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Abstract—This paper presents a comprehensive evaluation
of four ensemble methods (Majority Voting Method, AdaBoost
Algorithm, Stacking Ensemble Method, and Bayesian Decision
Method) in multi-expert feature selection systems, constructed
from five base experts including SelectKBest, Recursive Feature
Elimination, Random Forest, L1-based Selection (Lasso), and
Mutual Information, in the context of intrusion detection for
Internet of Things (IoT) systems. We utilize the CIC IoT 2023
dataset, a large-scale real-world dataset that reflects diverse
attack scenarios in IoT environments. The highlight of this
research is the integration of Explainable Artificial Intelligence
(XAI) methods to analyze the influence of each expert and feature
on the ensemble method results. Additionally, the study con-
ducts multi-criteria comparisons including performance metrics
(accuracy, per-class precision, recall, F1-score), computational
efficiency (training time, response time, memory usage), and
comprehensive classification performance indicators (ROC-AUC,
PR-AUC, false positive rate). The experimental results provide
in-depth analyses of the advantages and limitations of each
method, thereby offering recommendations for selecting the
most appropriate ensemble method according to specific IoT
system requirements. This research contributes to enhancing the
effectiveness and transparency of intrusion detection systems in
complex IoT environments.

Index Terms—Internet of Things, Intrusion Detection System,
CIC IoT 2023, Feature Selection, Multi-expert system, Ensemble
Method

I. INTRODUCTION

Contemporary Internet of Things (IoT) solutions have
marked a significant advancement in the technology domain,
enabling the integration of diverse devices into interconnected
networks serving various aspects of human life [1]. However,
alongside these apparent benefits, this diverse integration also
presents security challenges due to the complexity, large scale,
and critical role of IoT ecosystems [2]. Particularly, attacks and
security breaches in IoT systems have severe impacts, directly
affecting both digital and physical domains [3]. Therefore, im-
plementing highly effective security solutions has increasingly

become a crucial component in modern network solutions [4].
The massive volume and diversity of IoT data necessitate strin-
gent criteria for feature selection. In edge-deployed intrusion
detection systems (IDS), feature selection enhances detection
accuracy, minimizes computational costs, and facilitates real-
time processing [5]. Nevertheless, practical IDS solutions are
limited by the attributes of intricate and decentralized IoT
systems, needing to ongoing investigation into more efficient
and versatile feature selection techniques.
Feature Selection (FS) is an important preprocessing phase
in machine learning, designed to select representative subsets
from high-dimensional datasets. Filter, wrapper, embedded,
and hybrid methodologies each possess distinct advantages;
nonetheless, their efficacy is significantly influenced by data
attributes, model selection, and available system resources [6].
Multi-expert FS systems have thus arisen to use the comple-
mentary benefits of several methodologies. Nevertheless, the
majority of ensemble processes continue to operate as ”black
boxes,” exhibiting a lack of openness regarding the contri-
butions of experts to the final outcomes. Thus, augmenting
interpretability and reliability in these systems is vital.
This research addresses these shortcomings by performing a
thorough comparative evaluation of aggregation techniques in
multi-expert feature selection for IoT intrusion detection. Our
primary contributions are:

• Utilising XAI to provide insight into result aggregation
methods in multi-expert FS systems.

• Conducting a multi-criteria assessment of four ensemble
techniques as Majority Voting, AdaBoost, Stacking, and
Bayesian Decision on the CIC IoT 2023 dataset.

II. RELATED WORK

Feature selection (FS) is a key component of intrusion
detection systems (IDS) since it reduces dimensionality, gets
rid of unnecessary features, and makes classification more
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accurate. Recent studies have utilized diverse feature se-
lection techniques on novel IoT datasets to improve attack
detection [7]. Nonetheless, no singular strategy is universally
superior; their efficacy is contingent upon data attributes,
assessment standards, and application goals [8].
To overcome these constraints, ensemble methodologies have
been extensively utilized to enhance the stability and per-
formance of Intrusion Detection Systems (IDS) and File
Systems (FS) using Internet of Things (IoT) data. Ensembles
mitigate bias inherent in individual methods by capitalizing
on the diversity among specialists and harnessing collective
strength [9]. Some common strategies are Majority Voting,
Bagging, Boosting (like AdaBoost), Stacking, and Bayes Op-
timal. Fusion mechanisms can work at the decision or feature
level that enhance detection precision, flexibility to emerging
threats, and overall scalability.
In [10], several aggregation strategies, such as union, intersec-
tion, rank aggregation, and majority voting, were evaluated,
indicating that the optimal selection is contingent upon accu-
racy objectives and the dimensionality of the feature set. Other
comparative studies show trade-offs: Stacking and AdaBoost
often work best because they use the best weights [10];
Boosting lowers bias while Bagging lowers variance [11]; and
Stacking works best for feature-based classification tasks [12].
However, the majority of research prioritizes accuracy and
generalization over explainability. Recent efforts to include
XAI into ensembles [13] mostly improve the transparency
of individual models, yet fail to adequately tackle the ”black
box” characteristic of aggregation in FS for IDS. This gap
drives our research to a thorough assessment of ensemble
techniques integrated with XAI to examine expert and feature-
level contributions on the CIC IoT 2023 dataset.

III. METHODOLOGY

Figure 1 illustrates the comparison system for result aggre-
gation methods in multi-expert feature selection models for
IoT attack detection on edge computing environments.

A. Ensemble Methods

1) Majority Voting Method: The majority voting decision
algorithm is considered one of the most commonly used
rules for combining decisions from multiple experts [16].
According to this principle, the accepted hypothesis is the
one that receives more than half of the total expert votes.
Specifically, if the number of experts is N , then the selected
hypothesis must achieve at least ⌊N/2⌋ + 1 votes. The pop-
ularity of this rule stems not only from its intuitive nature,
ease of understanding, and compatibility with social decision-
making models, but is also reinforced by solid mathematical
foundations. Many studies have proven that if each expert
in the system has an equal probability of making correct
decisions greater than 0.5, then as the number of experts
approaches infinity, the probability of the system achieving
correct decisions will approach 1. This result can be extended
to cases where experts have different correctness probabilities,
provided all probabilities are greater than 0.5. In the proof,

Fig. 1: Comparative system

different probabilities are replaced by the minimum value to
ensure generality of results. Additionally, the majority voting
algorithm has distinct characteristics when the number of
experts is even or odd. These characteristics lead to differences
in handling tie situations or absolute advantage, which have
been analyzed in detail in [17].

2) AdaBoost Algorithm: The AdaBoost Algorithm (Adap-
tive Boosting) is used as an aggregation mechanism to op-
timize decision-making processes in multi-expert systems.
Instead of considering each expert as equally reliable as in
majority voting methods, AdaBoost learns to assign different
weights to experts based on classification performance. Using
AdaBoost allows the system to focus more on high-accuracy
experts while reducing the influence of experts that frequently
make incorrect predictions. Specifically, at each iteration, the
algorithm calculates the classification error εt of expert t and
assigns weight αt according to the formula [18],

αt =
1

2
ln

(
1− εt
εt

)
. (1)

These weights are used to update the influence of each ex-
pert on the aggregated decision. The iterative process continues
until reaching a predetermined number of iterations or when
the error converges. The final decision of the multi-expert
system is made according to the classification function.

H(x) = sign

(
T∑

t=1

αtht(x)

)
, (2)

where ht(x) is the prediction of expert t with x being the
input feature vector.

Applying AdaBoost effectively exploits differences in reli-
ability between experts while enhancing overall system accu-
racy compared to traditional aggregation methods like voting.

989



3) Stacking Ensemble Method: The Stacking Ensemble
Method uses a second-level machine learning model (meta-
learner) to learn optimal coordination mechanisms between
component predictions. In this architecture, each base model
fi generates a probability prediction vector pi = fi(x) with x
being the input feature vector and pi ∈ RC , where C is the
number of classification classes. Vectors from N experts are
concatenated to create a meta feature vector [19]:

z = concat(f1(x), f2(x), . . . , fN (x)) ∈ RN ·C (3)

This vector z is then fed into a meta classifier g(·) to
produce the final **classification label**:

y = g(z) = g(f1(x), f2(x), . . . , fN (x)) (4)

This method allows maximum exploitation of the com-
plementary potential between experts, especially when each
model has different tendencies or biases. The meta model can
learn complex nonlinear relationships between experts, thereby
significantly improving performance compared to traditional
aggregation methods like averaging or simple voting.

4) Bayesian Decision Method: One of the popular decision
fusion methods in multi-expert systems is the Bayes algorithm,
built on Bayes’ formula [20]. Assuming a finite number of
classes (hypotheses) M and a set of statistically independent
decision-making experts, the basic Bayes formula has the
form:

P (Hm|E) =
P (E|Hm) · P (Hm)

P (E)
(5)

Where:
• P (Hm|E): conditional probability for the system to ac-

cept hypothesis Hm given decision E
• P (Hm): prior probability of class Hm occurrence
• P (E|Hm): probability that experts make decision E

when the signal belongs to class Hm

If assuming expert independence, we have:

P (Hm|E) =
N∏
j=1

P (ej |Hm) (6)

The decision function is then constructed as:

gm(E) = P (Hm) ·
N∏
j=1

P (ej |Hm) (7)

The input signal is assigned to class Hm such that gm(E)
achieves maximum value.

In practice, probability P (ej |Hm) is estimated through the
confusion matrices of each expert. However, the Bayes method
has two important limitations: (i) the statistical independence
assumption between experts is often not satisfied in practice;
(ii) results may be biased when the occurrence probability of
a class is very small, leading to system bias toward classes
with higher prior probabilities, even when all experts choose
different classes.

B. Explaining Multi-Expert Ensemble Decisions with LIME
and SHAP

To enhance transparency and interpretability of decision
fusion systems from multiple experts, this research integrates
an explanation module based on two XAI techniques: LIME
and SHAP. These two methods provide complementary expla-
nation capabilities at two levels: LIME operates at the input
feature level, allowing analysis of each feature’s influence,
while SHAP evaluates each expert’s contribution to the final
fusion result.

Feature Influence Explanation using LIME: LIME
approximates the model decision boundary using locally
weighted regression [21]:

g(x) = β0 +
m∑
i=1

βixi + ε (8)

where β are weights learned from perturbed samples. LIME
provides explanations in the form of weights assigned to
input features, reflecting the influence level of each feature
on the final aggregated result. By identifying features with the
greatest impact, this method allows deeper analysis of the input
data’s role in decision-making processes, while enhancing
system transparency and verifiability.

Expert-Level Explanation with SHAP: SHAP assigns an
importance score Si for each expert Xi, calculated according
to the formula [22]:

Si =
∑

S⊆F\{Xi}

|S|!(|F | − |S| − 1)!

|F |!
[f(S∪{Xi})−f(S)] (9)

where F is the full expert set and f(S) is the model output
with subset S.

SHAP (SHapley Additive exPlanations) is a game theory-
based method that allows quantitative measurement of each ex-
pert’s contribution to the final aggregated result in multi-expert
systems. By decomposing the final prediction value into com-
ponents corresponding to each expert, this method provides
detailed information about individual expert impacts in specific
cases. SHAP analysis not only ensures transparency of expert
coordination mechanisms but also helps detect bias issues
or excessive dependence on certain experts. These analyses
contribute to enhancing model reliability and interpretability
while providing a scientific basis for optimizing structure and
expert combination strategies in complex systems.

IV. EXPERIMENTS AND RESULTS

A. An Overview of the CIC IoT 2023 Dataset

To validate the proposed approach, we employed the CI-
CIoT2023 dataset provided by the Canadian Institute for
Cybersecurity (CIC) [15]. This benchmark dataset is widely
adopted in IoT security research due to its large scale and
realistic attack scenarios. The data was generated from a
testbed that integrates 105 heterogeneous IoT devices, thereby
emulating the complexity of modern IoT deployments. Among
them, 67 devices were directly involved in attack scenarios,
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while the other 38 operated with Zigbee and Z-Wave protocols
across five control centers. CICIoT2023 includes 46 network
flow features and 33 attack categories grouped into seven
families, ensuring broad coverage of network architectures,
communication standards, and behavioral patterns of critical
IoT devices.

B. Data Processing

Before training, data underwent preprocessing to enhance
quality and reliability. Missing values were replaced with
mean or median to ensure integrity, while duplicate or non-
informative records were removed to reduce noise. Subse-
quently, data was normalized to synchronize ranges between
features, facilitating model training. As a result, the final
dataset comprised 466,866 samples with 46 attributes, main-
taining the original distribution of 8 attack types, ensuring
representativeness of IoT environments. Finally, stratified sam-
pling techniques were applied to divide data into training and
testing sets, preserving class proportions and helping models
better recognize rare attack types.

C. Experimental Parameters

Parameter settings for the 5 feature selection methods are
presented in Table I:

TABLE I: Parameter Settings for Feature Selection Methods

Expert Name Scikit-learn Class Main Parameters

SelectKBest SelectKBest score func=f classif,
k=10

RFE RFE estimator=LR(max iter=1000),
n features to select=10,
step=1

Random Forest RandomForestClassifier n estimators=100,
criterion=’gini’,
max depth=None,
min samples split=2

Lasso Lasso + SelectFromModel alpha=chosenby
cross-validation,
max iter=1000,
threshold=’mean’

Mutual Information mutual info classif discrete features=’auto’,
n neighbors=3,
copy=True

Parameter settings for the 4 result aggregation methods are
presented in Table II:

TABLE II: Parameter Settings for Ensemble Methods

Method Parameters

Majority Voting voting=”soft”, weights=[1, 2, 1]
AdaBoost n estimators=200, learning rate=0.5
Stacking final estimator=LogisticRegression()
Bayesian Decision var smoothing=1e-9

To evaluate the result aggregation methods, we used an
MLP model with the following parameters: The MLP was
trained for 50 epochs using the Adam optimizer (learning rate
0.001, batch size 128), with sparse categorical crossentropy
loss and callbacks such as ModelCheckpoint to retain the best
validation accuracy.

D. Explaining Ensemble Results using XAI

1) Feature Influence Explanation using LIME: From the
analysis results, it can be seen that Majority Voting and Stack-
ing Ensemble methods identify relatively similar influential
feature sets, with prominent features such as Weight, Number,
rst count, Variance, HTTPS, Max. These features reflect the
influence of traffic factors, protocols, and network ratios on
attack detection capability, especially when feature values are
relatively uniform.

For AdaBoost, the order and type of features change
significantly: Header Length, ack flag number, flow duration
become more important. This reflects the tendency to recog-
nize special patterns based on header information and session
duration, thereby diversifying detection capabilities.

Meanwhile, Bayesian Decision Method, besides using
familiar quantitative features, also combines distribution-
describing features (Covariance, Radius, Std), helping the
system become more sensitive to abnormal behaviors in terms
of scale and statistical variation that other models find difficult
to recognize.

Notably, the feature group Weight, Number, rst count,
Variance appears consistently across all methods, playing
the role of core features providing decisive information to
distinguish abnormal states. This stability ensures consistency
and increases model transferability in changing environments.

Fig. 2: LIME value plots for four different ensemble/decision
methods

2) Expert Influence Explanation using SHAP: SHAP analy-
sis allows a clear explanation of each feature selection expert’s
influence in the four result aggregation mechanisms. With Ma-
jority Voting, the system prioritizes stable experts like Lasso
and RandomForest, while Mutual Information contributes only
marginally. This helps maintain balance and reliability, suitable
for contexts requiring stability.

AdaBoost distributes contributions fairly evenly among
multiple experts, including SelectKBest, Mutual Information,
RandomForest, and RFE. This is a fundamental characteristic
of Boosting: combining both strong and weak experts to
reduce bias, but increasing computational cost and latency.
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Stacking shows heavy dependence on Mutual Information,
while Lasso and SelectKBest play supporting roles. This
bias helps increase Recall but simultaneously poses risks of
increased false alarms if the main expert is corrupted.

Bayesian Decision emphasizes SelectKBest and RFE with
SHAP distributions spread across both positive and negative
directions. This shows that Bayes is suitable for linearly
structured data, both increasing interpretability and supporting
anomaly pattern detection.

E. Performance Criteria Comparison

TABLE III: Performance Metrics Comparison

Method Accuracy Precision Recall F1-score

Majority Voting 0.996444 0.893249 0.964026 0.927289
AdaBoost 0.995149 0.881067 0.917577 0.898952
Stacking 0.995224 0.835249 0.992714 0.907199
Bayesian Decision 0.704382 0.073665 0.999545 0.137218

Analysis of Table III shows that each aggregation mecha-
nism exhibits different performance configurations. Majority
Voting achieves the highest F1-score (0.927289) by balanc-
ing Precision (0.893249) and Recall (0.964026), maintaining
classification effectiveness while controlling false alarms. Ad-
aBoost achieves competitive performance with metrics close
to Majority Voting, suitable for scenarios requiring balance
between correct detection and error limitation.

Stacking optimizes detection capability with a Recall of
0.992714, but low Precision (0.835249) reduces the F1-score
to 0.907199; this method is suitable when maximum coverage
of attack cases is needed, but requires adjustment to limit false
alarms. Conversely, Bayesian achieves near-absolute Recall
(0.999545) but very low Precision (0.073665), pulling F1-
score down to 0.137218, showing difficulty in controlling false
alarms in noisy edge environments.

F. Computational Efficiency Comparison

TABLE IV: Computational Efficiency Comparison

Method Training Time (s) Inference Time (s) Memory Usage (MB)

Majority Voting 117.212786 0.367319 0.832127
AdaBoost 157.774939 3.255955 0.754509
Stacking 385.066334 0.383666 0.830904
Bayesian Decision 0.158375 0.040807 0.758259

Experimental results indicate significant differences in com-
putational efficiency. Bayesian Decision has training time of
only 0.158 seconds and an inference time of 0.041 seconds,
faster by two to three orders of magnitude compared to other
methods. Majority Voting and Stacking have similar inference
times (0.37–0.38 seconds), but Stacking requires much longer
training time (385 seconds vs. 117 seconds). AdaBoost has
inference time up to 3.26 seconds, nearly 80 times higher
than Bayesian. Memory usage ranges 0.75–0.83 MB, relatively
uniform.

TABLE V: Classification Performance Indicators

Method ROC-AUC PR-AUC False Positive Rate

Majority Voting 0.999483 0.981397 0.002775
AdaBoost 0.999193 0.963783 0.002983
Stacking 0.999472 0.999472 0.004716
Bayesian Decision 0.983261 0.983261 0.302727

G. Classification Performance Comparison

Majority Voting, AdaBoost, and Stacking all achieve near-
saturated ROC-AUC (≥ 0.9991), so ROC-AUC is no longer
the main distinguishing criterion. Differences are clearer in
PR-AUC and false positive rate (FPR). Stacking achieves the
highest PR-AUC (0.999472) but also higher FPR (0.004716).
Majority Voting has the lowest FPR (0.002775) with PR-AUC
0.981397, suitable for systems prioritizing false alarm control.
AdaBoost achieves PR-AUC 0.999193 and FPR 0.002983, bal-
ancing accurate detection and error control. Bayesian Decision
only achieves ROC-AUC and PR-AUC 0.983261 with high
FPR 0.302727, not meeting edge environment requirements.

V. CONCLUSION

Multi-dimensional comparison demonstrates that no aggre-
gation mechanism is preferable; each method uses different
expert selection and feature set procedures for different de-
ployment circumstances. Majority Voting balances and stabi-
lizes, AdaBoost utilizes diversity, Stacking enhances detection
but increases false alarms, and Bayesian is computationally
efficient but inaccurate. This research showed that explainable
AI (XAI) analysis indicates that multi-expert system success
depends on combination mechanisms and how each technique
utilizes and weights component experts. Consistent properties
like Weight, Number, rst count, and Variance establish sta-
bility and model transferability across operational conditions.
This conclusion suggests creating XAI-based dynamic expert
selection techniques to enable systems to adapt to data char-
acteristics and operational conditions rather than employing a
fixed architecture. Experimental results have evident practical
relevance. Bayesian Decision Method is ideal for resource-
constrained edge devices due to its fast processing speed
and optimal memory usage; Stacking is best for gateways or
high-configuration devices; and Majority Voting and AdaBoost
balance performance and reliability in standard scenarios.
Selecting aggregation algorithms affects energy optimization,
heat reduction, and edge device hardware lifespan, which are
crucial for continuously functioning systems.
Our future work will focus on feature selection systems and
feature compression methods that reduce computational costs
while maintaining model quality for resource-constrained IoT
edge devices. XAI-guided expert pruning mechanisms auto-
matically remove redundant experts and features, improving
balance and self-adjustment according to each device layer’s
resource status and processing requirements in edge computing
systems.
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(a) Majority Voting Method (b) AdaBoost Algorithm

(c) Stacking Ensemble Method (d) Bayesian Decision Method

Fig. 3: SHAP value plots for four different ensemble/decision methods.
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