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Abstract—Baseboard management controller (BMC) provides
out-of-band management to datacenter infrastructures for IoT
and mobile services. Because the BMC allows privileged access
to hardware resources, it has become an attractive attack target.
Despite its importance, little research has been conducted on
the security of BMC firmware. In this paper, we examine the
security vulnerabilities of BMC firmware by analyzing recent
BMC-related CVEs from 2020 to 2025. Specifically, we analyze
statistics classified by CWEs, severity, attack vectors, and vendor-
specific factors. Furthermore, we examine the root causes of
BMC firmware vulnerabilities and categorize them using our
novel three-category taxonomy: architectural, implementation,
and hardware issues. Our analysis shows that most vulnerabilities
originate from implementation problems, while architectural
issues such as weak privilege models and insecure update mecha-
nisms in the BMC firmware were also identified, revealing BMC-
specific security issues. We also discover different vulnerability
patterns among vendors, which suggests that vendor-specific im-
plementations and architectures substantially affect the security
posture of the BMC. Our study identifies several future research
directions, including the elimination of fundamental root causes
and the implementation of BMC-specific static and dynamic
vulnerability analysis techniques.

Index Terms—BMC firmware, CVE measurements, Root cause
taxonomy, Embedded systems security.

I. INTRODUCTION

Baseboard management controllers (BMCs) are critical em-
bedded components within modern data center infrastructures,
offering out-of-band management capabilities essential for IoT
and mobile services. Operating independently from the host
OS, BMCs retain privileged access to hardware resources,
enabling remote monitoring, control, and system maintenance
even when the primary system is powered off. Given this high
privilege and persistent availability, BMC firmware represents
a significant and appealing target for attackers [1].

Despite their critical role, security considerations specific
to BMC firmware have been largely overlooked. Previous
research [2], [3] predominantly concentrated on identifying
and analyzing observable vulnerabilities, often without delving
deeply into their underlying causes. Thus, a comprehensive
understanding of the root causes behind BMC firmware vul-
nerabilities remains limited.

The extended version of this paper is available at https://github.com/
koreacsl/BMC_dataset/blob/main/icoin26-full.pdf.

To bridge this gap, this study presents a systematic and
large-scale empirical analysis of BMC firmware vulnerabilities
by reviewing 358 Common Vulnerabilities and Exposures
(CVEs) [4] disclosed from 2020 to 2025. Each CVE is ana-
lyzed according to its Common Weakness Enumeration (CWE)
type, severity, attack vector, and, most crucially, its root cause.
We introduce a novel taxonomy specifically designed for BMC
firmware vulnerabilities, categorizing them into architectural,
implementation, and hardware-related issues. Our findings
reveal that implementation flaws overwhelmingly dominate,
particularly due to inadequate input validation and unsafe
memory handling. However, architectural issues, such as in-
sufficient privilege separation and insecure firmware update
mechanisms, are also significant and highlight systemic weak-
nesses unique to BMC systems. Vendor-specific analyses indi-
cate substantial variations in security postures, suggesting that
individual design and implementation decisions significantly
influence vulnerability profiles.

This research highlights the urgent need for targeted, BMC-
specific security methodologies. We propose future research
directions aimed at addressing fundamental vulnerabilities
through specialized static and dynamic analysis frameworks,
source-to-sink models, and robust fuzzing environments tai-
lored to the complex, multi-binary nature of BMC firmware.
Our work thus provides foundational insights and concrete
pathways for enhancing the resilience of BMC systems, con-
tributing significantly to the security of modern data cen-
ter infrastructures. The main contributions of this work are
threefold: (1) a large-scale empirical analysis of 358 BMC
firmware vulnerabilities reported from 2020 to 2025, (2) a
root-cause taxonomy covering architectural, implementation,
and hardware-level issues, and (3) a vendor-specific compar-
ison revealing recurring vulnerability patterns and systematic
design flaws.

II. BACKGROUND

A. Baseboard management controller

A baseboard management controller (BMC) is an indepen-
dent hardware controller embedded in server motherboards,
designed to provide out-of-band system management func-
tionalities regardless of the host system’s operational state.
Internally, BMCs typically run a lightweight embedded Linux
operating system. BMC firmware includes several software
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Fig. 1: Overview of BMC and BMC’s attack surface

components such as a minimal kernel, basic system utilities,
and various user-space services. Figure 1 shows an overview of
its communication architecture. The BMC firmware consists
of two key modules: the Platform Management Subsystem,
which is responsible for core functionalities such as sensor
data collection, power control, event logging, and firmware
updates; and the Message Handler, which interprets incoming
message (e.g., IPMI, Redfish) and routes them to the ap-
propriate subsystems or generates responses. BMCs mainly
use protocols such as IPMI and Redfish, and the latter is
standardized by DMTF to offer a more secure, RESTful API
with role-based access control [2], [5]–[7].

BMC communicate with internal and external components
through three channels: (1) in-band links connecting to the
host via memory-mapped I/O (MMIO), (2) side-band hardware
paths such as SMBus or I²C connecting to system sensors and
controllers, and (3) out-of-band management ports accessed
over IPMI, Redfish, or HTTPS. These channels enable remote
administration but also expand the system’s attack surface.

Attack surface. BMCs are subject to multiple attack surfaces
due to their exposure to both internal and external interfaces.
Based on the attacker’s proximity to the system and their
required level of access to BMC interfaces, the attack surfaces
can be categorized into network, adjacent network, local, and
physical vectors (See Fig. 1).

Network vector includes remote interactions over manage-
ment protocols such as IPMI over LAN, Redfish, and web
interfaces. These services often remain active by default,
exposing attack points for input handling flaws or weak
authentication that can lead to unauthorized access or remote
code execution. Local vector refers to threats originating from
the host or privileged software communicating with the BMC
through in-band channels such as PCIe or MMIO. Excessive
host access or misconfigurations can blur privilege boundaries
and expose sensitive BMC state information. Finally, physical
vector involves direct hardware access via debug ports (UART,
JTAG) or tampering with SPI flash storage. Such attacks
are rarer but serious, since physical access allows firmware
modification and bypass of software-level defenses.

B. CWE and CVSS

The Common Weakness Enumeration (CWE) provides
a taxonomy of software weaknesses using the CWE-1000
view [8], which groups related issues such as improper in-
put validation or authentication. The Common Vulnerability
Scoring System (CVSS) rates vulnerability severity from 0.0
to 10.0 based on impact and exploitability. This study focuses
on two CVSS elements—attack vector and severity level—
classified as network, adjacent network, local, and physical
vectors, and as Critical, High, Medium, or Low severity
categories.

TABLE I: Taxonomy of root causes in BMC vulnerabilities

Issues Subclass (Code) Description

Architectural

Excessive Attack Surface (A-E) Multiple remote management interfaces (e.g., IPMI, Redfish, SSH)
are exposed without proper isolation or access control

Host–BMC Boundary Breakdown (A-H) Shared access to memory or control channels (e.g., PCIe)
undermines isolation and enables lateral privilege escalation

Lack of Secure Mechanism, Update and Boot chain (A-L) Failures in firmware validation and rollback protection
allow persistent compromise via malicious updates

Privilege Model Misdesign (A-P) Incomplete privilege separation or flawed authorization logic
enables unauthorized access

Implementation

Validation Bugs (I-V) Inadequate input sanitization or boundary checking
leads to injection or memory corruption

Functional Bugs (I-F) Broken authentication or misconfigured session handling
Resource Management Failures (I-R) Mishandled memory or file descriptors cause denial-of-service

Extrinsic Bugs (I-E) Race conditions or unstable runtime state trigger unexpected behavior

Hardware
Debug Port Exposure (H-D) Accessible UART or JTAG interfaces

provide root access in production systems
Unprotected Flash or Memory Regions (H-U) SPI flash or DRAM can be tampered with due to lack of protection

Side-channel and Fault Injection (H-S) Power analysis or glitching bypasses secure boot or leaks sensitive data
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Fig. 2: Statistics of BMC-related CVEs

III. ROOT CAUSE TAXONOMY

This section introduces the taxonomy of root causes that
make BMC firmware vulnerable to attack. We classify vul-
nerabilities into three main categories—architectural, imple-
mentation, and hardware issues—each comprising several
subclasses as summarized in Table I. Architectural issues
stem from flawed design and weak trust boundaries, such
as excessive attack surfaces or insecure update mechanisms.
Implementation issues arise from improper code execution,
including missing validation, faulty authentication, and poor
resource handling. Hardware issues involve physical or board-
level weaknesses, such as open debug ports and unprotected
memory regions. This taxonomy serves as the analytical basis
for our CVE-based study and distinguishes vulnerabilities that
can be addressed through software-level mitigation from those
that require architectural or hardware-level solutions.

IV. ANALYSIS ON BMC-RELATED CVES

A. Dataset construction

Preprocessing. Our analysis used the raw CVE data from
the MITRE [4], covering the years 2020 to 2025. Since the
MITRE does not have a separate category specifically for
BMC vulnerabilities, we filtered the dataset using relevant key-
words to isolate BMC-related entries. The keywords includes
vendor names, product identifiers (e.g., iDRAC, MegaRAC),
protocols (e.g., IPMI, Redfish), platforms (e.g., Yocto), and
threat-related terms (e.g., UART, Serial, Firmware). Subse-
quently, we performed vulnerability type classification and
severity scoring according to the CWE and CVSS, respec-
tively. When both CWE and CVSS information were missing,
we manually supplemented the data using vendor advisories
and third-party security feeds such as Red Hat and Tenable.

Vulnerability classification. We then classified the prepro-
cessed CVEs according to its vulnerability type. In our study,
we used the class level of CWE-1000 to organize vulnerability
types, as CWE-1000 structures weakness types by abstract
behavior and conceptual relationships. This allowed us to
group diverse CWE entries into meaningful categories based
on shared operational traits. The mapping of individual CWE

types to the CWE-1000 view is documented by MITRE and
can be accessed at [8].

Root cause classification. Finally, we conducted root cause
classification based on the taxonomy presented in Section III.
In particular, we reviewed manually each CVE and assigned
to one of these categories based on its technical description.
This classification forms the basis for the statistical analysis
and visualization presented in the next section.

B. Insights into BMC vulnerabilities

Based on the structured dataset constructed in Section IV-A,
we present an in-depth analysis of 358 BMC-related CVEs,
revealing critical insights into prevalent vulnerability types,
attack vectors, and associated severity levels.

1) Statistical overview: Figure 2 provides a statistical
overview of the 358 BMC-related CVEs from three key
perspectives: CWE type distribution, attack vector distribution,
and severity distribution. First, Figure 2a shows the distribution
of the five most frequently occurring CWE types among the 33
observed types. CWE-118 (127 cases) is the most common,
followed by CWE-74 (67 cases), CWE-287 (36 cases), and
both CWE-706 and CWE-20 (22 cases each). These reflect
widespread issues in boundary checks, input validation, and
authentication logic.

BMC firmware is typically implemented in type-unsafe
languages such as C/C++ and operates within embedded envi-
ronments with limited memory and strict real-time constraints.
As a result, boundary checks are often omitted or minimized.
In addition, management protocols such as IPMI and Redfish
rely on custom text-based parsers that are frequently extended
by vendors, increasing the likelihood of missing input filtering.
Furthermore, because BMC integrates all functionality—from
initial boot to hardware control—into a single firmware image,
authentication and privilege logic is often entangled, raising
the risk of default credentials and hardcoded tokens being

CWE-118: Incorrect Access of Indexable Resource (’Range Error’)
CWE-74: Improper Neutralization of Special Elements in Output Used by

a Downstream Component (’Injection’)
CWE-287: Improper Authentication
CWE-706: Use of Incorrectly-Resolved Name or Reference
CWE-20: Improper Input Validation
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Fig. 3: Root cause analysis

left behind. These design limitations and code reuse patterns
contribute to name or path resolution issues (CWE-706) and
improper input validation (CWE-20), where normalization and
validation logic tend to be weak or entirely absent.

Figure 2b shows that the NETWORK vector domi-
nates (209 cases), followed by LOCAL (111) and ADJA-
CENT_NETWORK (38) vectors. Network-based vulnerabili-
ties are especially critical because exposed management in-
terfaces such as IPMI and web UIs enable remote code
execution or malicious firmware uploads. The LOCAL vectors
highlight risks from insiders or compromised hosts, while the
ADJACENT_NETWORK attacks indicate lateral movement
within internal management domains. The prevalence of re-
motely exploitable vulnerabilities underscores the importance
of isolating BMC interfaces from production networks and
enforcing strict access controls [9].

Over half (53.5%) of the analyzed CVEs are rated High or
Critical, demonstrating the severe impact of these weaknesses.
Because many BMCs remain accessible over management
networks, timely patching and layered security measures,
including isolation, access control, and vulnerability manage-
ment, are essential to reduce risk.

2) Root cause analysis: Figure 3 presents the root cause
analysis based on our proposed taxonomy. Approximately
90% of the analyzed CVEs originate from implementation
flaws, mainly validation bugs (245 bugs), while about 9%
are architectural, including privilege model misdesign and
insecure update or boot mechanisms. Although hardware-
related CVEs were not found, past cases such as CVE-
2018-15776 confirm their relevance. This distribution reflects
the nature of BMC development. In practice, most firmware
is written in C/C++ and assembled from reused modules
and vendor extensions, where strict input validation, memory
safety, and privilege separation are rarely enforced. Limited
runtime resources and tight integration with hardware further

discourage robust boundary checking, making implementation
defects both common and systemic.

Figure 3b maps the most frequent CWE types to root
causes. CWE-118 and CWE-74 mainly involve boundary and
input validation errors, while CWE-287 and CWE-20 span
both functional and architectural flaws related to privilege
design. Representative examples include buffer overflows in
OpenBMC’s slpd-lite daemon (CVE-2024-41660) and
command injection in Lenovo’s XCC firmware (CVE-2024-
8278). These recurring problems arise because BMC firmware
often combines kernel-level code and user-space services
within a single image, blurring privilege boundaries and al-
lowing unsafe data handling to propagate across components.

As shown in Figure 3c, validation bugs dominate across
all attack vectors. Network-based vulnerabilities are most
prevalent, exploiting weak input handling in interfaces such
as IPMI and Redfish; LOCAL vectors typically involve host-
BMC boundary flaws that enable privilege escalation, while
ADJACENT_NETWORK attacks expose architectural weak-
nesses like hardcoded credentials or certificates. These patterns
underscore how BMC’s permanent exposure and multi-channel
connectivity amplify the security impact of implementation
bugs, turning simple validation errors into remotely exploitable
entry points.

Finally, Figure 3d shows that architectural issues, though
fewer, tend to have higher severity scores. For exam-
ple, CVE-2022-22374 in IBM Power9 systems (CVSS 9.1)
reflects insecure firmware downgrade protections. Overall,
implementation-level flaws dominate both in count and in
impact, whereas architectural weaknesses that stem from fun-
damental design and update processes tend to cause broader
system compromise when exploited. These findings highlight
that BMC firmware’s monolithic structure, long vendor reuse
cycles, and limited verification pipelines collectively foster
persistent, high-severity vulnerabilities.
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Fig. 4: Top 10 Vendors CWE and Root Cause Distribution

3) Vendor-specific analysis: To examine vendor-specific
vulnerability patterns, we categorized major BMC vendors by
their target markets and product focuses, as summarized in
Table II. This categorization contextualizes the differences in
vulnerability types and root causes shown in Figure 4, focusing
on the ten vendors with the highest number of reported CVEs.

Figure 4a compares CWE distribution among vendors. HPE
and ASUS show frequent CWE-118 and CWE-74 cases,
indicating persistent boundary-check and input filtering weak-
nesses. ASUS also exhibits many CWE-706 cases related to
improper input validation and limited use of static analysis. In
contrast, NVIDIA shows a more balanced distribution across
CWE types, reflecting complex command parsing in high-
performance BMCs.

Figure 4b shows that implementation flaws, mainly valida-
tion bugs, dominate most vendors; over 80% of vulnerabilities
in HPE, Dell, and ASUS fall into this category. NVIDIA and
AMI, however, exhibit more architectural issues, including
weak host-BMC isolation, insecure update mechanisms, and
misconfigured privilege models. Lenovo presents a mix of
privilege model and flaws with inconsistent API-UI valida-
tion. These variations stem from each vendor’s development
priorities and market focus. Performance-oriented vendors
like NVIDIA tend to suffer complex architectural issues due
to feature-rich and high-throughput firmware design. OEM
vendors such as AMI, prioritizing compatibility and flexibility,
frequently face authentication and privilege management vul-
nerabilities. General-purpose server vendors, including HPE
and ASUS, show recurring implementation errors like input
validation and memory safety issues, often linked to cost-
driven development and limited security testing.

Overall, vendor-specific design choices and market strate-
gies substantially shape BMC security. Addressing these recur-

TABLE II: BMC vendors

Type Vendor
General-purpose / Enterprise HPE, Dell, ASUS, Lenovo, Cisco

OEM AMI, Supermicro, Intel
High-performance NVIDIA

Open-source Linux

ring flaws requires tailored detection and prevention strategies
that reflect each vendor’s design philosophy, alongside stan-
dardized security guidelines applied at the development stage
to improve the collective security posture of BMC firmware.

V. FUTURE RESEARCH DIRECTIONS

Based on our analysis in Section IV, BMC firmware security
challenges primarily stem from implementation flaws, archi-
tectural weaknesses, and potential hardware risks. Address-
ing these problems requires targeted research into detection
methodologies, secure design principles, and hardware-level
safeguards tailored to the unique characteristics of BMC
systems.
Implementation-level research. Since nearly 90% of vulner-
abilities originate from implementation errors such as bound-
ary checking, injection, and input validation flaws, future
work should focus on specialized static and dynamic analysis
frameworks for BMC firmware. Static methods must im-
prove loop and bounds verification, while dynamic approaches
should analyze input handling and API behaviors through
targeted payload testing and runtime monitoring. Given BMC
firmware’s multi-binary composition and vendor-specific APIs,
research into BMC-aware multi-binary analysis, source-to-
sink modeling, and hardware-integrated fuzzing frameworks
is especially critical to uncover hidden vulnerabilities.
Architectural research. Although architectural flaws repre-
sent only about 9% of cases, their severity is high. Future
studies should develop secure architectural guidelines encom-
passing privilege model design, role-based access control,
and verified update and boot chains. Achieving this requires
clear trust-boundary definitions and formal verification of
privilege enforcement and firmware integrity. Such methods
would prevent design flaws that enable privilege escalation or
insecure firmware rollback.
Hardware-level research. Even though hardware-related
CVEs were not observed in our dataset, past cases reveal
critical risks at the physical layer. Research should focus on
securing or disabling debug interfaces (UART, JTAG), enforc-
ing firmware encryption and signature verification, and im-
plement strict board-level access control. In addition, supply-
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chain assurance and pre-deployment penetration testing should
be standardized to detect hardware tampering and firmware
injection during manufacturing and delivery.

VI. RELATED WORK

A. Empirical studies on software vulnerability

Prior research has examined software vulnerability trends
using CVE datasets, mostly focusing on IoT and firmware-
related systems [10]–[14]. These studies analyzed severity
distributions, access vectors, or exploitability metrics but did
not investigate architectural or root causes. In contrast, our
study introduces a taxonomy-driven approach that analyzes
BMC firmware vulnerabilities from a root-cause perspective,
offering a deeper understanding of why such flaws persist.

B. Vulnerability analysis on BMC firmware

Existing research on BMC security has mainly explored
protocol and management interface vulnerabilities. Large-scale
scans revealed widespread IPMI misconfigurations and default
credentials [2], [15], while subsequent works demonstrated
remote exploitation and privilege escalation in OEM imple-
mentations such as HPE iLO and Dell iDRAC [16], [17].
Network-level studies [18], [19] uncovered exposed or reach-
able BMCs, and more recent tools like BMCDea [3] automated
firmware decryption and secret extraction. Unlike these case-
specific efforts, our work performs the first large-scale CVE-
based statistical analysis across multiple vendors, correlating
vulnerability types with architectural and implementation-level
causes.

VII. CONCLUSION

Strengthening BMC security is essential as these com-
ponents increasingly underpin large-scale computing infras-
tructures for IoT and mobile services. This study analyzed
358 BMC firmware vulnerabilities reported between 2020
and 2025, classifying them by root cause into architectural,
implementation, and hardware categories. Most vulnerabilities
arose from implementation issues, notably input validation and
memory errors, though some critical vulnerabilities reflected
deeper architectural flaws like inadequate privilege separation
and insecure update mechanisms. Our structured root-cause
taxonomy highlights systemic patterns, guiding future devel-
opment of targeted security measures such as source-to-sink
modeling, scalable multi-binary analysis, and hardware-aware
fuzzing.
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