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Abstract—In this paper, we propose deep reinforcement
learning-based association control (Deep-AC) scheme for dense
WLAN system where coverage between Access Points (APs)
overlaps (e.g., an indoor event hall). Deep-AC determines the
association policy between users and APs to improve the fairness
of overall user device data rates by preventing user congestion
at specific APs and minimizing connection interruptions caused
by AP switching. Evaluation results demonstrate that Deep-AC
improves the fairness of overall user device data rates by up to
55.8% compared to the random association approach.

Index Terms—WLAN, Deep Q-Network, Reinforcement Learn-
ing, Association control, Jain’s fairness index

I. INTRODUCTION

With the rapid development of the information era, WLAN
has been established via WiFi Access Points (APs) in various
locations to enable internet services anywhere. [1] Today,
wireless connectivity plays a crucial role not only in traditional
web access but also in supporting diverse applications such as
IoT services, real-time video streaming, online gaming and
smart city infrastructures. In such contexts, ensuring reliable
and fair resource allocation among a large number of devices
has become a crucial challenge. [2]

However, WLANSs constructed by APs are managed in-
dependently, resulting in limitations in coverage expansion
and network management difficulties, especially in dense AP
environments. [3] In high-density scenarios such as airports,
campuses, or indoor event halls, overlapping AP coverage
can cause significant interference and unbalanced associations.
Many users tend to connect to only a specific AP, even
when multiple alternatives exist nearby. This not only leads
to user congestion and degraded internet performance but also
contributes to problems such as service interruption during AP
switching, latency increase, and reduced Quality of Service
(QoS). [4]

Recently, Mesh WiFi technology [5], which distributes
multiple APs to extend coverage, has been actively studied and
commercialized. Nevertheless, existing Mesh WiFi techniques
are inefficient in densely populated areas, such as indoor
event halls with overlapping AP coverage. [6] Consequently,
many users are connected to only a specific AP among APs
distributed in similar locations, leading to network congestion
and resulting in degraded internet performance. Furthermore,
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Mesh WiFi systems support only specific versions or products
from the same vendor. Therefore, operators must replace their
existing WiFi AP infrastructure. This results in considerable
financial pressure, particularly for small-scale operators.

To overcome these limitations, a variety of approaches have
been actively explored in dense WLANS. [7], [8] We propose a
deep reinforcement learning-based association control (Deep-
AC) scheme that determines optimal device-AP association
policies without modifying the existing infrastructure. The
Deep Q-Network (DQN) algorithm [9] is applied to the
association policy. Experimental results show that the proposed
method effectively selects APs that significantly satisfy the
required data rate for each device.

The remainder of this paper is organized as follows. The
system architecture and association control scheme are de-
scribed and developed in Section II. Then, the simulation
results are given in Section III, and followed by the concluding
remarks in Section IV.

II. INTELLIGENT CLUSTER WLAN SYSTEM

A. System Architecture

Figure 1 shows the proposed system architecture, consisting
of a network controller, M WiFi APs, and N user devices.
The WiFi APs maintain their original function of providing
internet access without modification, eliminating the need for
infrastructure changes.

The network controller collects messages transmitted by
each device, which contain data such as current communi-
cation status and the connected AP. The specific contents
of these messages may change depending on the purpose of
implementation. These messages are used to apply the Deep-
AC scheme to determine the optimal AP for each device. Then
the network controller informs devices of the determined APs.

Upon receiving the message, the device changes its con-
nection to the newly assigned AP by the network controller.
Then, the device stores the data usage and information about
the currently connected AP (e.g., MAC address or SSID), and
then transmits this information to the network controller. This
entire process is designed to repeat periodically.
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Fig. 1. System Architecture.

B. Deep Reinforcement Learning-based Association Control
Scheme

In this study, the network controller learns to select optimal
APs for each device using the DQN algorithm [9], as shown
in Figure 1. To obtain the optimal AP association policy, the
DQN algorithm is defined with state space (.5), action space
(A), and reward (R).

The state space is defined as

N N
S=T1[wux ][] Dn M
n=1 n=1

where W,,={1,2,...,M} represents the AP to which device n
is currently connected, and D,,={0,...,D,,,.} represents the
data rate demand of device n.

The action space is defined as

N
A=T]An 2
n=1

where A,, = W,, denotes the AP to which the device n should
be connected.

To emphasize fairness in terms of demand satisfaction
among devices, the reward is defined using Jain’s fairness
index [10] as follows:

S e ras,0))]
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where the function 6,,, represents the sum of r,(s,a) values
for all devices connected to AP m. r,,(s,a) denotes the degree
of demand satisfaction of device n, indicating that smaller

r(s,a)
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values represent better demand satisfaction, and it is defined
as
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In this equation, d,, is the data rate required by device n, B,,,
is the data rate provided by the selected AP a,,, and N, is the
number of devices connected to that AP. The function ¢§ returns
1 if the AP remains unchanged, and O otherwise. The variable
p represents the ratio of service time excluding disconnection
due to AP switching. Consequently, the reward r(s, a) ranges
from O to 1, with values closer to | representing higher levels
of fairness.

Based on this formulation, the network controller utilizes
techniques such as e-greedy, replay buffer, and target networks
to learn the optimal AP association policy.

III. SIMULATION RESULTS
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Fig. 2. Performance graph of loss and reward.

The network controller was trained over 500 episodes, each
with 20 steps. The simulation environment consisted of 3 APs
and 6 devices, each with different data rate demands.

During training, as shown in Figure 2, the average loss per
episode initially exhibited high values but rapidly decreased
and stabilized, while the average reward gradually increased.
These results demonstrate that the network controller effec-
tively learned optimal policies over time.

As shown in Figure 3, the fairness of resource allocation was
measured for each method to evaluate how effectively each
method allocates resources. The Random method connects
devices to APs randomly, and the Static method assigns an
equal number of devices to each AP without considering
individual demands. As a result, these methods do not achieve
a high level of fairness in resource allocation, especially in
environments with diverse device demands. In contrast, the
proposed Deep-AC method significantly outperformed other
methods, demonstrating effective AP selection and fair re-
source allocation.

910



1o] 09996

0.8

0.6906
0.6415

0.6 1

0.4

0.2 1

0.0 -

Deep-AC Random Static

Fig. 3. Performance comparison.

IV. CONCLUSION

In this paper, we proposed a Deep-AC scheme to de-
termine the optimal device-AP association policy in dense
wireless environments. The proposed method enables efficient
AP association without requiring modifications to existing
WiFi AP infrastructure, which helps reduce deployment costs.
Simulation results demonstrated that the proposed system not
only satisfies the data rate requirements of devices but also
improves fairness in resource allocation.

In future work, we plan to extend this approach by incorpo-
rating dynamic user mobility and real-time network conditions
to further enhance adaptability and performance.
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