Modeling a Multi-Objective Optimization Problem
for Sustainable Serverless Computing
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Abstract—Sustainable cloud computing aims to reduce the
environmental impact of growing computing demand. Server-
less computing can improve efficiency through on-demand ex-
ecution of service requests. However, existing studies prioritize
either performance or energy constraints, overlooking the trade-
offs between carbon footprints and cold-start latency. This
paper explores a multi-objective optimization problem that
can balance these conflicting goals. The deisgn will provide
a theoretical foundation for learning policies that optimize
performance with environmental sustainability.

Index Terms—serverless computing, cloud computing, sus-
tainable computing

I. Introduction

Recently, we experience an exponential increase in
computing demand worldwide. Large-scale data analytics
and internet of everything paradigm have increased data
center power consumption and greenhouse gas emissions
[1]. Sustainable cloud computing aims to mitigate this en-
vironmental impact by optimizing resource usage. Server-
less computing has emerged as a key to address these
challenges [2]. Unlike traditional server-based models that
require provisioning with idle resource waste, serverless
architectures enable on-demand resource allocation. This
can offer potential to reduce energy consumption and
improve computational efficiency by allocating and re-
claiming resources upon request, completion, respectively
[3].

However, effective resource management remains diffi-
cult due to stochastic and bursty workloads. The cold-
start problem is caused by reclaiming resources during
idle periods. It induces not only latency but also energy
overheads from frequent instance warm-ups [4]. Therfore,
proactive provisioning and energy-aware scheduling have
emerged for sustainable serverless computing [5].

In this paper, we investigate the potential of sustainable
serverless computing by jointly addressing dynamic carbon
footprints and cold-start latency. Through an analysis of

892

22 Yeunwoong Kyung
Department of Electronic Engineering
Seoul National University of Science and Technology
Seoul, Korea (South)
ywkyung@seoultech.ac.kr

4™ Sangoh Park
School of Computer Science and Engineering
Chung-Ang University
Seoul, Korea (South)
sopark@cau.ac.kr

existing studies [4] [5] [6] [7] [8], we identified the trade-offs
between performance and environmental footprint, and
that the existing studies lack of consideration in both
carbon footprint and cold-start latency. Based on this
analysis, we aim to derive a strategy that ensures service
latencies while minimizing carbon emissions.

II. Problem Formulation

We consider a serverless platform operating over a
discrete time horizon 7. The platform manages a set
of distinct serverless functions F. The arrival rate of
invocations for function f € F at time slot ¢ is denoted
by Af(t). The environmental impact is governed by the
carbon intensity of the electricity grid, CI(t), measured
in gCOzeq/kWh. CI(t) varies temporally based on the
type of energy (e.g., renewable vs. fossil fuels) Then the
platform dynamically manages the lifecycle of function
instances: cold, warm, or active. If an incoming request
arrives and a warm instance is available, this incurs a
minimal latency, Ly, . If no warm instances are available,
a cold-start latency is required, Le. Upon completion of
execution, an instance transitioning from active to warm
remains for a duration by the keep-alive policy, Txeep, £ (1),
before being terminated if no new requests arrive. In
addition, the controller can proactively initialize instances,
Npw,;(t), in anticipation of future demand or favorable
carbon conditions.

Let Nj'(t), N}¥(t) denote the number of active and
warm instances at time ¢, respectively, for function f at
the beginning of time slot . The number of cold starts
for function f during time slot ¢, Neoq, ¢(), occurs when
the demand exceeds N}/V(t). Then the avrerage response
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time for f at t, incorporates the execution time Teyec, f:

W : (LC + Tezec,f)
Af(t) = Neotd, £ (t)
Ap(t)

The overall system performance penalty at ¢ is defined
as:

ARTf (t) =

: (LW + Tezec,f) (1)

pperf(t) = Y wy - ART(t) (2)
feF

where wy represents the priority weight of function f.
The execution energy is determined by the total work-
load processed:

Eeﬂcec(t) = Z /\f (t) . Te;cec,f : Pacti'ue (3)
feF

The initialization energy is incurred by both reactive
cold starts and proactive provisioning:

Einit (t) = Z (Ncold,f(t) + Nprov,f(t)) : Einiticost (4)
feF

The idle energy is determined by the number of warm
instances:
Eiae(t) =Y _ N}V (t) - Piare (5)

The total operational carbon emission at t is defined as:
Ctotal (t) = (Eexec(t) + Einit (t) + Eidle(t)) . Cl(t) (6)

Therefore, the objective is formulated as follows. The
objective is to develop an optimal control policy 7 that
dynamically adjusts the function lifecycle management
to minimize the long-term cumulative cost. The cost
function J(t) balances the trade-off between performance
degradation and carbon emissions:

J(t) = a - pperf(t) + 5 - Crotar (1) (7)

where a and 8 are hyperparameters that weigh the relative
importance of performance and sustainability objectives.

Finally, the objective can be formulated as minimizing
the expected cost over T:

minE > 4t (8)
t=0

where v € [0,1) is the discount factor.

III. Conclusion

We introduced a multi-objective optimization for sus-
tainable serverless computing, modeling trade-offs be-
tween performance degradation and carbon emissions.
Then we formulated a problem that captures the dynamics
of serverless function lifecycle and energy consumptions.
By defining a cost function, we could establish a theo-
retical foundation for optization of sustainable serverless
computing based on deep reinforcement learning.
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Our future work will focus on solving this formulated
optimization problem. We plan to design and implement a
Deep Reinforcement Learning (DRL) approach to derive
an adaptive control policy that can dynamically nav-
igate the trade-offs in real-time. Furthermore, we will
validate the effectiveness of the learned policy through
real-world trace simulations, comparing its performance
against existing performance-centric and static carbon-
aware strategies.
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