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Abstract—Connected autonomous vehicles are expected to
become increasingly widespread in the coming decade, funda-
mentally transforming the utilization of communication net-
works across urban environments. These vehicles are highly
data-intensive and continuously exchange information with sur-
rounding vehicles, infrastructure, and cloud services to enable
perception, decision making, and control. This constant connec-
tivity imposes unprecedented loads on existing communication
technologies such as mobile 5G broadband networks, which must
handle massive volumes of real-time data transmission with low
latency and high reliability requirements. This study examines
how large scale deployment of connected autonomous vehicles
could affect the performance and scalability of 5G networks,
with a focus on bandwidth utilization under dense vehicular
connectivity. In addition, it explores the potential role of 5G
and beyond communication technologies, which are expected
to become the dominant network infrastructure during the
era of widespread connected autonomous vehicle adoption, in
addressing these challenges. The findings emphasize the need for
adaptive network architectures to ensure seamless and reliable
communication for future autonomous transportation systems.

Index Terms—5G, 6G, Connected Autonomous Vehicles, IoT,
Transportation, Digital Twin

I. INTRODUCTION

Connected autonomous vehicles (CAV) are expected to be
equipped with a wide range of sensors that enable vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communica-
tion. It is estimated that CAVs will have more than 30 sensors
including Camera, Light Detection and Ranging (LiDAR) and
radar sensors [1], [2]. Traditional approaches to autonomous
decision-making and traffic control rely heavily on edge com-
putation, leveraging the processing power embedded within
CAVs. However, such devices can only access data that is
locally visible and available to individual CAVs, resulting in a
limited understanding of the broader urban mobility network.

In this paper, we aim to investigate a centralized (or semi-
centralized) computational environment capable of processing
data collected from the CAV network to enable effective
management and monitoring of urban mobility. In such an
environment, and with the widespread adoption of CAVs,
the data gathered from onboard sensors can be uploaded
to cloud servers to support various mobility management
tasks, including traffic monitoring and control, infrastructure

maintenance, incident detection, and cooperative perception
among vehicles. Furthermore, continuous data sharing would
allow traffic authorities to construct real-time digital twins of
the transportation network, enabling traffic flow optimization
and coordinated decision-making between vehicles and infras-
tructure systems.

Although some sensors, such as radar, generate relatively
small volumes of data, LiDAR and camera sensors can produce
significantly higher data rates. For instance, a 1080p camera
generates substantial amounts of data depending on whether
the video is stored in raw or compressed form. Raw 1080p
video, which contains unprocessed pixel data, can produce
approximately 1 gigabyte (GB) per second, depending on
the color format and frame rate. While this high data rate
preserves maximum visual quality, it demands considerable
bandwidth and storage capacity. In contrast, compressed video
can significantly reduce the data volume to around 5 megabits
per second for 1080p at 30 frames per second, or roughly 2
GB per hour. However, each CAV is expected to have at least
6 or more cameras onboard [3], and it is important to note
that data compression introduces latency and computational
overhead, which may not be suitable for real-time decision-
making applications, particularly in the context of autonomous
vehicles.

Kazhamiaka et al. [4] argue that each CAV can generate
between 3 to 6 terabytes (TB) of data per hour, depending on
the sensors installed. Such large volumes of data traffic can
significantly overload the capacity of existing communication
networks, such as fifth-generation (5G). In Australia, current
5G wireless technology networks provide an average download
speed of approximately 200 Mbps and an average upload speed
of about 17 Mbps [5], although actual performance may vary
depending on the service provider and network conditions.

In mobile broadband, uplink capacity refers to the band-
width and capacity of the network for uploading data, while
downlink capacity refers to the bandwidth and capacity for
downloading data from the network. At present, approximately
85% of total internet traffic consists of downloads, with
the remainder being uploads. Consequently, network planners
have primarily focused on providing higher-capacity and more
reliable downlink connections, and existing network infrastruc-
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tures are largely optimized to meet user download demands.
However, with the emergence of CAVs, the proportion of
upload traffic is expected to increase significantly, as CAVs
continuously transmit large volumes of sensor and video data
to cloud servers. This shift could place substantial strain on 5G
networks, potentially leading to reduced reliability, increased
latency, and congestion in densely connected vehicular envi-
ronments.

As mentioned earlier, edge and fog computing architectures
can help reduce the bandwidth demand associated with con-
tinuous cloud uploads by enabling preliminary data processing
and feature extraction closer to CAVs. This distributed model
reduces latency and network congestion while supporting time-
sensitive decision making at the edge. However, uploading
sensor data to cloud platforms remains essential for broader
objectives such as large-scale traffic management and ana-
lytics, infrastructure planning, digital twin development, and
collective learning across vehicle fleets.

In this paper, we adopt an agent-based modeling (ABM)
approach to conduct an experimental evaluation within a study
area located in the City of Melbourne in Australia. The
study analyzes the number of vehicles passing across various
Traffic Analysis Zones (TAZs) and examines the existing
5G (or 4G, the fourth generation of mobile communication
technology, where 5G is not yet available or accessible)
communication network’s uplink performance across the same
area. Subsequently, we investigate how the gradual conversion
of conventional vehicles to CAVs would impact the current 5G
communication network in terms of data load and bandwidth
utilization. The findings of this research help estimate the
additional network load imposed by CAV communication
requirements and assess how this shift in demand could affect
existing network users. These insights enable urban planners
to prepare for the large-scale adoption of CAVs and to upgrade
current communication infrastructures to effectively accommo-
date the data-intensive demands of autonomous mobility.

II. 5G AND BEYOND MOBILE NETWORK

Mobile communication has undergone remarkable tech-
nological advancements across successive generations. First-
generation (1G) mobile communication systems were intro-
duced in the 1970s and officially launched in 1979. These
systems were based on analog technology, specifically using
AMPS (Advanced Mobile Phone System). Major limitations
of 1G included poor voice quality, low reliability, limited
network capacity, and a lack of security features. With the
launch of second-generation (2G) networks in 1991, wireless
communication transitioned to fully digital systems for the
first time. These networks were designed to support voice
communication, (Short Message Service) SMS, fax, and MMS
services. By using digital signals for voice, 2G networks; par-
ticularly those based on the Global System for Mobile Com-
munications (GSM), also allowed data transmission alongside
voice at speeds of 30–35 kbps.

The advent of third-generation (3G) networks, introduced
in 1998 and launched in 2002, represented a major techno-

logical leap, providing mobile Internet access, higher data
transmission speeds, and advanced services such as audio and
video streaming. Additionally, 3G networks were enhanced
to 3.5G through High-Speed Packet Access (HSPA), boosting
data transmission rates up to 14 Mb/s. However, 3G required
compatible devices, and the cost of upgrading as well as the
higher power consumption posed significant challenges. The
transition from 3G to 4G brought another major breakthrough,
increasing data rates from approximately 100 Mb/s to 1 Gb/s
[6]. The 4G network, launched in 2009, introduced LTE (Long
Term Evolution) and offered significantly improved download
speeds of up to 100 Mbps. It enhanced the user experience by
supporting advanced services such as online gaming, video
conferencing, and HD mobile television. The 4G LTE system
design also reduced latency in high-speed data transmission,
thereby improving overall network efficiency and speed. How-
ever, 4G LTE networks faced challenges, including complex
hardware requirements, a large number of radio transmitters,
and higher battery consumption.

5G, was launched in 2019 and offers significantly higher
data rates, lower latency, and greater connectivity compared
to previous generations. It supports simultaneous connections
for a large number of devices, providing users with real-time
experiences. 5G technology also facilitates the development of
smaller Internet of Things (IoT) devices and has the potential
to reduce manufacturing costs. Moreover, it enables new
services that rely on ultra-reliable, low-latency connections,
transforming various industries. The existing 5G infrastructure
provides a robust solution to address the increasing demand
for higher data rates and the rapid growth in the number of
connected devices. It offers data speeds up to ten times faster
than previous generations, operating primarily within the 1–10
gigahertz (GHz) range, compared to less than 100 megahertz
(MHz) for 3G and 4G networks. Moreover, 5G technology
spans a broad spectrum, from 700 MHz at the lower end to
millimeter-wave frequencies reaching up to 90 GHz [7], [8].

The sixth-generation (6G) network, currently under devel-
opment, will support advanced cellular data services and is
expected to be significantly faster than 5G. Like previous
generations, it will operate as a broadband cellular system,
dividing geographical areas into smaller units called cells. 6G
is anticipated to be more heterogeneous than earlier networks
and will enable applications such as Virtual and Augmented
Reality, the Internet of Skills, ubiquitous computing, and
pervasive intelligence [9]. The evolution toward 6G networks
promises to overcome the limitations of current communica-
tion infrastructures in supporting large-scale connectivity for
CAVs. While 5G networks provide peak data rates of up to
20 Gbps and latency in the range of a few milliseconds,
6G is expected to deliver transmission speeds reaching 1
Tbps, approximately 50 times faster than 5G, while reducing
latency to below 1 millisecond [10]. Operating across the 95
GHz to 3 terahertz (THz) frequency spectrum, 6G will offer
massive bandwidth and enable data-intensive, delay-sensitive
applications such as autonomous mobility. Furthermore, 6G
will integrate self-optimizing, AI-driven network architectures
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designed to enhance energy efficiency, spectrum utilization,
and communication reliability.

III. LITERATURE REVIEW

Autonomous vehicles’ connectivity with their surroundings,
known as V2X communication, coupled with their ability to
operate without human intervention, can significantly trans-
form urban mobility. CAVs can interact with their environment
and consequently enable intelligent transportation systems
(ITS). One of the key enablers for future CAV transportation
ecosystems is the 5G communication network. Titus [11] dis-
cussed the impact of 5G on CAVs performance and operation.
He argued that 5G’s ultra low latency and massive connec-
tivity will enable continuous data exchange between vehicles
and infrastructure, supporting functions such as traffic flow
optimization, platooning, and cooperative maneuvering. The
paper highlighted that 5G can significantly reduce decision
delays in perception and control modules, thereby enhancing
traffic efficiency and safety in ITS. Hakak et al. [12] conducted
a comprehensive survey highlighting how 5G’s key features,
including enhanced mobile broadband (eMBB), ultra reliable
low latency communication (URLLC), and massive machine
type communication (mMTC), can fulfill the communication
requirements of CAVs. The study emphasized that 5G enables
high speed, low latency V2X communication, which is essen-
tial for tasks such as collision avoidance, path planning, and
coordinated decision making. However, they also noted that
CAVs generate enormous volumes of high dimensional sensor
data such as video, LiDAR, and radar, and processing and
transmitting this data in real time through 5G networks can
overload available bandwidth and computational resources.
Kakkavas et al. [13] also highlighted the importance of transi-
tioning 6G communication technologies to meet the scalability
and latency requirements of large scale CAVs deployments.
They investigated the role of 5G in CAVs through two key
use cases, namely remote driving and quality of service (QoS)
based automation level selection. Their findings demonstrated
that while 5G can support high uplink throughput and millisec-
ond level latency, current non standalone (NSA) architectures
remain constrained by their reliance on 4G cores and therefore
are potentially incapable of handling the massive data volume
generated by CAVs.

Biswas and Wang [14] discussed the integration of 5G with
other emerging technologies such as IoT and edge intelligence
to support secure, decentralized, and intelligent CAV ecosys-
tems. The study found that 5G enhances V2X communication
reliability, while edge intelligence enables distributed decision
making close to vehicles, thereby reducing latency. In addition,
they emphasized that IoT connectivity serves as the foundation
for real time data exchange among vehicles, infrastructure,
and cloud platforms, enabling seamless interoperability across
heterogeneous devices and facilitating large scale cooperative
driving. Saleh et al. [15] considered another use case for 5G in
the era of CAVs that can add additional load on the network.
They focused on positioning and localization and evaluated
5G small cell densification for urban autonomous navigation.

Using time of arrival trilateration, the authors found that an
inter cell spacing of 160 m can achieve sub meter positioning
accuracy in dense urban environments such as Manhattan. This
finding demonstrates that 5G infrastructure can complement or
even replace traditional GPS based localization, which often
fails in multipath or obstructed urban settings. Zhou et al. [16]
reviewed 5G-enabled cooperative localization approaches and
argue that 5G can enhance localization accuracy to the cen-
timeter level and enable real-time cooperative positioning
through sensor fusion and machine learning-based filtering
techniques. Tang et al. [17] explored how 5G communication
can improve cooperative perception in autonomous driving.
The study proposed a matching algorithm that leverages 5G’s
ultra reliable and low latency communication to synchronize
sensing data and positional information among vehicles in
real time. The results demonstrated that 5G connectivity
enables consistent environmental awareness across vehicles,
reducing perception uncertainty and enhancing the safety and
coordination of cooperative autonomous driving.

Miao et al. [18] examined how the 5G network environment
introduces both new opportunities and security challenges
for CAVs. They argue that 5G’s characteristics such as ultra
low latency, massive connectivity, and high bandwidth are
essential for real time V2X communication and decision
making in CAVs. However, these same features also expand
the system’s attack surface, making secure authentication and
data exchange critical. 6G networks are expected to address
such security challenges through AI driven threat detection,
quantum resistant encryption, and blockchain-based authenti-
cation, therefore paving the way toward a reliable and efficient
CAV ecosystem.

The communication network architecture also plays a major
role in addressing the connectivity needs of CAVs. Elbery et
al. [19] analyzed the architectural differences between Dedi-
cated Short-Range Communications (DSRC) and 5G for con-
nected and autonomous vehicle communication. Their study
evaluated how each technology supports safety critical V2X
applications and cooperative driving scenarios. The findings
revealed that while DSRC offers reliable short range commu-
nication, 5G provides greater scalability, lower latency, and
broader coverage, making it more suitable for large scale ve-
hicular networks. The authors concluded that future vehicular
communication architectures should adopt hybrid designs that
combine the stability of DSRC with the flexibility and capacity
of 5G to ensure reliable and resilient CAV connectivity. This
work has been done by [20] where they proposed a multi
radio 5G framework that integrates DSRC, Long-Term Evo-
lution Advanced (LTE-A), and millimeter-wave (mmWave)
technologies under a unified control structure. This architec-
ture enhances network flexibility and reliability by enabling
seamless data exchange across different communication layers,
thereby improving the responsiveness and stability of CAVs
ecosystems.

Existing literature shows that 5G (and beyond) can play a
significant role in the realization of an efficient and reliable
CAV ecosystem. Current 5G communication networks can

898



enable CAV connectivity, particularly when data processing is
localized through edge or fog computing. However, when the
high volume of environmental data collected by CAV sensors,
including cameras, LiDAR, and radar, needs to be transferred
to centralized cloud servers, the 5G communication network
can become overloaded. Such network overload can not only
undermine the efficiency of CAVs connectivity but also affect
other network users who previously did not have to share
network capacity with data intensive CAV operations. In this
research, we aim to experimentally evaluate how large scale
data transmission can overload existing 5G uplink channels
and how emerging 6G technologies could potentially address
these challenges.

IV. METHODOLOGY

The IoT interconnects billions of sensors and other devices
(i.e., things) via the Internet, enabling novel services and
products that are becoming increasingly important for industry,
government, education and society in general [21]. In this pa-
per we consider each of the CAVs as an IoT device connected
to the Internet using the cloud environment to process the
data. IoT has been widely adopted in various applications that
require data-intensive analytics in a centralized architecture,
such as smart agriculture, healthcare, manufacturing, and smart
city applications [22]–[28].

To analyze the impact of CAVs on communication network
utilization, we first investigated the traffic flow in a study area
covering the Parkville, Carlton, West Melbourne, North Mel-
bourne, and Central Business District (CBD) neighborhoods of
the City of Melbourne. The dataset used in this research spans
an area of approximately 6.5 km2 and includes around 120,000
trips across a 24-hour simulation period. This dataset rep-
resents real-world spatiotemporal traffic flow patterns across
the study area, based on data derived from the Australian
Bureau of Statistics, the City of Melbourne, and the Victorian
Integrated Survey of Travel and Activity (VISTA) [29].

To identify the existing traffic flow, an agent-based mod-
eling (ABM) approach was employed. ABM enables the
microscopic simulation of individual vehicle behavior and
thus allows estimation of vehicle density across the network
at any given time. Such an approach helps to estimate the
expected load imposed by CAVs on the 5G infrastructure
across different zones within the network. One of the leading
ABM platforms is the Simulation of Urban Mobility (SUMO),
an open-source application that efficiently simulates traffic
flow and determines road density [30], [31]. In this research
we used SUMO to identify the traffic flow across zones of
200 by 200 meters in the study area at various times of the
day. The road network and the corresponding divided zones
are illustrated in Figure 1.

In the next step, to identify the existing 5G uplink coverage,
a field experiment was conducted. Using a mobile measure-
ment application, a vehicle was driven across different zones
within the study area, where the 5G uplink signal strength was
recorded in real time. After identifying the traffic flow and
5G uplink coverage level across the study area, we developed

Fig. 1. The road network of the study area along with the corresponding
200 m × 200 m zones.

Fig. 2. Mobile broadband network uplink testing locations across Melbourne
(used Google Earth (http://earth.google.com) for visualisation.

TABLE I
OBSERVED DOWNLOAD AND UPLOAD SPEEDS ACROSS MELBOURNE

Location Network
Download

Speed
(Mbps)

Download
Size

(Bytes)

Upload
Speed

(Mbps)

Upload
Size

(Bytes)

Latency
(ms) Server

1 5G 320.116448 342734464 56.541856 75281536 10 Melbourne
2 5G 372.747184 605485824 93.081512 121803623 9 East Burwood
3 5G 342.146448 433114240 147.254168 121640654 10 East Burwood
4 5G 780.644520 1171835335 146.061688 121981390 8 East Burwood
5 5G 558.944920 558846336 84.865048 102508750 8 East Burwood
6 LTE 58.776128 96363520 42.244816 31485696 13 Melbourne
7 5G 203.183816 302033280 23.737712 25490432 9 Melbourne
8 5G 657.816264 851692670 51.743856 57612544 9 East Burwood
9 LTE 135.250800 224516608 30.677080 27900928 18 Melbourne
10 LTE 65.373272 94683154 19.438848 21566336 16 Melbourne
...

...
...

...
...

...
...

...
36 5G 272.186544 270481267 78.216656 112267239 15 Melbourne
37 5G 427.441320 624133247 53.921000 66988416 20 Melbourne

Max – 1657.03 (Loc 18) – 175.96 (Loc 19) – 22 (Loc 17) –
Min – 27.25 (Loc 16) – 3.36 (Loc 31) – 8 (Loc 4, 27, 30) –
Avg – 531.6 – 70.8 – 12.1 –

a scenario to analyze how converting 20% of the existing
vehicles to CAVs would impact the uplink conditions. In this
scenario, we assumed that each CAV continuously uploads its
camera data to the cloud in real time.

Throughput (bps) =
8 × ∆Bytes

∆t
(1)

where ∆Bytes is the transferred bytes between two devices,
and ∆t is the time interval taken to transfer the data (in
seconds).

899



Fig. 3. Number of vehicles travelling in each segment, every minute over a 24-hour period.

For direction-specific measurements:

Uplink (bps) =
8 × ∆Bytes from CAVs

∆t
, (2)

Downlink (bps) =
8 × ∆Bytes to CAVs

∆t
. (3)

V. RESULTS

Table I presents the measured downlink and uplink per-
formance from various observation points across Melbourne,
obtained using Speedtest by Ookla1. The table summarizes
the observed download and upload speeds as well as the
corresponding server locations for each point of interest
illustrated in Figure 2. All measurements were conducted
using Melbourne-based servers to ensure standardized and
comparable network performance results across different sites.

In order for a mobile broadband network (i.e., 6G) to
accommodate the described scenario, it must provide a mini-
mum uplink capacity of approximately 30 Mb/s per vehicle
transmitting compressed video streams, as summarized in
Table II. Consequently, a network segment serving around 700
connected vehicles would require a total uplink capacity of
roughly 21 Gb/s to ensure seamless data transmission. This
estimation assumes that the video streams are compressed
before transmission, which imposes additional computational

1Speedtest (https://www.speedtest.net/) by Ookla is a widely used network
diagnostic tool that measures internet connection parameters such as download
speed, upload speed, latency, and jitter.

demands on the CAVs for real-time video encoding. Further-
more, the calculation only accounts for video data, excluding
other high-bandwidth sensory inputs such as LiDAR, radar,
and ultrasonic sensors. Vehicles equipped with multiple cam-
eras, such as trucks or heavy vehicles with more than six
cameras, would require substantially higher uplink capacity,
further increasing the overall network load. It is important to
note that this estimate represents a baseline for normal urban
driving conditions and does not account for potential increases
in vehicle density, traffic congestion, or special events, all of
which could further elevate bandwidth demand.

TABLE II
BANDWIDTH NEEDED PER CAV (6 CAMERAS, NO OVERHEAD INCLUDED)

Video Type Per Camera
Rate

Per Car Total
Bandwidth

Compressed 1080p @30 fps 5 Mb/s 30 Mb/s
Raw 1080p (1 GB/s ≈ 8 Gb/s) 8 Gb/s 48 Gb/s

Raw 1080p (≈500 GB/hour ≈ 1.11 Gb/s) 1.11 Gb/s 6.67 Gb/s

It is worth mentioning that the growing demand for higher
bandwidth has driven the need for improved connectivity,
as evidenced by the exponential increase in global mobile
network traffic in recent years. According to [32], global
monthly mobile data traffic in 2015 was approximately 3.7
Exabytes, around 1.4 TB per second. By 2025, estimated this
figure to have risen to around 180 Exabytes (EB) per month, or
approximately 69 TB per second [33]. This is nearly 50-fold
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increase over a decade indicating the massive surge in data
demand and the corresponding necessity for mobile networks
to expand capacity. As data-intensive applications like CAVs
proliferate, the transition from 5G to 6G will be crucial to
sustaining network performance, reliability, and scalability.

VI. CONCLUSION

This paper discussed how the large-scale deployment of
connected autonomous vehicles will place significant demands
on existing mobile broadband networks, particularly regard-
ing uplink capacity, latency, and reliability. The continuous
exchange of high-volume sensor and video data can quickly
exceed the capabilities of current mobile infrastructures. To
meet these requirements, future communication technologies
such as 6G will be essential, offering higher data rates, sub-
millisecond latency, and intelligent, adaptive network manage-
ment.
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