
1

Heterogeneous Graph Neural Network Methods for
Multi-User Fluid Antenna Systems

Geon Kim, Jae Seo Lee, and Hoon Lee, Member, IEEE

Abstract—This paper proposes a graph neural network (GNN)
method for a multi-user fluid antenna system (FAS) where a
base station equipped with multiple fluid antennas (FAs) serves
multiple users in the downlink. In the FAS, it is necessary to
jointly optimize the beamforming vectors and the positions of
FAs. To address this nonconvex task, we present heterogeneous
GNN (HetGNN) architectures that model the multi-user FAS as
heterogeneous graphs comprising user nodes and antenna nodes.
To achieve high-level generalization across arbitrary system sizes,
the proposed HetGNN is carefully designed to be invariant to the
number of FAs and users. Consequently, a sole HetGNN can be
readily applied to any FAS with diverse configurations. Numerical
results demonstrate the effectiveness of the proposed method over
conventional approaches.

I. INTRODUCTION

Over the past few decades, advances in multiple-input
multiple-output (MIMO) technologies have substantially in-
creased the capacity of wireless networks [1]–[3]. Neverthe-
less, with fixed antenna configurations, the wireless propaga-
tion environment remains highly uncontrollable and stochastic,
leading to deep fading. To overcome this challenge, research
on fluid antennas (FAs) [4], [5] employs liquid-metal con-
ductors to realize flexible MIMO configurations. It has been
shown that dynamic controls of FA locations can overcome
the deep fading issue [6].

The full potential of fluid antenna systems (FASs) can be
achieved through a joint optimization of beamforming and
FA positions [7]–[9]. A multi-user multiple-input single-output
(MISO) FAS was considered in [7] where a base station (BS)
equipped with multiple FAs serves multiple single antenna
users. The transmit power minimization problem under the
minimum signal-to-interference-plus-noise ratio (SINR) con-
straints was solved using a block coordinate descent (BCD)
algorithm. The weighted sum rate maximization task was
investigated in the multi-user MISO FAS [8]. For fixed FA
locations, efficient beamforming vectors were identified us-
ing the weighted minimum mean-squared-error (WMMSE)
algorithm [10], whereas the position optimization for given
beamforming was addressed via the successive convex ap-
proximation method. These approaches have been extended
to multi-user MIMO FASs [9] where both the BS and users
employ multiple FAs. Similar to [7], [8], the SCA-based BCD
optimization technique was developed to determine precoding
matrices and transmit-receive FA locations.

Due to the coupled nature of FA locations and beam-
forming vectors, the optimization techniques in multi-user
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FASs naturally invoke iterative and alternating algorithms with
high computational complexity. This becomes severe when
handling large-scale FASs with a number of FAs and users.
Therefore, existing optimization-based approaches lack the
scalability to the network size.

This limitation can be addressed through the learning-to-
optimize framework which exploits neural networks to deter-
mine efficient signal processing policies [2], [3], [11]–[14].
Among various candidate architectures, graph neural networks
(GNNs) have been regarded as promising models to learn op-
timal transmission strategies in multi-user networks [3], [11]–
[14]. Thanks to the permutation equivariant property, the GNN
possesses the generalization capability to the network size,
e.g., the number of users. Such a scalability has been inves-
tigated for wireless resource management problems in single-
antenna systems [11], [12]. They characterized transmitter-
receiver pairs as nodes in a graph with their edge connections
corresponding to wireless links. This leads to homogeneous
GNN (HomGNNs) that models wireless networks by graphs
consisting of single-type nodes.

The HomGNN architecture has been recently applied to
multi-user MISO FASs for optimizing the FA position and
beamforming jointly [14]. Similar to [12], this work models
BS-user pairs as single-type nodes in homogeneous graphs.
Although it can be universally applicable to FAS with arbitrary
user populations, it lacks the generalization capability to the
number of FAs. We can overcome such challenges using het-
erogeneous GNNs (HetGNNs) [3], [13], which define antennas
at BSs and users as distinct types of nodes in heterogeneous
graphs. By doing so, we can achieve the scalability to both the
number of antennas and users. There have been several studies
on HetGNN-based beamforming optimization for conventional
fixed antenna systems [3], [13]. However, these cannot be
straightforwardly extended to FASs with dynamic antenna
configurations.

This paper presents a HetGNN approach to multi-user
MISO FASs where a FAS-aided BS broadcasts data symbols
to multiple users. To maximize the sum rate performance, it
is essential to optimize FA positions at the BS and multi-user
beamforming vectors jointly. Although this problem can be
addressed using existing BCD algorithms, e.g., the WMMSE-
based approach [8], their computational complexity become
prohibitive as the system size gets larger. To this end, we
propose the HetGNN method which can be universally applied
to arbitrary FASs with various populations of FAs and users.
Inspired by [14], the proposed learning architecture consists
of two subsequent HetGNNs, each of which identifies efficient
FA locations and beamforming vectors. Numerical results
demonstrate the effectiveness of the proposed approach.
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Fig. 1. Schematic diagram of multi-user FAS.

II. SYSTEM MODEL

This section describes a problem for optimizing antenna
placement and beamforming vectors in multi-user FAS, which
is followed by the background on HetGNN.

A. Problem description

As shown in Fig. 1, we consider a multi-user FAS where a
BS equipped with N FAs provides downlink communication
services to K single-antenna users. Let N ≜ {1, · · · , N}
and K ≜ {1, · · · ,K} be index sets of the FAs and users,
respectively. It is assumed that the FAs at the BS are arranged
in a linear array of length D. The location of FA n ∈ N is
denoted by xn ∈ [0, D]. Without loss of generality, we assume
that xn < xm for n < m, ∀n,m ∈ N . Also, FAs are subject
to the minimum antenna spacing constraint ∆ expressed by

xn − xn−1 ≥ ∆, ∀n ∈ N , (1)

where we define x0 ≜ −∆.
Let θk ∈ [0, π] be the angle between the BS and user k ∈

K. Then, the channel vector from the BS to user k can be
expressed as [14]

h(x, θk) =
[
ej

2π
λ x1 cos(θk), · · · , ej 2π

λ xN cos(θk)
]T

, (2)

where x ≜ [x1, · · · , xN ]T ∈ RN stands for the FA location
vector and λ represents the wavelength. Denoting the beam-
forming vector for user k as wk ∈ CN , the received signal yk
at user k can be written by

yk = h(x, θk)
Hwksk +

∑
i∈K\{k}

h(x, θk)
Hwisi + ηk, (3)

where sk ∼ CN (0, 1) accounts for the data symbol for user
k and ηk ∼ CN (0, σ2

k) indicates the additive Gaussian noise
with zero mean and variance σ2

k. Accordingly, the SINR of
user k is given by

γk(x,W) =

∣∣wH
k h(x, θk)

∣∣2
∑

i∈K\k
∣∣wH

i h(x, θk)
∣∣2 + σ2

k

, (4)

where W = [w1, · · · ,wK ] ∈ CN×K .

In this paper, we aim to maximize the sum rate performance
of the multi-user FAS by jointly optimizing the beamforming
W and the location x. The sum rate, denoted by R(x,W)
can be calculated as

R(x,W) =
∑
k∈K

log2
(
1 + γk(x,W)

)
. (5)

The corresponding optimization task can be formulated as

max
W,x

R(x,W) (6a)

s.t.
∑
k∈K

∥wk∥2 ≤ Pmax, (6b)

xn ∈ [0, D], ∀n ∈ N , (6c)
xn − xn−1 ≥ ∆, ∀n ∈ N , (6d)

where Pmax denotes the transmit power budget at the BS.
Notice that at the optimal, we set x1 = 0 without loss of
the optimality [14]. Due to the coupled beamforming and
FA position vectors in the objective function, problem (6)
is generally nonconvex, making it challenging to identify the
globally optimal solution.

B. Preliminaries

We briefly introduce the GNN architecture. According to
the heterogeneity of graphs, the GNN can be classified into
two categories: HomGNN and HetGNN. The HomGNN is
developed for homogeneous graphs consisting of single-type
nodes. Let Ghom = (K, E) be a homogeneous graph consisting
of K nodes K ≜ {1, · · · ,K} and their edge connections
E ≜ {(k, n) : ∀k, n ∈ K}. The HomGNN updates hidden
node features through a layered architecture. Let v(l)

k ∈ RVl

be the feature vector of node k ∈ K at the l-th HomGNN
layer. We denote ekn ∈ RE be the feature vector of edge
(k, n) ∈ E . The l-th HomGNN layer consists of pooling and
combining steps. These can be expressed as [11], [12]

a
(l)
k = PL(l)({NN(l)

PL(v
(l−1)
n , ekn) : ∀n ∈ K(k)}), (7a)

v
(l)
k = NN

(l)
CB(v

(l−1)
k , a

(l)
k ), (7b)

where a
(l)
k is the aggregated feature of node k, PL(l)(·) equals

the pooling operator, K(k) accounts for neighbors of node k,
and NN

(l)
PL(·) and NN

(l)
CB(·) respectively denote neural network

modules dedicated to the pooling and combining, respectively.
In contrast, the HetGNN handles heterogeneous graphs with

T different node types. Unlike HomGNN, which applies a
single set of MLPs to all nodes, the HetGNN employs distinct
MLPs for different node types. This enables type-aware feature
update mechanisms. For brevity, we focus on a special case
of the HetGNN with T = 2 node types [3]. Let N and
K be the node sets with two different types. Also, the set
of edges is denoted by E = {(n, k) : ∀n ∈ N , k ∈ V}.
Then, the heterogeneous graph Ghet can be expressed as
Ghet = (N ,K, E). Notice that the inference of the HetGNN
can be designed similarly to (7).

Both the HomGNN and HetGNN can be employed for the
optimization of the multi-user FAS. According to [14], the FAS
can be characterized as a homogeneous graph where each node
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Fig. 2. HomGNN and HetGNN for multi-user FASs.

represents a BS-user pair (see Fig. 2). The beamforming vector
wk of user k can be determined using the node feature v

(l)
k .

Although this guarantees the scalability to the user population
K, the overall inference becomes rigid in terms of the number
of FAs N . Thus, it loses the generalization capability for
arbitrary configurations (N,K).

This issue can be addressed by using the HetGNN approach,
where FAs and users are modeled by two different types
of nodes in a heterogeneous graph. Edge (n, k) connecting
antenna n ∈ N and user k ∈ K interprets a scalar fading
channel [h(x, θk)]n. The HetGNN has proven to satisfy the
permutation equivariance property, ensuring invariance to node
reordering and scalability to varying graph sizes (N,K) [13].
As a result, the HetGNN is a perfect candidate for establishing
scalable FAS optimizers.

III. PROPOSED METHOD

This section proposes a HetGNN approach for solving (6).
As shown in Fig. 3, the proposed learning architecture com-
prises two subsequent stages. In the first stage, the HetGNN
G1(·;φ1) with parameter φ1 determines the antenna position,
whereas the HetGNN G2(·;φ2) with parameter φ2 in the
second stage optimizes the beamforming vectors based on the
optimized antenna position.

A. FA position optimization

In this subsection, we develop the first HetGNN G1(·;φ1)
which identifies the FA position vector x. It is nontrivial
to learn the minimum antenna spacing constraint in (6d)
using neural networks. To this end, we introduce an auxil-
iary variable sn ≜ xn − xn−1 − ∆ ≥ 0, which satisfies
s1 = x1 − x0 −∆ = x1 and

∑
n∈N

sn ≤ D − (N − 1)∆ ≜ smax. (8)

It is not difficult to show that the FA position xn can be
equivalently retried from s ≜ [s1, · · · , sN ]T , as

xn = (n− 1)∆ +
n−1∑
i=1

si. (9)

To yield the auxiliary variable s satisfying (8), we alterna-
tively create intermediate features ξ ≜ [ξ1, · · · , ξN , ξN+1]

T

with ξ1 = 0 such that [14]

sn =
smaxξn∑
i∈N ξi

sigmoid(ξN+1), (10)

where sigmoid(q) ≜ (1 + e−q)−1 represent the sigmoid
function. Consequently, the FA position vector x can be
constructed using the activation function X(·).

x = X(ξ), (11)

where X(·), when receives ξ as input, applies (9) and (10) to
each ξn and outputs x.

Based on this, we can design the HetGNN G1(·;φ1) which
learns an efficient FA location vector x. As shown in Fig. 3,
it consists of two distinct node sets N̄ ≜ {1, · · · , N,N + 1}
and K, each of which models antenna position features ξn,
∀n ∈ N̄ , and user k ∈ K. Then, the corresponding heteroge-
neous graph G1,het is expressed as G1,het = (N̄ ,K, Ē), where
Ē ≜ {(n, k) : ∀n ∈ N̄ , k ∈ K}. Since there are no physical
relationships among N̄ and K, edge features are ignored in
constructing G1(·;φ1).

Let v(l)
n ∈ RVl and u

(l)
k be the feature vectors of nodes n ∈

N̄ and k ∈ K at the l-th layer of G1(·;φ1) (l = 1, · · · , L1).
With slight abuse of notations, v

(0)
n and u

(0)
k denote scalar

node features at an input layer, which are respectively set to

v(0)
n = (n− 1)∆ and u

(0)
k = θk. (12)

In the proposed HetGNN, we employ the pooling operator
PL(l)(·) with the graph attention (GAT) mechanism [15],
yielding weighted aggregations of neighboring node features.
As a result, the update rule of the node feature v

(l)
n is written

by

v(l)
n = ReLU

(
α(l)
nnW

(l)
V v(l−1)

n +
∑
k∈K

α
(l)
nkW

(l)
U u

(l−1)
k

)
, (13)

where ReLU(·) is the rectified linear unit (ReLU) activation,
W

(l)
V and W

(l)
U indicate learnable weight matrices, and α

(l)
nj

stands for the attention weight which represents the importance
of node j ∈ K

⋃
{n} measured at node n. It is calculated as

α
(l)
nj =

LeakyReLU(c
(l)
nj)∑

i∈K
⋃
{n} LeakyReLU(c

(l)
ni )

, (14)

where LeakyReLU(·) is the leaky ReLU activation and c
(l)
nj

denotes the attention coefficient obtained as

c
(l)
nj = a

(l),T
V W

(l)
V v(l−1)

n + a
(l),T
U W

(l)
U u

(l−1)
j (15)

with a
(l)
V and a

(l)
U being the learnable weights. The feature

vector u(l)
k of user node k is attained similarly to (13)-(15).

To produce the FA position feature ξn, the node feature
v
(L1)
n at the last layer is processed by a multi-layer perceptron

(ML) MLP1(·) as

ξn = MLP1(v
(L1)
n ). (16)

The FA position vector x is then retrieved using the ac-
tivation function X(·) in (11). Note that the inputs to the
HetGNN G1(·;φ1) in (12) can be expressed as two vectors
v ≜ [0,∆, · · · , N∆]T ∈ RN+1 and θ ≜ [θ1, · · · , θK ]T .
Consequently, its inference process can be written by

x = G1(v,θ;φ1). (17)

With the optimized the FA position x, we can readily deter-
mine the channel vectors h(x, θk), ∀k ∈ K, which will be
utilized in the beamforming optimization stage.
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Fig. 3. Proposed HetGNN architecture.

B. Beamforming optimization

Next, we consider the HetGNN G2(·;φ2) in the second stage
which optimizes the beamforming matrix W. To this end, we
exploit the beam feature learning strategy [2], [3]. Instead
of generating high-dimensional beamforming vectors, this
method allows to learn its low-dimensional sufficient statistics,
thereby leading to efficient learning structures. According to
the uplink-downlink duality, the optimal beamforming vector
can be parameterized through the downlink power allocation
vector p ≜ [p1, · · · , pK ]T and its dual uplink power allocation
vector q ≜ [q1, · · · , qK ]T [1]. For given p and q, the
beamforming vector wk can be computed using the activation
function W(·) as

wk = W(p,q)

≜
√
pk

(I+
∑

i∈K qih(x, θi)h(x, θi)
H)−1h(x, θk)∥∥(I+∑

i∈K qih(x, θi)h(x, θi)H)−1h(x, θk)
∥∥ . (18)

Here, the power allocation vectors p and q should satisfy the
total power constraints given by

∑
k∈K

pk =
∑
k∈K

qk = Pmax. (19)

As depicted in Fig. 3, the heterogeneous graph G2,het in the
second stage contains antennas and users as distinct node sets
N and K. Thus, it can be expressed as G2,het = (N ,K, E),
where E ≜ {(n, k) : ∀n ∈ N , k ∈ K}. Let m

(l)
n ∈ RMl

and n
(b)
l ∈ RNl respectively be hidden feature vectors of

antenna node n ∈ N and user node k ∈ K at the l-th layer
of G2(·;φ2) (l = 1, · · · , L2). Scalar input features m

(0)
n and

n
(0)
k are respectively given by

m(0)
n = xn and n

(0)
k = θk. (20)

In addition, we set the feature vector enk ∈ R2 of edge
(n, k) ∈ E to the associated channel coefficient as

enk =
[
ℜ{[h(x, θk)]n},ℑ{h(x, θk)]n}

]T
, (21)

where ℜ{Z} and ℑ{Z} account for real and imaginary parts
of a complex number Z.

To incorporate both the user node feature n
(l−1)
k and the

edge feature enk, at the l-th layer of G2(·;φ2), the feature
vector m(l)

n of antenna node n is updated as

m(l)
n = ReLU

(
β(l)
nnQ

(l)
Mm(l−1)

n +
∑
k∈K

β
(l)
nkQ

(l)
N n

(l−1)
k

)
, (22)

where QM and QN are learnable parameters and the attention
weight β(l)

nj can be attained as

β
(l)
nj =

LeakyReLU(d
(l)
nj)∑

i∈K
⋃

{n} LeakyReLU(d
(l)
ni )

. (23)

Here, the attention coefficient d(l)nk is computed as

d
(l)
nj = b

(l),T
M Q

(l)
Mm(l−1)

n + b
(l),T
N Q

(l)
N n

(l−1)
j

+ b
(l),T
E Q

(l)
E enj , (24)

where bZ, ∀Z ∈ {M,N,E}, are learnable parameters.
We leverage an MLP MLP2(·) to convert the user node fea-

ture n
(L2)
k ∈ R2 at the last layer into the corresponding beam

feature [pk, qk]
T ∈ R2. To fulfill the sum power constraint

(19), the scaled softmax activation function is employed as

[pk, qk]
T = Pmax

exp(MLP2(n
(L2)
k ))∑

i∈K exp(MLP2(n
(L2)
i ))

. (25)

Then, we recover the beamforming vector wk using the
activation function W(·) in (18). The input features of the
HetGNN G2(·;φ2) in (20) and (21) are consolidated into
the optimized FA position vector x and the angle vector θ.
Combining (20)-(25) leads to the inference of G2(·;φ2) as

W = G2(x,θ;φ2) = G2(G1(v,θ;φ1),θ;φ2). (26)

C. Training and implementation

We provide a training algorithm that optimizes two Het-
GNNs G1(·;φ1) and G2(·;φ2) jointly in an end-to-end manner.
Let F(·;ψ) with ψ ≜ {φ1, φ2} be the inference procedure of
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the proposed two-stage HetGNN in (17) and (26). Its input-
output relationships can be written by

(x,W) = F(v,θ;ψ). (27)

The training objective function J(ψ) is set to the average sum
rate as

J(ψ) =
1

|Θ|
∑
θ∈Θ

R(F(v,θ;ψ)), (28)

where Θ with the cardinality |Θ| indicates the training dataset
containing numerous instances of angle vectors θ.

The proposed two-stage HetGNN is trained to maximize the
average sum rate performance via the mini-batch stochastic
gradient descent (SGD) algorithm. The update strategy of the
parameter ψ is given by

ψ ← ψ + η
1

|B|
∑
θ∈B

∇ψR(F(v,θ;ψ)), (29)

where η > 0 is the learning rate, B ⊂ Θ with the cardinality
|B| represents the mini-batch set, and ∇Z accounts for the
gradient operator with respect to Z.

After the offline training, the optimized HetGNNs G1(·;φ1)
and G2(·;φ2) are implemented at the BS to produce efficient
FA position and beamforming vectors in an online manner.
Since the inference calculations of the HetGNNs are inde-
pendent of the number of antennas and users, they can be
directly applied to diverse FAS configurations with different
N and K. Notice that the combining strategies in (14) and (23)
can be realized in parallel over the sets of nodes N̄ , N , and
K. Therefore, the time complexity of the proposed two-stage
HetGNN is also independent of the network size.

IV. SIMULATION RESULTS

This section demonstrates the effectiveness of the proposed
HetGNN approach through numerical simulations. The signal-
to-noise ratio Pmax/σ

2
k and wavelength λ are set to 10 dB

and λ = 0.167 m, respectively. Also, the minimum antenna
spacing ∆ and the length D of FA arrays are fixed as ∆ = λ/2
and 10λ, respectively [14]. The angles θk ∈ [0, π], ∀k ∈ K,
are uniformly distributed.

We employ L1 = L2 = 4 HetGNN layers both for the first
and second stages. To improve the expressive power, multi-
head extensions are adopted for the GAT operations in (14)
and (23) with 4 heads. Thus, the dimension of the node feature
vectors at the l-th layer is given by 4l. The MLPs MLP1(·) and
MLP2(·) consist of three hidden layers with dimensions 256,
100, and 50. For the training, we adopt the Adam optimizer
with learning rate η = 2×10−5 and mini-batch sizes 1024. To
verify the scalability, the proposed HetGNN with a fixed FAS
configuration (N,K) = (8, 8) is applied to various systems
with unseen numbers of FAs and users.

For comparison, we consider the following benchmarks.
• Conventional [14]: The conventional HomGNN is

adopted which lacks the generalization ability to the
number of FAs. Thus, this method needs to be trained
for each given N .

Fig. 4. Average sum-rate performance for various FAS configurations (N,K).

Fig. 5. Average CPU running time for various FAS configurations (N,K).

• WMMSE [10]: Locally optimal beamforming vectors are
obtained using the WMMSE algorithm under the fixed
antenna configuration xn = (n− 1)D/(N − 1).

Fig. 4 plots the average sum rate performance for various
FAS configurations (N,K) with N ∈ {6, 8} and K ∈
{2, 3}. Both the proposed and conventional GNN methods
show only slight performance loss to the locally optimal
WMMSE algorithm. The proposed HetGNN approach, which
is scalable to both the number of FAs N and the number of
users K, exhibits performance comparable to the conventional
HomGNN that requires dedicated training for each given N .
This demonstrates the scalability of the proposed method over
the existing scheme [14]. The proposed method shows a slight
performance loss compared to the WMMSE algorithm.

Fig. 5 evaluates the average CPU running time of the
proposed HetGNN and WMMSE methods. Due to the parallel
computation capability, the time complexity of the proposed
method remains unchanged over any N and K. In contrast, the
WMMSE generally requires more computations as the system
size gets larger, thereby increasing the CPU running time for
large N and K. This confirms the scalability of the proposed
approach in terms of online inference time.

V. CONCLUSIONS

This paper has presented a HetGNN approach to maximize
the sum rate of the multi-user FAS. The proposed learning ar-
chitecture comprises two sequential HetGNNs, each of which
optimizes FA locations and beamforming vectors. Compared
to existing HomGNN methods which have rigid inference
structures in terms of the number of FAs, the proposed
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HetGNN can be straightforwardly generalized to various FASs
with arbitrary numbers of FAs and users. With the parallel
computation, we can further secure the scalability in terms
of the time complexity. Numerical results have confirmed the
superiority of the proposed scheme to conventional methods.
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