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Abstract—Efficient spectrum utilization is critical in modern
Wi-Fi networks as traditional systems require primary channel
occupancy for transmission, limiting efficiency in overlapping
BSS (OBSS) environments. IEEE 802.11bn introduces non-
primary channel access (NPCA) capability, yet optimal decision
strategies remain challenging. This paper presents a deep rein-
forcement learning approach for adaptive NPCA decision-making
using Semi-Markov Decision Process formulation with Deep Q-
Network. Trainings across varying network density scenarios
demonstrate that our approach achieves stable convergence and
significant throughput improvements over baseline strategies are
observed. The learning algorithm exhibits conservative strate-
gies favoring long-term stability, providing insights for next-
generation Wi-Fi channel access mechanisms.

Index Terms—Deep Reinforcement Learning, Non-Primary
Channel Access, Wi-Fi Networks, Semi-MDP, OBSS, Channel
Access, DQN

I. INTRODUCTION

Dense Wi-Fi deployments in enterprise and residential en-
vironments create significant spectrum utilization challenges,
particularly when overlapping BSS (OBSS) traffic occupies
primary channels while secondary channels remain idle. Tra-
ditional channel access mechanisms, while effective in con-
trolled scenarios, fail to adapt to the dynamic interference
patterns characteristic of high-density networks.

IEEE 802.11 systems traditionally require the primary chan-
nel to be idle before wide-band transmissions can occur [1].
This constraint leads to significant spectrum waste when
secondary channels remain unused despite primary channel
occupancy by overlapping BSS (OBSS) traffic. While IEEE
802.11bn introduces non-primary channel access (NPCA) ca-
pability [2], existing approaches rely on static heuristics that
cannot adapt to dynamic network conditions, leaving a critical
gap in intelligent decision-making strategies.

When a station encounters OBSS interference during back-
off, it faces a critical timing decision: wait for the primary
channel to become available or immediately switch to an
NPCA channel. This decision involves trade-offs between
guaranteed transmission opportunities and potential switching
overhead, with the optimal choice depending on current con-
tention window state, remaining OBSS duration, and planned
transmission length.

In this paper, we describe an intelligent NPCA decision-
making framework that enables stations to learn optimal chan-
nel access policies through interaction with dynamic network
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environments. We formulate this as an online learning problem
where stations adapt their behavior based on observed network
states and reward feedback.

Our approach employs deep reinforcement learning, specif-
ically a Semi-Markov Decision Process (Semi-MDP) formula-
tion with Deep Q-Network (DQN) [3], [4], to capture temporal
dependencies in NPCA decisions. The framework enables
stations to learn from experience and adapt to varying OBSS
patterns and network densities.

Our work makes three key contributions. We develop a
Semi-MDP framework that captures the temporal nature of
NPCA decisions, accounting for irregular decision intervals
and option-based state transitions. We implement a DQN-
based learning approach that enables stations to adapt their
channel access policies based on network conditions and
historical performance. Through extensive simulation, we
demonstrate 15-25% reward improvements over static baseline
policies and identify contention window index as the primary
decision factor in NPCA scenarios.

The remainder of this paper is organized as follows. Section
IT reviews related work in NPCA and reinforcement learn-
ing applications. Section III presents our system model and
problem formulation. Section IV describes the proposed DRL
framework. Section V presents simulation results and analysis.
Finally, Section VI concludes the paper and discusses future
work.

II. RELATED WORK

NPCA mechanisms have been extensively studied in the
context of spectrum efficiency improvement. Traditional ap-
proaches rely on heuristic rules and static thresholds for chan-
nel switching decisions [5], typically using fixed parameters
such as OBSS detection thresholds or predetermined switching
delays. These methods work well in controlled environments
but fail to adapt to dynamic network conditions and varying
traffic patterns characteristic of real deployments.

Reinforcement learning has emerged as a promising ap-
proach for wireless network optimization [3], with recent
applications spanning resource allocation, interference man-
agement, and protocol adaptation. Semi-MDP formulations
have proven particularly effective in capturing temporal depen-
dencies in wireless environments [6], where decision intervals
are irregular and actions have extended temporal effects.
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Existing NPCA studies focus primarily on theoretical analy-
sis and static optimization, leaving a significant gap in adaptive
approaches that can respond to real-time network dynamics.
Our work bridges this gap by applying Semi-MDP learning to
the NPCA decision problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the formal mathematical framework
for the NPCA decision-making problem, establishing the
Semi-MDP [7] formulation that enables intelligent channel
access learning.

A. Network Architecture and System Model

We consider a wireless local area network (WLAN) con-
sisting of two basic service sets (BSSs) operating in the
IEEE 802.11bn framework in which Channel 0 with no OBSS
interference and Channel 1 with OBSS activity. The stations
(STAs) in Channel 1 can opportunistically access the NPCA
channel when OBSS activity is detected on the channel.

Each STA in Channel 1 operates according to the enhanced
distributed channel access (EDCA) mechanism while main-
taining NPCA capability. When OBSS activity is detected on
its associated channel during the backoff procedure, the STA
will make a strategic decision regarding channel access.

B. State Space Design

The state space S captures the essential environmental
information required for intelligent NPCA decision-making.
At decision epoch t, the system state s; € S is represented as
a 4-dimensional vector:

SEQ; Tobss (t)
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where sil) = Tupss(t) represents the remaining OBSS

occupation time on the primary channel in slots, 552) = Tradio
denotes the radio transition time required for channel switch-
ing in slots, T}, (¢) indicates the planned transmission duration
for the current PPDU in slots, and s§4) = CW,q,(t) specifies
the current contention window stage index € {0,1,...,6}.
To ensure numerical stability and bounded input ranges for
the neural network, each state component is normalized as

§(i) _ min(Sgl),C,’)

t C’L ’
where C7 = Cy = C5 = 1024 slots and Cy = 8 represent the
normalization caps for each dimension.

State observations occur at specific decision epochs when
the STA is in the PRIMARY_BACKOFF state and detects
OBSS activity, regardless of the backoff counter value. This
Semi-MDP structure allows decisions at irregular time inter-
vals, capturing the temporal dynamics of wireless channel
access.

i€ {1,2,3,4} )

C. Action Space Formulation

The action space A is discrete and binary, representing the
fundamental NPCA decision:

A= {ap,a1} 3)

where ag represents StayPrimary and a; represents
GoNPCA.

The semantic meaning of each action is:

e ag (StayPrimary): The STA maintains its position on
the primary channel, transitioning to PRIMARY_FROZEN
state and preserving its current contention window param-
eters

e a1 (GoNPCA): The STA switches to the NPCA channel,
resetting its contention window index to 0 and generating
a new backoff value

Once selected, an action defines an “option” in the Semi-

MDP framework that persists until completion of the trans-
mission attempt. This temporal extension allows the learning
algorithm to evaluate long-term consequences of channel ac-
cess decisions.

D. Reward Function Design

The reward function implements a delayed reward mecha-
nism that evaluates both throughput efficiency and temporal
cost over complete option cycles. Unlike traditional MDP for-
mulations with immediate rewards, our Semi-MDP approach
calculates rewards upon option termination.

The option reward is defined as:

Ropt =Wy + Lig - Touccess — wi - Topt 4

where w; is the throughput weight, L,, represents the at-
tempted transmission duration in slots, [syccess 1S an indicator
function equal to 1 if the transmission is successful, w; is the
latency penalty weight, and 7., is the total option duration in
slots.

The success criteria are defined as the canonical condi-
tions for IEEE 802.11 EDCA. This reward structure balances
throughput maximization with latency minimization, encour-
aging the agent to make efficient channel access decisions
while considering temporal overhead in dense WLAN envi-
ronments.

IV. PROPOSED DRL FRAMEWORK

This section describes the deep reinforcement learning
framework for solving the Semi-MDP formulated NPCA de-
cision problem. We adopt a DQN-based approach with experi-
ence replay to handle the temporal dependencies and irregular
decision intervals inherent in the Semi-MDP structure.

A. Semi-MDP Learner Architecture

Our SemiMDPLearner class implements a DQN-based
learning algorithm with experience replay and target network
stabilization with Semi-MDP consideration. The neural net-
work architecture consists of three fully connected layers
(128, 128, 64 neurons) with ReLU activations and dropout
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TABLE I
SIMULATION AND DQN CONFIGURATION PARAMETERS

Parameter [ Value

Simulation Environment
Slot duration 9 us
Episode duration 100 ms (Typical beacon interval)
Number of channels 2 x 20 MHz
STAs per channel 2, 10, or 20

10 — 200 slots
0.01 per slot if the channel is idle

PPDU duration
OBSS generation rate
OBSS duration 100 slots
NPCA switching delay 1 slot

DQN Network Architecture
[128, 128, 64] neurons

Hidden layers

Activation function ReLU
Dropout rate 0.1
Training Parameters
Learning rate, o 1x 1077
Discount factor, v 0.99

Batch size, batch_size 128

Replay memory capacity, |D| | 10,000
Target network update, 7 0.005
Number of episodes, Nepi 1,000

regularization, mapping normalized state observations to Q-
values for each action.

The key components include policy network Q(s, a;6) for
action-value estimation, target network Q(s,a;é) for stable
learning targets, experience replay memory D with capacity
10,000 transitions, and Semi-MDP specific transition structure
(s,a,s’, R, T,done), where 7 represents the option duration in
slots.

B. Semi-MDP Training Algorithm

The algorithm initializes the DQN components and itera-
tively runs episodes of interaction with the environment. At
each decision point, it observes the current state, selects an
action using an e-greedy policy, and begins a new option.
The option continues until termination conditions are met, at
which point the accumulated reward and transition are stored
in replay memory. Algorithm 1 presents the complete training
procedure for the Semi-MDP based NPCA learning system.

V. SIMULATION RESULTS
A. Experimental Setup

We evaluate our DRL-based NPCA approach using a
discrete-time simulation framework with 9 us slot duration
following IEEE 802.11ax/bn specifications. The network con-
sists of two 20 MHz channels: Channel O (secondary/NPCA)
without OBSS interference and Channel 1 (primary) with con-
trolled OBSS activity generated by Poisson process (A = 0.01
per slot). Each channel hosts 2, 10, and 20 stations with
varying network densities. STAs on Channel 1 have NPCA
capability and can switch to Channel 0 during OBSS detection.
PPDU durations are randomized between 10-200 slots per
transmission, while OBSS duration is fixed at 100 slots. Radio
switching delay is set to 1 slot.

The DQN implementation uses a three-layer neural net-
work (128, 128, 64 neurons) with ReLLU activation and 0.1

Algorithm 1 Semi-MDP Training for NPCA Decision Making

1: Initialize Q(s, a;0), target network Q(s, a; é) and replay
memory D

2: for epi =1 to Ny, do
3:  Reset environment and initialize option variables
4:  for slot =0to T,p; — 1 do
5: Advance simulation to next decision point
6: if decision point reached then
7: Observe and normalize state S;
8: if pending option exists then
9: Store transition in D
10: end if
11 Select action a; using e-greedy with Q(S;, a;0)
12: Begin new option: (Sopt, Gopt) < (5¢, ar)
13: end if
14: Execute step and accumulate option duration 7o
15: if option terminates then
16: Calculate option reward R,
17: Set pending transition
18: end if
19: if |D| > batch_size then
20: Sample mini-batch from D
21: Compute TD targets:
22: if not done then
23: yi = Ri + 7 maxy Q(s],a'; 0)
24: else
25: Y = R;
26: end if
27: Update 6 by minimizing
L= %>y — Q(si,a:;0))?
28: Soft update target network: 6 < 76 + (1 — 70
29: end if

30:  end for

31:  Finalize episode with delayed reward
based on channel occupancy ratio

32: end for

33: return Q(s,a;6)

dropout rate. Key training parameters include: learning rate
a = 1 x 10~%, discount factor v = 0.99, batch size
128, replay memory capacity 10,000, and target network soft
update 7 = 0.005. Epsilon-greedy exploration decays from
0.9 to 0.05 over 1,000 steps. Performance metrics include
throughput (successful transmission ratio), channel utilization,
and learning convergence over episodes. Table I summarizes
the key simulation and DQN configuration parameters used
in our experiments. Other settings not explicitly mentioned
follow standard IEEE 802.11ax/bn specifications.

Our evaluation compares the DRL approach against three
baseline policies: Primary-Only (always stay on primary
channel), NPCA-Only (always switch during OBSS), and
Random (uniformly random decisions). Each policy is evalu-
ated over 50 independent runs of 1,000 episodes with 11,111
slots per episode.
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Fig. 1. Training convergence showing episode rewards over time for DRL-
based NPCA learning in different network densities.
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Fig. 2. Policy comparison under varying PPDU durations for DRL-based
NPCA learning with 10 STAs each channel.

B. Training Convergence

Fig. 1 demonstrates that our DRL algorithm achieves stable
convergence across different network density scenarios. The
training curves show consistent improvement in episode re-
wards, with the algorithm reaching stable performance within
400-600 episodes. The learning process exhibits smooth con-
vergence without significant oscillations, indicating robust pol-
icy optimization under varying PPDU durations and network
conditions.

C. Performance Analysis

Fig. 2 compares our DRL-based NPCA approach against
baseline strategies across various frame durations with 10
STAs per channel. The DRL approach achieves 15-25% higher
average reward compared to the baselines. The learning algo-
rithm effectively adapts to varying frame patterns and chan-
nel conditions, demonstrating the effectiveness of the Semi-
MDP formulation for temporal decision-making in wireless
networks.

VI. CONCLUSION AND FUTURE WORK

This paper presented a DRL-based approach for adaptive
NPCA decision-making in IEEE 802.11bn networks. The
Semi-MDP formulation with DQN learning enables stations to
intelligently choose between primary and secondary channel
access based on dynamic network conditions.

However, our approach has several limitations that constrain
its applicability to real-world dynamic wireless environments.
First, the fixed network topology with predetermined STA
counts (2, 10, and 20 per channel) does not reflect the
dynamic nature of practical wireless networks where stations
continuously join and leave. Second, the single-agent learning
framework suffers from coordination problems in multi-agent
scenarios—when multiple stations simultaneously switch to
NPCA channels, the secondary channel becomes congested,
potentially yielding worse performance than fixed baseline
strategies. Third, the current reward structure and state space
design may not generalize well to environments with signifi-
cantly different network densities or traffic patterns than those
used in training.

Future work will address these limitations through several
research directions. Extending the framework to multi-agent
scenarios where multiple learning stations can interact and
coordinate their decisions is essential to mitigate channel con-
gestion issues. Additionally, developing adaptive mechanisms
to handle dynamic network topologies with varying station
participation will improve practical applicability. More sophis-
ticated reward structures that capture complex network perfor-
mance objectives beyond individual throughput optimization
should also be explored to enhance learning effectiveness.
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