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Abstract—Municipal road maintenance is essential for safety,
yet conventional inspection methods are costly and inefficient.
Automated road damage detection has attracted attention,
especially with the advancement of autonomous driving. How-
ever, most existing object detectors are trained under closed-
set conditions, where all test classes are included during
training. In realworld applications, unknown objects inevitably
appear, and misclassifying them as known classes undermines
system reliability. To address this, we study open-set object
detection (OSOD) and propose improvements to the OpenDet-
CWA framework and integrate efficient optimal transport-based
distance metrics to improve feature compactness and separation
in the embedding space. Specifically, we incorporate Max-Sliced
Wasserstein, Markovian Sliced Wasserstein, and Random-Path
Markovian Sliced Wasserstein distance into the class anchor
alignment process. Furthermore, to enable real-time inference
on resource-limited platforms, we employ RepViT and FastViT,
a lightweight CNN architecture inspired by Vision Transform-
ers, instead of conventional ResNet-50 backbone. Experimental
evaluations on the VOC-COCO benchmark demonstrate that the
proposed approach achieves robust open-set recognition while
maintaining competitive accuracy in known-class detection.
Additional experiments on a road damage dataset reveal that
RepViT provides a favorable balance between accuracy and
computational efficiency compared to FastViT, whose reduced
representational capacity limits performance gains. Overall, the
proposed method enhances open-set robustness and offers prac-
tical scalability for deployment in mobile devices and embedded
road inspection systems.

Index Terms—RepViT, FastViT, Optimal Transport Cost,
Supervised Learning, Road Damage Detection

I. INTRODUCTION

Ensuring the structural integrity and operational safety of
road infrastructure is a critical issue in modern transportation
systems. Municipal roads, which constitute roughly 80% of
total road length used for daily travel [1], are predominantly
managed by local governments. However, manual inspection
remains the primary means of assessing road surface condi-
tions, and this process is inherently time-consuming, labor-
intensive, and costly. Consequently, inspection frequency and
spatial coverage are often insufficient to prevent the progres-
sion of minor defects into serious pavement failures. Surface
degradation such as cracking, rutting, or potholes can disrupt
drainage, cause delamination between layers, and lead to
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foundation settlement—ultimately shortening the service life
of roadways.

To mitigate these issues, numerous studies have explored
automated road damage detection using image-based and
sensor-based approaches. The introduction of deep learning
has accelerated this trend, enabling significant advances in
visual recognition accuracy. In parallel, the widespread de-
ployment of autonomous vehicles and mobile sensing tech-
nologies has created a growing demand for reliable and real-
time road condition assessment. Traditionally, object detec-
tion models in this field have been developed under closed-
set assumptions, where training and test datasets contain
identical categories. Collaborative projects between research
institutions and municipalities have resulted in large-scale
annotated datasets consisting of thousands of road surface
images captured via smartphones. Utilizing these datasets,
deep learning—based detectors—particularly one-stage archi-
tectures such as the YOLO family—have demonstrated im-
pressive accuracy and real-time performance in recognizing
various damage types [2], [3] .

However, real-world environments are inherently open-
set, meaning that models inevitably encounter unknown or
unseen damage categories not present in training data. Such
conditions severely degrade the reliability of conventional de-
tectors, which tend to misclassify unfamiliar damage patterns
as known classes. This misclassification poses significant
safety risks for downstream applications such as autonomous
driving or infrastructure monitoring. To address this chal-
lenge, research attention has shifted toward Open-Set Object
Detection (OSOD), which explicitly accounts for the presence
of unknown samples during inference [4], [5].

Recent studies have proposed several frameworks to en-
hance open-set robustness. For instance, the Open-World
Detection Transformer (OW-DETR) integrates novelty scor-
ing and objectness estimation within a Transformer-based
pipeline, enabling the recognition of unseen objects [6].
Meanwhile, the Unknown-Classified Open-World Object De-
tection (UC-OWOD) framework introduces multi-cluster
grouping for unknown instances and an improved evaluation
protocol for unknown-class detection [7].

Building upon these advances, this study adopts the
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Fig. 1. A 3D diagram visualizing the embedded space. Round
dots represent objects belonging to known classes, while cross
dots represent objects belonging to unknown classes. Here,
three known classes are represented in red, blue, and green,
respectively. The goal is to compact the clusters of objects
represented by round points belonging to the same known
class and reduce the size of the known class clusters. In
other words, it is to bring Figure (a) closer to the state shown
in Figure (b). By doing so, the area represented by crosses
for unknown class can be expanded, thereby improving the
accuracy of unknown class estimation.

(b)

OpenDet-CWA (OD-CWA) framework [8] and introduces
multiple architectural and algorithmic refinements aimed
at improving both accuracy and computational efficiency.
Specifically, we replace the conventional optimal transport
(OT) distance in the loss function with a more computation-
ally efficient alternative. Our objective is to enhance feature
compactness among known categories while expanding the
representation margin that surrounds unknown regions in
the embedding space. This strategy promotes clearer class
separation and improved unknown-class detection capability.
Building upon our previous work [9], which introduced the
Markovian and random-path sliced Wasserstein distances for
efficient optimal transport in open-set detection, this study
further integrates these cost functions with lightweight CNN
and hybrid Transformer backbones (RepViT, FastViT) to
achieve real-time inference on mobile platforms. Experimen-
tal results demonstrate that the proposed approach achieves
consistent accuracy gains and a substantial reduction in
computation time, contributing to the development of a more
practical and robust mobile road-damage detection system.

II. CoNVENTIONAL METHOD
A. OpenDet-CWA(OD-CWA)

The OpenDet-CWA (OD-CWA) is an enhanced Open-Set
Object Detection (OSOD) framework that mitigates misclassi-
fication of unknown objects by separating high-density latent
regions (knowns) from low-density ones (unknowns). As an
example, Fig. 1 visualizes the latent space features of the
three known classes (colored circles) and the unknown class
(crosses). Built upon Open-Det with a Faster R-CNN backbone
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Fig. 2. Flow chart of OD-CWA. The CFL components utilises
proposal features encoded into low-dimensional embeddings
using the Contrastive Head (CH) optimised using Instance
Contrastive Loss. The weights of the linear output layer are
passed through a SN step that maintain distance awareness
property. Then UPL component utilises the cosine distances
between embeddings and spectral normalised weights to learn
the probabilities for both known classes (Ck ) and the unknown
class (Cy). The class Wasserstein anchor part aids both CFL &
UPL to increase the compactness in the clusters by finding the
optimal transport plan.

(e.g., ResNet-50 + RPN), OD-CWA integrates four core mod-
ules: Spectral Normalization (SN) [10], Contrastive Feature
Learner (CFL) [11], Class Wasserstein Anchor (CWA), and
Unknown Probability Learner (UPL). SN stabilizes the final
linear layer by normalizing weight spectra, preserving distance
awareness between training and test samples. CFL enforces
intra-class compactness and inter-class separation via instance-
level contrastive learning, thus concentrating known features
and isolating unknowns. CWA introduces a Wasserstein-based
loss to align logits with class anchors, improving boundary
precision and feature compactness. Finally, UPL estimates an
explicit “unknown probability ” per instance, using prediction
uncertainty as a threshold to distinguish low-density unknown
regions. Collectively, these components refine feature embed-
dings and enhance discrimination between known and unseen
object classes.



B. Optimal Transport Cost

The optimal transport cost represents the minimum effort
required to transform one probability distribution into another,
reflecting not just shape similarity but the geometric movement
of probability mass. It serves as a key metric for comparing
distributions, often used in generative model evaluation and as
aloss function. In this work, the Wasserstein distance is adopted
as the optimal transport cost, as it measures the discrepancy
between predicted and anchor distributions [13]. However,
because its computational cost grows with dimensionality,
we employ a slicing-based approximation for efficiency.
The slicing method projects high-dimensional distributions
onto one-dimensional directions, enabling fast computation
of transport costs. We propose three efficient variants: the
max-sliced(Max-SW) Wasserstein distance, which focuses on
the most discriminative projection, and the Markovian sliced
Wasserstein distance(MSW), which exploits Markovian depen-
dencies to avoid redundant projections. Additionally, Random-
Path Markovian sliced Wasserstein distance(RP-MSW) which
employs the Random-Path strategy further enhances more
effective recognition of the geometric structure of distributions.

1) Max-Sliced Wasserstein distance: The Max-sliced
Wasserstein distance (Max-SW) [14] is an efficient extension
of the sliced Wasserstein distance (SW) designed to reduce
the computational cost of the traditional Wasserstein met-
ric. It works by projecting two high-dimensional probability
distributions onto multiple one-dimensional directions and
computing the Wasserstein distance for each projection. The
maximum of these distances is then taken as the Max-SW, as
it most effectively captures the distinguishing features between
distributions. By optimizing projection directions toward this
maximum, Max-SW highlights the most significant differences
while preserving essential distributional information.

Max-SWp(a,8)= max Wp(0ya,648) (1)
fesd-1

a and B are input distributions, and projection direction 6
is sampled from a unit hypersphere of S?~! dimensions.
Normally, a one-dimensional Wasserstein distance with p=1
is calculated. Since the projection direction component is
optimized in the direction of the greatest distance, maximizing
the Wasserstein distance maximizes the distance between
distributions and allows us to capture the differences between
distributions.

2) Markovian Sliced Wasserstein distance: The Markovian
Sliced Wasserstein Distance (MSW) [15] addresses the limi-
tations of Max-SW by introducing sequential dependencies
among projection directions. Instead of finding a single optimal
projection, MSW imposes a first-order Markov structure, where
each projection direction depends on the previous one. This
balances the randomness of sampling with the optimization of
Max-SW, efficiently identifying informative projections with
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fewer samples.

MSW? (. B)=E6,.1)~c (017)

T
% D WE (0, etﬁﬁ)} 6)
t=1

MSW computes the average p-Wasserstein distance over T
steps by sampling projection directions from a Markovian
distribution o, typically using Markov Chain Monte Carlo
(MCMC) for efficient sampling.

3) Random-Path: In Max-SW, finding the optimal projec-
tion direction requires costly optimization. To address this,
the Random Path (RP) method [16] offers a more efficient
alternative. It randomly samples one vector from each of the
two distributions, computes their difference Z = X —Y, and
normalizes it to obtain the Random-Path Projecting Direction
(RPD). This direction approximates the divergence between
distributions without optimization, achieving faster and more
stable computation compared to Max-SW.

III. ProPoSED METHOD

A. Overview

To achieve real-time open-set object detection on resource-
limited devices while maintaining high recognition robustness,
we propose an enhanced OD-CWA framework that integrates
efficient optimal transport (OT) losses with lightweight hybrid
CNN-Transformer backbones. Unlike conventional OD-CWA,
which relies on a heavy ResNet-50 architecture, our method in-
troduces adaptive OT-based feature alignment within compact
models such as RepViT and FastViT. This design aims to (1)
preserve inter-class separability and intra-class compactness in
the latent space, and (2) minimize computational overhead by
applying OT regularization selectively to high-level embed-
dings rather than all feature maps.

B. Lightweight Backbone Adaptation

1) FastViT Integration: FastViT [17] is a hybrid vision
transformer that balances latency and accuracy by combining
transformer-style token mixing with efficient convolutional
operations. It employs three key design strategies: the Rep-
Mixer block, which replaces MetaFormer skip connections
with a reparameterized depthwise convolution at inference to
reduce latency; linear train-time overparameterization, which
temporarily adds extra branches to enhance feature capacity and
is later merged into a single path; and large depthwise kernels
to expand the receptive field and improve robustness to out-of-
distribution samples. With this four-stage architecture, FastViT
achieves 83.9% Top-1 ImageNet accuracy while running up to
1.9 X faster than ConvNeXt on mobile hardware, maintaining
strong performance across object detection and segmentation
tasks.



2) RepViT Integration: While OD-CWA originally used
ResNet-50, replacing it with RepViT [18] results in a lighter
and faster model suitable for mobile deployment. RepViT is
a lightweight CNN inspired by Vision Transformer design
principles, implemented within a MetaFormer framework
using fully re-parameterized convolutions. Its core block
separates token and channel mixing through depthwise re-
parameterization, eliminating skip-connection overhead during
inference and reducing computational cost. At the architectural
level, RepViT employs a simplified stem, deeper downsampling
with RepViT and FFN blocks, and a minimal global-average-
pooling classifier to further improve latency. It favors efficient
3 X 3 convolutions, a small expansion ratio, increased channel
width, and selectively placed SE layers for a balance of speed
and accuracy. RepViT achieves strong accuracy—efliciency
trade-offs, surpassing prior lightweight CNNs and ViTs, ex-
ceeding 80% Top-1 accuracy on ImageNet with only 1.0 ms
latency, and demonstrating robust performance in detection and
segmentation tasks.

C. Summary of Advantages
The proposed modifications provide the following benefits:

« Efficiency: Selective OT computation and lightweight
backbones drastically reduce training and inference costs.

« Robustness: Wasserstein-based alignment improves dis-
crimination of unknown samples by expanding low-
density latent regions.

o Scalability: The unified OT-RepViT/FastViT framework
maintains stable performance across different computa-
tional budgets and datasets.

IV. EXPERIMENT
A. Experimental Setup

In this study, we utilized the VOC-COCO dataset, a com-
bination of Pascal VOC [19] (2007, 2012) and MS COCO
[20] (2017). In the datasets, VOC-COCO includes 20 known
classes, while its open-set variants—VOC-COCO-20, VOC-
COCO0O-40, and VOC-COCO-60—contain 20 known and 20,
40, and 60 unknown classes, respectively, with approximately
equal numbers of images per class. Thus, VOC-COCO serves
as a closed-set dataset, whereas the others simulate open-
set conditions with varying numbers of unknown categories.
Additionally, we employed a proprietary Road Damage Dataset
(RDD) consisting of seven road damage types, such as cracks
and potholes. Examples are shown in Figure 3. The RDD is an
adapted version of the Road Damage Dataset [21], originally
designed for object detection; each bounding box was cropped
for classification use. To evaluate open-set performance, we
adopted Wilderness Impact (WI) [22], which measures the
misclassification rate of unknowns as knowns, and Absolute
Open-Set Error (AOSE) [23], which quantifies the total
number of such misclassifications. In addition, mean Average
Precision for known classes (mA Pk ) and Average Precision for
unknowns (APy) were used to assess classification accuracy.
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Fig. 3. We used road damage dataset(RDD) including potholes,
cracks, fissures and so on. Please note that this dataset is a
proprietary dataset.

TABLE I System Specifications.

oS Windows 11 Pro
CPU Intel Core i7-14700 @ 2.10 GHz
RAM 32GB
GPU  NVIDIA GeForce RTX 4080 Super with 16 GB VRAM

Lower WI and AOSE values indicate better discrimination,
while higher mAPg and APy reflect improved accuracy.
The mAPg metric is defined as mAPg = # Zf\il AP;, where
N denotes the number of known classes. The experimental
hardware and software configurations are summarized in Table
L

B. Main Results

Table II presents a quantitative comparison of various
methods on the VOC-COCO benchmark using three different
backbones. When using ResNet-50, Max-SW and RP-MSW
achieve the highest mAP values, indicating strong performance
in known-class detection, while RP-MSW slightly reduces
AOSE and WI compared to other approaches, suggesting
better robustness against open-set errors. OD-CWA attains
competitive mAP but exhibits larger AOSE, implying a higher
tendency to misclassify unknown samples as known ones.
In contrast, RP-MSW maintains comparable accuracy with
substantially reduced open-set misclassification, confirming
the effectiveness of the reconstruction-based prior in stabilizing
the decision boundary.



TABLE II Comparisons with various methods on VOC-COCO.
(a) Using ResNet-50 as backbone.

Dataset VOC-COCO VOC-COCO-20 VOC-COCO-40 VOC-COCO-60 -

Method mAP WI AOSE AP, APy | WI___AOSE AP, APy | WI___AOSE AP, AP | Training time [s/tr]
OD-CWA 76.83 10.7 12375 56.16 13.88 | 13.42 19562 53.03 104 1223 26479 5348 4.77 6.58
Max-SW 77.18 1044 11991 56.14 15.13 | 12.88 18972 53.03 10.77 | 11.77 25947 53.57 4.68 16.48

MSW 76.56 1093 12717 55.89 1552 | 13.79 20233 52.86 11.05 | 12.41 27060 53.34 4.86 35.93
RP-MSW 77.72 1091 11705 56.66 15.11 | 13.81 18446 53.54 10.87 | 12.21 24934 53.88 4.83 37.52
(b) Using RepViT as backbone.

Dataset VOC-COCO VOC-COCO-20 VOC-COCO-40 VOC-COCO-60 -

Method mAP WI AOSE AP, APy | WI__AOSE AP, APy | WI_AOSE AP, APy | Training time [s/tr]
OD-CWA 26.09 7.73 13133 17.64 8.89 | 8.65 18280 16.71 6.67 | 6.78 22393 17.04 3.46 0.11
Max-SW 26.33 7.07 12164 17.6 7.74 | 8.04 17597 16.66 595 | 6.56 22021 17.02 3.2 1.48

MSW 27.46 772 13091 17.29 8.16 | 8.73 18419 1624 6.09 | 6.71 22215 16.69 3.08 431

RP-MSW 25.07 736 12774 16.53 746 | 823 17746 1588 5.76 | 6.37 20920 16.05 3.12 445
(c) Using FastViT as backbone.

Dataset VOC-COCO VOC-COCO-20 VOC-COCO-40 VOC-COCO-60 -

Method mAP WI AOSE AP; APy | WI AOSE AP, APy | WI AOSE AP, APy | Training time [s/itr]
OD-CWA 6.9 6.11 6432 298 3.04 | 7.75 10457 271 2.6 6.65 12309 2.68 1.27 0.14
Max-SW 16.64 5.34 7703 879 4.09 | 651 11192 8.23 348 | 487 12264 8.33 1.63 1.51

MSW 13.34 495 5894 6.61 3.16 | 5.84 8244 628 2.89 | 442 9224 6.36 1.46 4.16

RP-MSW 17.95 5.6 7974 8.99 372 | 6.83 11715 8.36 3.25 | 5.13 12729 8.5 1.62 4.44

TABLE III Comparisons with various methods on RDD. In
the RDD experiments, lightweight backbone was adopted to
facilitate efficient real-time processing. Although seven known
classes were used for training in RDD, they were not treated
as unknown classes during testing. Therefore, the WI, AOSE,
and APy evaluation metrics are not reported.

Dataset RDD
RepViT FastViT
Method mAP | Training time[s/itr] | mAP | Training time[s/itr]
OD-CWA | 28.18 0.10 26.12 0.12
Max-SW | 29.59 1.43 27.25 1.39
MSW 27.97 3.92 23.92 4.07
RP-MSW | 27.80 4.48 18.89 4.44

With RepViT as the backbone, the overall performance de-
creases compared to ResNet-50, reflecting the relatively weaker
feature separability of lightweight transformer architectures.
Nevertheless, MSW achieves the highest mAP, demonstrating
the benefit of Wasserstein-based feature regularization for
open-set generalization. RP-MSW, while showing slightly
lower mAP, achieves the smallest AOSE, indicating its superior
ability to suppress false recognitions of unknown objects.

Using FastViT, all methods exhibit further degradation in
both known and unknown detection performance, which is
expected given its compact architecture. Even in this setting,
RP-MSW consistently yields the lowest AOSE and WI, high-
lighting its robustness under limited representational capacity.
OD-CWA achieves relatively higher APy but suffers from a
sharp drop in AP,, confirming its bias toward known-class
discrimination.
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Overall, across all three backbones, RP-MSW consistently
provides the best balance between maintaining known-class
accuracy and minimizing open-set recognition errors, demon-
strating its general applicability and stability in various network
architectures.

Table III summarizes the experimental results on the RDD
dataset using lightweight backbones to emphasize compu-
tational efficiency. Among the evaluated methods, Max-SW
achieved the highest mAP across both RepViT and FastViT,
demonstrating its effectiveness in preserving discriminative
power even under reduced model capacity. OD-CWA, while
exhibiting the fastest training speed with 0.10 s/iteration for
RepViT and 0.12 s/iteration for FastViT, showed relatively
lower accuracy, indicating a trade-off between computational
efficiency and recognition performance.

MSW and RP-MSW required substantially longer training
times due to the additional computation of Wasserstein-based
losses and reconstruction priors, respectively. In particular,
RP-MSW exhibited the highest training cost (4.48 s/iteration
with RepViT and 4.44 s/iteration with FastViT) but did not
yield corresponding improvements in mAP, suggesting that
the reconstruction-based prior was less effective under the
lightweight backbone constraint. This result implies that while
RP-MSW provides strong robustness in open-set scenarios,
its benefits are diminished when model capacity and feature
expressiveness are limited.

Overall, the RDD experiments highlight that in resource-
constrained settings, simpler Wasserstein-based methods such
as Max-SW can achieve a favorable balance between ac-
curacy and efficiency, whereas the heavier reconstruction-
based variant may not provide proportional gains in detection



performance.

V. DiscussioN

The results in Tables II and IIT highlight the varying effec-
tiveness of optimal transport-based methods across different
backbone architectures and datasets. On the VOC-COCO
benchmarks, the proposed RP-MSW consistently achieves
performance comparable to or better than baseline methods,
indicating robust open-set recognition by promoting com-
pact known-class representations while maintaining separa-
tion from unknowns. However, on the lightweight RepViT
and FastViT backbones used in the RDD experiments, the
advantages of RP-MSW diminish due to its increased compu-
tational overhead and sensitivity to reduced feature capacity.
In these efficiency-constrained settings, Max-SW provides
a more practical balance, achieving strong accuracy with
substantially lower training cost. Overall, RP-MSW is effective
with standard-capacity backbones such as ResNet-50, but
applying it to real-time or resource-limited systems requires
further refinement or simplification.

VI. CoNcLUSION

In this study, we improved the computational cost by
introducing lightweight backbones such as RepViT and FastViT
in open-set object detection across multiple datasets. Partic-
ularly on complex benchmarks like VOC-COCO, RP-MSW
demonstrated consistently high performance, confirming its
effectiveness in improving separability between known and
unknown classes in feature space. However, experiments on
RDD revealed that combining lightweight backbones with RP-
MSW significantly increases computational cost. This indicates
that RP-MSW’s advantages depend on the backbone’s repre-
sentational capacity, and lightweight models tend to disrupt
the balance between effectiveness and efficiency. Therefore,
a future challenge is to explore more efficient methods that
maintain reconstruction benefits while reducing computational
load. These improvements are expected to enable the stable
application of open-set object detection models even in real-
time operational environments such as mobile devices and
embedded systems.
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