic data, achieving
this balance is difficult. This paper investigates the poten-
tial of Quantum Machine Learning (QML) to address
this problem by introducing and evaluating a hybrid
Quantum-LSTM (QLSTM) model. Our architecture uses
a classical LSTM for temporal feature extraction and a
Parameterized Quantum Circuit (PQC) for classification.
Evaluating our model on the large-scale CIC-IDS2017
dataset, we uncover a critical performance trade-off. Our
central finding is that while a purely classical LSTM base-
line achieves a slightly higher F1-Score driven by superior
recall, the hybrid QLSTM model consistently delivers a
significant advantage in precision, substantially reducing
the false positive rate. The primary contribution of this
work is the identification and practical contextualization
of this valuable trade-off, demonstrating that QML offers
a compelling pathway toward high-fidelity IDS where alert
reliability is paramount.

Index Terms—Quantum Machine Learning, Quantum
LSTM, Network Intrusion Detection, Cybersecurity, Hy-
brid Quantum-Classical Models, Deep Learning.

I. INTRODUCTION

Network security has become a cornerstone of mod-
ern digital infrastructure, yet it faces an ever-evolving
threat landscape. Adversaries are deploying increas-
ingly sophisticated attack vectors, such as Advanced
Persistent Threats (APTs) [1] and zero-day exploits,
which are designed to bypass traditional security mea-
sures. Conventional Intrusion Detection Systems (IDS),
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which often rely on predefined signatures of known
attacks, are proving insufficient in detecting these novel
and stealthy threats, creating a critical security gap in
enterprise and governmental networks.

To address the limitations of signature-based meth-
ods, the cybersecurity community has shifted towards
data-driven approaches using machine learning (ML)
and deep learning (DL). These techniques enable an
IDS to learn the complex patterns of normal network
behavior and identify deviations indicative of an attack,
without prior knowledge of the attack’s signature. In
particular, Recurrent Neural Networks, such as Long
Short-Term Memory (LSTM) [2], have demonstrated
significant success. By modeling network traffic as se-
quential data, LSTMs can capture temporal dependen-
cies and context, making them well-suited for detecting
multi-stage attacks that unfold over time.

Despite their success, classical DL models are not
a panacea. The expressive power of a classical neural
network is ultimately bounded by its architecture and
the non-linear activation functions it employs. As attack
patterns become more intricate and blend seamlessly
with benign traffic [3], it is plausible that classical
models like LSTMs may reach a performance plateau,
struggling to learn the highly complex decision bound-
aries required to distinguish subtle anomalies. This
limitation motivates the exploration of more powerful
computational paradigms.

Quantum Machine Learning (QML) has emerged
as a promising new frontier in this regard [4]. By
leveraging the principles of quantum mechanics, QML
models operate in a vastly larger computational space
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- the exponential-sized Hilbert space. Concepts such as
superposition and entanglement allow quantum circuits
to represent and process information in ways that are
classically intractable. A key component of modern
QML is the Parameterized Quantum Circuit (PQC), a
quantum circuit with trainable parameters analogous to
a classical neural network layer [5]. Also known as
variational quantum circuits, PQCs are well-suited for
integration into hybrid training frameworks, where they
can be combined with classical deep learning models.

While hybrid quantum-classical RNNs have shown
promise in other sequential data domains such as natu-
ral language processing and finance, their application to
cybersecurity remains nascent. This paper investigates
a critical question in this domain: can the enhanced
representational capacity of quantum computing be
leveraged not just to improve aggregate performance
metrics, but to achieve a more favorable and practical
performance profile for real-world network intrusion
detection? To this end, we propose and evaluate a novel
hybrid Quantum-LSTM (QLSTM) model [6], using it
as a tool to explore the trade-offs inherent in this
complex classification task. Our primary contributions
are threefold:

o We design a novel hybrid architecture that syn-
ergistically combines a classical LSTM network
for temporal feature extraction with a PQC for
classification, building upon recent work in hybrid
quantum-classical RNNs.

o We conduct a comprehensive empirical evaluation
of our model and its variants on the large-scale,
realistic CIC-IDS2017 dataset [7], establishing a
solid benchmark for this task.

o« We uncover and analyze a critical performance
trade-off: while a strong classical baseline excels
in recall, our QLSTM model consistently achieves
superior precision. This finding is of significant
practical importance, as it demonstrates a path
toward high-fidelity intrusion detection systems
that can substantially reduce the costly burden of
false alarms in operational security environments.

The remainder of this paper is organized as follows.
Section II reviews related work on deep learning for
intrusion detection and quantum machine learning. Sec-
tion III details our proposed hybrid QLSTM model and
the data preprocessing pipeline. Section IV presents the
experimental setup and baseline models. Section V dis-
cusses the empirical results and provides a comparative
analysis. Finally, Section VI concludes the paper and
outlines future research directions.

II. BACKGROUND AND RELATED WORK

Our research is situated at the intersection of deep
learning for cybersecurity and the emerging field of
quantum machine learning. This section briefly reviews

the key concepts from both domains that form the
foundation of our work.

A. Deep Learning for Intrusion Detection

Traditional IDS [8] often struggle against novel and
sophisticated threats. Consequently, DL has become a
primary paradigm for developing data-driven, adaptive
IDS. The ability of DL models to automatically learn
hierarchical features from complex data makes them
highly effective. Given the sequential nature of network
traffic, Recurrent Neural Network (RNN) architectures,
particularly LSTM and Gated Recurrent Units (GRU)
[9], have proven especially successful. These models
can capture temporal dependencies in network flow or
packet sequences, enabling the detection of multi-stage
attacks. Numerous studies have validated the effective-
ness of RNN-based approaches on benchmark datasets
like NSL-KDD, UNSW-NBI15, and CIC-IDS2017 [7].
However, challenges such as severe class imbalance and
the potentially limited expressive power of classical
non-linearities motivate the exploration of alternative
computational models.

B. Hybrid Quantum Machine Learning

Quantum Machine Learning is an interdisciplinary
field that explores the interplay between quantum com-
puting and machine learning [10]. It aims to devise
quantum algorithms that can perform learning tasks
faster or more effectively than their classical counter-
parts. The potential advantages of QML stem from the
fundamental principles of quantum mechanics.

1) Quantum Bits (Qubits): The basic unit of quan-
tum information is the qubit. Unlike a classical bit,
which can only be in a state of 0 or 1, a qubit can
exist in a superposition of both states simultaneously.
A single qubit state, denoted |¢)), is represented as a
linear combination of the basis states |0) and |1):

[¥) = al0) + B[1), (1

where « and 3 are complex numbers known as proba-
bility amplitudes, satisfying the normalization condition
|a|? 4+ |B|> = 1. This property allows a register of
N qubits to represent 2V classical states at once,
providing an exponentially large computational space.
Furthermore, multiple qubits can be entangled, creating
strong, non-classical correlations between them that are
a key resource for quantum computation.

2) Parameterized Quantum Circuits: In the current
era of Noisy Intermediate-Scale Quantum (NISQ) de-
vices, one of the most promising QML paradigms is the
PQC [11], also commonly referred to as a variational
quantum circuit. A PQC is a quantum circuit composed
of a sequence of quantum gates, where some of these
gates have tunable parameters (e.g., rotation angles, 6).
This structure serves as the quantum equivalent of a
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classical neural network layer. The circuit, represented
by a unitary transformation U (0), typically consists of
three parts: an encoding layer Us,.(x) that maps clas-
sical data x into a quantum state, a variational ansatz
Uyar(0) with trainable parameters, and a measurement
of an observable M to extract classical information
from the final quantum state.

3) Hybrid Quantum-Classical Training: PQCs are
trained using a hybrid quantum-classical loop, which
is fully compatible with standard deep learning frame-
works like PyTorch or TensorFlow. The output of the
hybrid model is the expectation value of the observ-
able, f(x,0) = (0|UT(#, z)MU(6,x)|0). The training
workflow is as follows:

o Forward Pass: A batch of classical input data
x is fed into the PQC. This data is used to set
the parameters of the encoding gates. The circuit
is then executed with the current set of trainable
weights 6. The final quantum state is measured,
yielding the classical expectation value f(x,0).
Loss Calculation: This classical output is used in
a classical loss function £ (e.g., cross-entropy) to
compare against the true labels.

Backward Pass: The gradient of the loss function
with respect to the trainable parameters, VgL,
is calculated. This can be done efficiently on
quantum hardware or simulators using techniques
like the parameter-shift rule.

Parameter Update: A classical optimizer (e.g.,
Adam) uses these gradients to update the PQC’s
parameters: 6 <— 0 — nVyL.

This hybrid approach allows us to treat the PQC as
a differentiable layer that can be seamlessly integrated
into any classical deep learning architecture [12], as we
demonstrate with our proposed QLSTM model. Theo-
retically, such hybrid QML models can be interpreted as
powerful kernel methods [13]. By implicitly mapping
classical data to a high-dimensional quantum feature
space (the Hilbert space), the PQC can transform com-
plex, non-linear classification problems into ones that
are more easily separable, providing a basis for learning
more robust and precise decision boundaries.

III. PROPOSED METHODOLOGY

This section details our proposed hybrid quantum-
classical framework for network intrusion detection.
We first describe the data preparation pipeline, then
formulate the problem mathematically and present the
detailed architecture of our hybrid QLSTM model '.

A. Data Preprocessing and Sequencing

We utilize the CIC-IDS2017 dataset, which contains
over 2.8 million network flows described by 78 fea-
tures. Our preprocessing pipeline involves four main

Thttps://github.com/ailabteam/qml-ids
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steps: 1) Data Cleaning to remove corrupted entries
(NaN/Infinity values); 2) Label Transformation, where
we convert the multi-class problem into a binary clas-
sification task by consolidating all 14 attack types into
a single ‘ATTACK® class (1) against the ‘BENIGN*
class (0); 3) Feature Scaling, where we apply Min-
Max normalization to scale all features to the range
[0, 1], fitting the scaler only on the training set; and
4) Sequencing, where the tabular data is transformed
into time-series data. We employ a sliding window of
length L = 20 to group consecutive flows, creating
sequences of shape (N, L, D), where N is the number
of sequences, L = 20 is the number of timesteps, and
D = 78 is the number of features. This value was
chosen as it balances the need to capture sufficient tem-
poral context from the network flow sequences against
the computational overhead of processing longer se-
quences.

B. Hybrid QLSTM Architecture

Given a dataset of sequences D = {(S;,y;)}Y,,
where S; € RE*P and y; € {0, 1}, our goal is to learn a
hybrid function h(S;; 6., 6,) parameterized by classical
(0.) and quantum (6,) weights. The model architecture,

GPU
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Connector
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Input
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i CPU Encoded Vector X
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Fig. 1. The proposed hybrid QLSTM architecture. A classical LSTM
extracts temporal features, which are then processed by a PQC for
classification.

1) Classical LSTM Feature Extractor: An LSTM
layer processes the input sequence S; and outputs its
final hidden state, h;, € R%, which serves as a
compressed representation of the sequence’s temporal
features.

Normal

h; = LSTM(S;; Oistm)- 2)



2) Classical-to-Quantum  Connector: A  fully-
connected layer maps the hidden state h;, to a vector
Xq € R"¢, where n, is the number of qubits. This
serves as the input for the quantum circuit.

x, = Wehy + be. 3)

3) Parameterized Quantum Circuit Classifier: The
PQC acts as the quantum classifier. Its structure consists
of three stages:

o State Preparation (Embedding): The classical
vector x4, € R™e is encoded into the initial quan-
tum state using angle embedding. Each component
x4,; 18 used to rotate the corresponding qubit |0)
around the Y-axis: Uepne(x,) = ®?§El Ry (zq,5).

Variational Ansatz: A layered ansatz, U,q,(6,),

with trainable parameters 6, is applied. Each

layer consists of single-qubit rotations (Ry (#) and

Rz(0) on all qubits) followed by a linear chain of

CNOT gates for entanglement (i.e., CNOT(, i+1)

for all adjacent qubits). This two-part structure is

repeated d, times, where d, is the circuit depth.

Measurement: Finally, the expectation value of

the Pauli-Z observable is measured on the first

qubit (Zo =720l® @ I). This is a standard

method for extracting a classical prediction from a

quantum circuit, as it maps the final quantum state

to a scalar value o, € [—1,1] that is suitable for
subsequent use in a binary classification task.

Ut

var

0q = fq(%4:04) = <O|UeTnc(Xq) (6)

ZO Uyar (eq)Uenc (Xq) |0).

4) Classical Output Layer: The scalar output og
from the PQC is passed through a final linear layer
with a sigmoid activation function o to yield the final
probability prediction.

@

9= O’(W(,Oq + bo)- (5)

The entire model is differentiable and is trained end-
to-end.

IV. EXPERIMENTAL SETUP

To rigorously evaluate the performance of our pro-
posed QLSTM model, we designed a controlled exper-
imental setup. This section details the dataset, imple-
mentation parameters, the models used for comparison,
and the evaluation metrics.

A. Dataset and Implementation

Our experiments are conducted on the CIC-IDS2017
dataset, a widely recognized benchmark for IDS eval-
uation. After the preprocessing pipeline described in
Section III-A, our final dataset consists of 2,827,876
sequential samples. We formulate the task as a binary
classification problem (‘BENIGN‘ vs. ‘ATTACK®). The
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dataset is highly imbalanced, with the ‘ATTACK® class
comprising only 19.7% of the samples. We use a
stratified 80/20 split for training and testing.

Our models are implemented in PyTorch and Penny-
Lane. All experiments are run for 5 epochs with a batch
size of 256, using the Adam optimizer with a learning
rate of 7 = 0.001. Training was performed on a system
with an NVIDIA GeForce RTX 4090 GPU for classical
components and a multi-core CPU for quantum circuit
simulation.

B. Models for Comparison

To isolate the contribution of the quantum layer and
explore the impact of key hyperparameters, we evaluate
the following four models:

Classical LSTM (Baseline): This model shares
an identical architecture with our QLSTM, but the
PQC classifier is replaced by a classical Multi-
Layer Perceptron (MLP). The MLP head, which
takes the 32-dimensional LSTM hidden state as
input, consists of two fully-connected layers (32x8
and 8x1) with a ReLU activation and a Dropout
layer. It contains 273 trainable parameters.
QLSTM-4Q-32H (Default): Our default hybrid
model, featuring an LSTM with a hidden size of
dn = 32 and a PQC classifier using n, = 4 qubits
and a depth of d, = 2.

QLSTM-4Q-64H: A variant designed to test the
impact of classical representational power, using
a larger LSTM hidden size of d;, = 64 with a
4-qubit PQC (dq = 2).

QLSTM-8Q-32H: A variant designed to test the
impact of quantum representational power, using
a standard LSTM (d;, = 32) with a larger 8-qubit
PQC (n, =8,d; = 2).

The classical baseline was designed to ensure a fair
comparison of classification power. Its MLP head (273
parameters) is parametrically comparable to the entire
quantum classification head (connector layer plus PQC
ansatz) of the main QLSTM model. For instance, the
QLSTM-8Q-32H’s head contains a total of 296 train-
able parameters ((32 x 8) + 8 in the connector and
8 X 2 x 2 = 32 in the PQC), validating the fairness
of the architectural comparison.

V. RESULTS AND DISCUSSION

In this section, we present and analyze the empir-
ical results of our experiments. We provide a unified
comparative analysis based on a comprehensive results
table, examine classification errors using a confusion
matrix, and discuss the broader implications of our
findings.



A. Performance Analysis and Hyperparameter Impact

The definitive results of our comparative evaluation
are presented in Table I. This table provides a complete
overview of all model configurations evaluated on the
full CIC-IDS2017 test set, including precision, recall,
Fl-score, and overall accuracy. The chart in Fig. 2
serves as a visual summary of the core precision-recall
trade-off detailed in the table.

TABLE I
COMPREHENSIVE PERFORMANCE COMPARISON OF ALL
MODEL CONFIGURATIONS. THE CLASSICAL MODEL
ACHIEVES THE HIGHEST RECALL AND F1-SCORE, WHILE
ALL QLSTM VARIANTS DEMONSTRATE SUPERIOR
PRECISION. BEST SCORES FOR EACH METRIC ARE IN

BOLD.
Model Config. Acc. (%) Prec. Rec. F1
Classical LSTM 97.21 09117  0.9825 0.9457
QLSTM-4Q-32H (Default) 97.35 0.9250  0.9420 0.9334
QLSTM-4Q-64H 97.58 09181 0.9624 0.9397
QLSTM-8Q-32H 97.43 09312 09396 0.9354

The results reveal a clear and nuanced performance
trade-off. The purely classical LSTM baseline achieves
the highest F1-Score (0.9457), which is driven by an
exceptionally high recall of 0.9825. This indicates the
classical model is highly effective at identifying the vast
majority of true attack instances. However, this high
sensitivity comes at the cost of the lowest precision
(0.9117), implying a greater propensity for false alarms.

In stark contrast, all QLSTM configurations consis-
tently outperform the classical baseline in terms of
precision. The QLSTM-8Q-32H model, in particular,
reaches the highest precision of 0.9312. This finding is
central to our work, as it suggests that the quantum
classifier is more adept at learning the fine-grained
characteristics that distinguish true attacks from be-
nign traffic, leading to more reliable and confident
predictions. This higher precision is a valuable asset in
real-world Security Operations Centers (SOCs) where
alert fatigue from false positives is a major operational
concern.

Table I also illuminates the impact of hyperpa-
rameters. Increasing the classical LSTM’s hidden size
from 32 to 64 (QLSTM-4Q-64H) yielded the best F1-
Score (0.9397) and accuracy (97.58%) among the hy-
brid models, primarily by boosting recall. Conversely,
increasing the quantum capacity by moving from 4
to 8 qubits (QLSTM-8Q-32H) produced the highest
precision. This demonstrates a key trade-off between
classical feature representation and quantum processing
capacity, suggesting that a larger quantum space can
refine the decision boundary to reduce false positives,
but may require a correspondingly richer classical input
to maintain high recall.
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Performance Comparison of QLSTM and Classical LSTM

Model
m— Classical LSTM
m—QLSTM (40, 32H)
= QLSTM (40, 64H)
QLST™ (89, 32H)

Recall
Evaluation Metric

F1-Score

Fig. 2. Visual summary of the performance trade-off detailed in
Table I. The QLSTM models consistently show higher precision,
while the classical LSTM excels in recall.

B. Analysis of Classification Errors

To provide a more granular view of performance,
Fig. 3 displays the confusion matrix for our highest-
precision model, the QLSTM-8Q-32H. The matrix
shows the model correctly identified 104,582 attack
instances (True Positives) while missing 6,723 (False
Negatives). Crucially, it only misclassified 7,723 benign
instances as attacks (False Positives). When compared
to the classical LSTM baseline (which had 10,879 False
Positives, derived from its performance scores), our
QLSTM model reduced the number of false alarms by
approximately 29%. This directly reinforces the finding
that the quantum layer contributes to a more discerning
and reliable classification. The balance between mini-
mizing missed attacks (FN) and reducing false alarms
(FP) is a critical consideration in deploying any real-
world IDS, and our results suggest that QML offers a
promising new tool to navigate this trade-off.

Confusion Matrix (QLSTM, n_qubits=8)

400000

350000

446529

7723

300000

250000

True Label

- 200000

- 150000

6723 104582

ATTACK

-100000

-50000

BENIGN ATTACK

Predicted Label

Fig. 3. Confusion matrix for the highest-precision model (QLSTM-
8Q-32H) on the test set.



C. Discussion

Our experimental results provide a nuanced per-
spective on the current capabilities of hybrid quantum
models for this task. While the classical LSTM baseline
achieved a slightly higher overall F-Score, our investi-
gation revealed a crucial and consistent trade-off: all
configurations of the proposed QLSTM model demon-
strated superior precision. This finding is significant for
practical applications where the cost of investigating
false positives is high and alert fidelity is paramount.

This trade-off suggests that the quantum classifier
learns a more stringent and less noisy decision bound-
ary. As outlined in Section II, this can be attributed
to the PQC’s function as a kernel method that maps
features into the high-dimensional Hilbert space. This
mapping can make the data more separable, allowing
the model to define a simpler decision boundary that is
highly confident about positive predictions (improving
precision), while potentially being more conservative
on ambiguous, borderline cases (impacting recall). The
findings of this work underscore the potential of QML
not necessarily as a blanket replacement for classical
models, but as a tool to explore different performance
profiles and trade-offs that are not accessible to purely
classical approaches.

However, we acknowledge the limitations of our
study. The quantum component was executed on a
classical simulator, which is computationally expensive,
especially as the number of qubits increases. The per-
formance on actual noisy quantum hardware remains
an open question. Furthermore, our study focused on a
binary classification task.

VI. CONCLUSION

This paper investigates the practical application of
hybrid quantum-classical deep learning for network
intrusion detection, revealing a critical performance
trade-off. Our central finding, derived from evaluating
the QLSTM model against a strong classical baseline on
the CIC-IDS2017 dataset, is that the quantum-enhanced
model consistently achieves superior precision. While
the classical model excels in recall, the QLSTM’s
ability to significantly reduce false alarms demonstrates
the potential of QML as a tool for engineering high-
fidelity cybersecurity systems where alert reliability
is paramount. The key contribution of this work is
therefore not the proposal of a model that universally
outperforms classical methods, but the discovery and
practical contextualization of a valuable trade-off en-
abled by the hybrid QML approach.

Future work will proceed in three main directions.
First, we will explore more advanced quantum cir-
cuit designs (ansatze) and data encoding strategies
to improve the model’s recall without sacrificing its
high precision. Second, we will investigate the model’s

robustness against adversarial attacks. Finally, we aim
to apply and validate the hybrid QLSTM framework on
other sequential cybersecurity tasks, such as malware
analysis or malicious URL detection.

CODE AVAILABILITY

The source code used in this study are publicly avail-
able on GitHub: https://github.com/ailabteam/qml-ids.
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