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Abstract—Offline reinforcement learning learns policies solely
from pre-collected datasets without real-time environment in-
teraction, addressing the cost and safety issues that online
reinforcement learning faces in real-world applications. Among
various offline reinforcement learning methods, the Decision
Transformer (DT) is a representative algorithm that leverages
the Transformer architecture to model long-term dependencies in
sequential decision-making. However, autoregressive architecture
of DT inherently suffers from the high compounding error prob-
lem, in which initial errors rapidly propagate and accumulate
over time. To address this limitation, this paper proposes a novel
architecture that integrates Flow Matching (FM) with DT to
mitigate the high compounding error problem. Experimental re-
sults in a simple one-dimensional grid environment demonstrate
that DT+FM not only delays the onset of compounding errors
but also autonomously corrects them when they occur, proving
substantially more robust than vanilla DT.

Index Terms—offline reinforcement learning, decision trans-
former, flow matching

I. INTRODUCTION

Reinforcement Learning (RL) enables agents to learn
policies that maximize cumulative rewards through inter-
actions with the environment. However, when data collec-
tion in real-world environments is costly or hazardous, Of-
fline Reinforcement Learning, which learns solely from pre-
collected datasets, becomes necessary. The Decision Trans-
former (DT) [1] is a representative offline reinforcement
learning algorithm that leverages the self-attention mechanism
of Transformers [2] to model long-term dependencies between
past actions and rewards. However, due to its autoregressive
architecture, DT is vulnerable to the compounding error prob-
lem, where initial errors rapidly propagate and accumulate
over time. This paper proposes a novel architecture that
integrates Flow Matching (FM) [3] with DT to mitigate the
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compounding error problem. The proposed DT+FM archi-
tecture learns vector fields that transform noise distributions
into target data distributions along probability paths, thereby
autonomously correcting errors when they occur by guiding
samples toward the target distribution through learned vector
fields. Experimental validation in a one-dimensional grid en-
vironment demonstrates that the proposed method effectively
mitigates the compounding error problem compared to vanilla
DT.

II. PRELIMINARIES

A. Decision Transformer

DT learns a policy from a pre-collected dataset. The dataset
consists of trajectory sequences of length k, where each
timestep t contains a return-to-go (RTG) Rt, state st, and
action at. DT is trained to predict actions conditioned on
the given RTG through supervised learning, minimizing the
difference between the predicted action ât and the actual action
at.

However, DT has an inherent limitation due to its autore-
gressive architecture. During inference, the model’s predicted
action is fed back as input for the next timestep. If the model
encounters states or actions absent from the training data
(out-of-distribution, OOD), it produces inaccurate predictions.
The critical issue is that these initial errors are fed back
as inputs, triggering a cascading chain of increasingly larger
errors. Specifically, a small error at timestep t propagates to
timesteps t+1, t+2, and beyond, exponentially accumulating
and exacerbating the compounding error problem.

B. Flow Matching

FM models the transformation process from a noise distri-
bution to a target data distribution as a probability path and
directly learns the vector field that moves data along this path.
Specifically, for flow matching time T ∈ [0, 1], a probability
path xT is defined that continuously transforms from the noise
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distribution x0 to the target distribution x1. The target vector
field vT is obtained by differentiating this probability path
with respect to T (vT = dxT /dT ), and the training process
minimizes the difference between the target vector field vT
and the model’s predicted vector field v̂T .

The key principle by which FM mitigates the compounding
error problem is as follows. When errors occur due to OOD
data during DT’s autoregressive inference, these errors can
be regarded as noise. The learned vector field is trained to
always point toward the target distribution regardless of the
current position (error-contaminated state). Therefore, even
when errors occur, the vector field automatically guides the
probability path toward the target distribution, thereby correct-
ing the errors. This self-correction mechanism prevents initial
errors from cascading and amplifying, consequently mitigating
the compounding error problem.

III. PROPOSED ARCHITECTURE

This paper proposes an architecture that integrates FM into
DT’s hidden states to mitigate the compounding error problem.
The proposed architecture learns vector fields that converge
toward the target action distribution by utilizing DT-generated
features as conditioning information for FM.

1) Training Process: DT takes a window of k samples
(RTG, states, actions) as input and outputs k hidden states
through a Transformer with causal masking. After adding the
embedded flow matching time T to each hidden state, they
are passed through FiLM [4] to generate scale parameter β
and shift parameter γ. Simultaneously, Gaussian noise, target
actions, and flow matching time T are linearly interpolated to
output probability path xT and target vector field vT . After
linearly transforming xT using β and γ, it is passed through a
neural network to generate the predicted vector field v̂T . The
entire model is trained end-to-end by minimizing the following
loss function:

LDT+FM =
[
||v̂T − vT ||22

]
(1)

2) Inference Process: Target RTG R0 and initial state
s0 are input to DT to generate k hidden states. The final
hidden state and Gaussian noise undergo N denoising steps
to progressively refine and generate the final action.

IV. EXPERIMENTS

1) Experimental Setup: In a one-dimensional grid environ-
ment (01̃00), the agent can move left (-1) or right (+1) at each
step. Reaching the goal position 100 results in success (reward
1), while exceeding 200 steps is treated as failure. The training
dataset consists of trajectories where the agent always moves
right.

During validation, to deliberately induce compounding er-
rors, we designed an OOD environment where the agent is
forced to move left (-1) with 10% probability regardless of

the predicted action. A total of 30 episodes were executed,
with results shown in Figure 1.

Success Rate (%) Most visited states (number of visits to that state)

DT 0.0 67 (201)
DT+FM 100.0 84 (84)

Fig. 1: Experimental results for vanilla Decision Transformer
(DT) and proposed architenture (DT+FM).

2) Experimental Results: Figure 1 visualizes the visit count
distribution across states. DT’s visit counts surge from state
43, while DT+FM’s counts increase from state 64, confirming
the error accumulation delay effect.

The table in Figure 1 shows that DT+FM achieved
100% success rate, while vanilla DT recorded 0% success
rate, demonstrating DT’s compounding error problem and
DT+FM’s effective mitigation capability. Analysis of maxi-
mum visit counts reveals that DT visited state 72 a total of 176
times, whereas DT+FM visited state 81 only 75 times, showing
that DT+FM delays error onset (64 vs 43) and mitigates error
accumulation (75 visits vs 176 visits).

V. CONCLUSION

This study proposes an FM-integrated architecture to miti-
gate the compounding error problem in DT and demonstrates
through grid environment experiments that the proposed ar-
chitecture effectively alleviates compounding errors. Further-
more, this study presents the potential for improving existing
algorithms suffering from compounding error problems and
demonstrates the applicability of offline reinforcement learning
to a broader range of real-world problem scenarios.
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