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Abstract—Information-Centric Networking (ICN) is a network
architecture that uses name-based addressing for content and is
expected to provide efficient video delivery. In video distribution,
traffic control mechanisms operate independently at different lay-
ers: Adaptive Bitrate (ABR) algorithms at the application layer
and Transport Layer Congestion Control (TCC) at the transport
layer. In ICN-based video distribution, there are concerns that
the competition between TCC and ABR may lead to a decrease in
Quality of Experience (QoE) and Quality of Service (QoS). This
paper evaluates the impact of the presence or absence of TCC
on QoE to understand the interaction between TCC and ABR
on ICN. From the simulation results, it was found that by using
TCC, ABR algorithms could select higher bitrates, reduce bitrate
fluctuations, and improve QoE. Furthermore, TCC suppresses
congestion, enabling stable communication and allowing ABR to
select bitrates close to the goodput. However, it was also found
that when TCC is performed, fairness in the network is reduced
because the communication bandwidth cannot be fully utilized
when avoiding congestion. From these findings, we have shown
that in adaptive video streaming over ICN, TCC is essential
for improving QoE by enabling ABR to select higher bitrates,
but appropriate TCC design is necessary to maintain network
fairness.

Index Terms—ICN, Adaptive Video Streaming, QoE

I. INTRODUCTION

In recent years, video traffic has come to constitute the
largest share of global telecommunications traffic, accounting
for 39% of fixed and 31% of mobile internet traffic [1].
Information-Centric Networking (ICN) is a network archi-
tecture that utilizes name-based addressing for content re-
trieval [2]. In ICN, a client transmits an INTEREST packet
specifying a name-based address, and a node possessing the
corresponding content replies with a DATA packet. Unlike
existing TCP/IP networks, ICN routers can inspect content
information and directly reply with DATA packets from their
cache. By leveraging these capabilities to suppress redundant
content requests, ICN is expected to enable efficient video
delivery and, video streaming over ICN has been actively
researched [3].

In video streaming, traffic control mechanisms operate in-
dependently at the application and transport layers. At the
application layer, adaptive video streaming is employed to
prevent Quality of Experience (QoE) degradation caused by
playback interruptions. Adaptive video streaming, such as
Dynamic Adaptive Streaming over HTTP (DASH) [4], avoids
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playback stalls by adjusting the bitrate of video segments
using an Adaptive Bitrate (ABR) algorithm. Meanwhile, at
the transport layer, Transport Layer Congestion Control (TCC)
operates to prevent Quality of Service (QoS) degradation
caused by congestion collapse. TCC prevents congestion by
adjusting the packet transmission rate via congestion control
algorithms. In the context of ICN, congestion control is
achieved by regulating the transmission rate of INTEREST
packets. Theoretically, if TCC improves communication qual-
ity in the transport layer and the ABR algorithm selects an
optimal bitrate in the application layer, the resulting QoE
should be maximized.

However, video streaming over ICN presents a challenge
arising from the independent operation of TCC and ABR
algorithms. For instance, when the packet transmission rate
is limited during congestion control phase of TCC, and the
ABR algorithm may select low bitrate. Consequently, the ABR
algorithm may fail to select higher bitrates, leading to degraded
QoE. Furthermore, the available bandwidth left unused by
the restricted client may be aggressively consumed by other
clients, resulting in a loss of network fairness and degraded
QoS. Thus, in video streaming, the TCC and ABR algorithms
operate independently. Therefore, it is crucial to understand
the interplay between congestion control and ABR algorithms
and to clarify the division of responsibility for QoE and QoS
between them.

In fact, conflicts between congestion control and ABR
algorithms have been observed in TCP/IP networks [5], and
this phenomenon is likely to occur in ICN as well. Since the
behavior of ICN differs fundamentally from that of traditional
TCP/IP, existing findings cannot be directly applied. Conse-
quently, there is a need to discuss new methods for improving
QoE and QoS through the interoperability of TCC and ABR
algorithms within ICN. In this paper, to clarify whether
congestion control is feasible solely using ABR algorithms in
adaptive video streaming over ICN, we analyze the interaction
between congestion control and ABR algorithms and evaluate
the viability of this approach.

II. ISSUES OF ADAPTIVE VIDEO DISTRIBUTION OVER ICN

Adaptive Video Streaming over ICN Adaptive video stream-
ing is a technique designed to prevent playback stalls and
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enhance Quality of Experience (QoE) by dynamically ad-
justing the video bitrate according to network congestion.
Fig 1 illustrates the overview of adaptive video streaming
over ICN. Video provider servers encode video content into
short segments, typically several seconds in length, at multiple
bitrates. The server lists the bitrate and playback timing of
these segments in a Media Presentation Description (MPD)
file, which is distributed alongside the video data. Before
playback begins, the client retrieves the MPD file and utilizes
an Adaptive Bitrate (ABR) algorithm to select the optimal
bitrate for each segment based on current network congestion
levels. The ABR algorithm enables high-quality playback by
selecting high-bitrate segments when the network is uncon-
gested and ensures continuous playback by switching to low-
bitrate segments to reduce data size during congestion.

To retrieve a video segment in ICN, the client transmits
an INTEREST packet containing specific information such
as the content name, bitrate, and segment number (e.g.,
prefix/video/segl/2Mbps). Upon receiving the IN-
TEREST packet, the server replies by encapsulating the cor-
responding video segment in a DATA packet. When an ICN
router receives an INTEREST packet, it performs routing
based on the name address; if the requested content is cached
on the path, the router directly replies with the DATA packet
from its cache.

As described above, adaptive video streaming over ICN
involves both Transport Layer Congestion Control (TCC) and
ABR algorithms. Understanding the interaction between these
two mechanisms is crucial for improving QoE. However,
due to unique characteristics of ICN, such as in-network
caching and pull-based communication, research findings from
traditional TCP/IP networks cannot be directly applied to this
architecture.

A lack of understanding regarding the interoperability be-
tween ABR algorithms and TCC can lead to conflicts, po-
tentially degrading both QoE and Quality of Service (QoS).
For instance, if TCC restricts the packet transmission rate,
the ABR algorithm may fail to select a higher bitrate even
when capacity is available. Conversely, if the ABR algorithm
aggressively selects a high bitrate, it may trigger an excessive
response from the TCC, increasing the likelihood of packet
loss. Furthermore, in scenarios where certain clients monop-
olize network bandwidth, TCC mechanisms may incorrectly
diagnose the network state as congested for other users.
This prevents other clients from fully utilizing the available
bandwidth, thereby deteriorating fairness in QoE.

Such issues have been confirmed in TCP/IP networks [5],
and similar problems are likely to manifest in ICN.

To address these issues, this paper evaluates the interaction
between ABR algorithms and TCC in adaptive video streaming
over ICN from the perspectives of QoE and QoS, using
simulations of representative algorithms. The following section
outlines the algorithms discussed in this paper.
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Fig. 1: ABR over ICN

A. Typical ABR Algorithms

This paper uses BOLA [6], PANDA [7], and MPC [§]
as representative ABR algorithms. The overview of each
algorithm is shown below.

- BOLA

BOLA is an ABR algorithm that selects a bitrate based on
the state of the video buffer. It selects a higher bitrate when
the buffer is sufficient and a lower bitrate when the buffer is
low. relatively moderated.

- PANDA

PANDA is an ABR algorithm that selects a bitrate based
on network throughput. It measures the throughput when
downloading video segments and selects a higher bitrate if
it is high, and a lower bitrate if it is low.

- MPC

MPC (Model Predictive Control) is an ABR algorithm that
selects the bitrate based on both the video buffer and network
throughput. It is a hybrid algorithm that considers both video
buffer and network throughput.

B. Typical Transport Layer Congestion Control

This paper evaluates representative congestion control algo-
rithms, Constant Bit Rate (CBR) and Interest Control Protocol
(ICP). The overview of each algorithm is shown below.

- Constant Bit Rate (CBR)

CBR (Constant Bit Rate) is a congestion control algorithm
that transmits data at a constant bit rate. CBR transmits
data at a fixed rate regardless of network conditions. It is a
transmission method without congestion control, as it does not
adjust the rate even if congestion occurs.

- Interest Control Protocol (ICP)

ICP (Interest Control Protocol) is a congestion control
algorithm that adjusts the sending rate of Interest packets. ICP
dynamically adjusts the sending rate of Interest packets ac-
cording to the network state. The sending rate is controlled by
a window size. The window size follows an AIMD (Additive
Increase and Multiplicative Decrease) mechanism. That is, the
window size decreases when packet loss occurs and increases
when packets are successfully received.

III. PERFORMANCE EVALUATION FOR COMBINATION OF
ABR AND TCC

Representative ABR algorithms and TCC were implemented
in an ICN video streaming simulator on NS-3 [16]. The
evaluation employed the Rocketfuel topology “1755.r0.cch,”
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consisting of five servers, 172 routers, and 105 clients [12].
This topology is generated using the Flexible Network Simula-
tion Script (FNSS), which provides realistic settings for queue
sizes, link bandwidths, and propagation delays [13]. Links are
assigned one of three bandwidths: 10 Mbps, 100 Mbps, or 1
Gbps.

Routers perform name-based routing and implement a 150
MB LCE-LRU cache. Clients use a video player with a 30-
second buffer, starting playback once segments are buffered.

The simulation handles 100 videos for Video-on-Demand
(VoD) streaming, each approximately 600 seconds long. Every
video is divided into roughly 600 one-second segments and
encoded at 20 bitrate levels ranging from 45 Kbps to 4.7 Mbps.
Each VoD server stores 100 videos (approximately 370 GB).
VoD clients select videos according to a Zipf distribution and
stream them using either PANDA, BOLA, or MPC for more
than five hours. The interval between consecutive playback
sessions follows an exponential distribution with a mean of
600 seconds.

A. QoE Calculation

To evaluate the Quality of Experience (QoE), we employ the
QoE-lin model [10]. This model calculated for each session
consisting of N segments (N=596 in this paper) and, considers
the video bitrate as a positive metric, while treating stall
duration and bitrate fluctuation as negative metrics. QoE-lin
is expressed by Eq. 1.

QoE};, = BITRATES — FLUCTUATIONS — STALLINGS
ey

The details of each term are as follows:

- BITRATES The first term, BITRATES, represents the
sum of the bitrates for all viewed video segments. Let R,
denote the bitrate of the n-th segment; this term is calculated
as EnN:1 R,. A higher cumulative bitrate corresponds to an
increase in QoE.

- FLUCTUATIONS The second term, FLUCTUATIONS,
accounts for the variation in bitrate between consecutive
segments. It is defined as A Zg;ll |R;+1 — Ry, representing
the cumulative bitrate switching amplitude. Significant fluctu-
ations between segments increase this value, thereby reducing
the overall QoE. Here, X is a non-negative weight factor.

- STALLINGS The third term, STALLINGS, represents
the re-buffering duration (playback stalls). It is expressed as
u 25:1 bn, where b,, denotes the stall duration incurred while
playing the n-th segment. This term sums the total stall time
across the entire viewing session; longer stall durations result
in a lower QoE. p represents the non-negative weight for this
penalty.

For the weighting factors, we adopt the values suggested in
[10], specifically setting A = 1 and p = 4.3.

To measure the fairness of QoE among clients, we use the
fairness index F' as defined in the Definition of QoE Fairness
in Shared Systems [14]. This index is given by Eq. 2 and
calculates the fairness of QoE rather than QoS.

20
H-L
where o is the standard deviation of the QoE values, H is
the maximum QOoE value, and L is the minimum QoE value.
The fairness index ranges from O to 1; a value closer to 1
indicates higher fairness, while a value closer to 0 indicates
lower fairness.
The difference between the bit rate and Goodput is given
by the absolute value of the difference between the Bit rate
and Goodput, as shown in Eq. 3.

F=1-

2

Diffsc = |BITRATE — GOODPUT| 3)

Here, BITRATE refers to the bitrate of the selected video
segment, and GOODPUT represents the measured goodput
during the download of that segment.

B. QoS calculation

Network fairness is measured using Jain’s Fairness Index
[11], which is a scale between O and 1, with values closer to
1 indicating high fairness and O indicating low fairness.

C. Simulation Results and Analysis of QoE Metrics

From the results presented in Table I, it can be observed that
scenarios using ICP achieve higher average QoE compared to
those using CBR. However, the QoE fairness in ICP-based
scenarios is lower than in CBR-based scenarios. These results
indicate that while employing TCC improves the overall QoE,
it may also lead to a reduction in QoE fairness.

To provide a deeper analysis of QoE, Table II summarizes
the average bitrate, average bitrate fluctuation, and average
stall duration for each scenario based on the QoE-LIN met-
rics. Additionally, Fig. 2 presents the Cumulative Distribution
Functions (CDFs), Fig. 2(a) for QoE-lin of a session, Fig. 2(b)
for BITRATES of a session, Fig. 2(c) for bitrate of a segment,
R, in BITRATES, Fig. 2(d) for bitrate fluctuation between
segment n and segment n+l, |R,+; — R,| in FLUCTUA-
TIONS, and Fig. 2(e) for Stalling time in a segment playback,
respectively.

TABLE I: Average QoE and QoE Fairness

Scenario Average QoE-lin | QoE Fairness
CBR-BOLA 1008.07 0.653
CBR-PANDA 811.85 0.672
CBR-MPC 965.71 0.640
ICP-BOLA 1655.97 0.527
ICP-PANDA 1380.65 0.600
ICP-MPC 1683.69 0.502

TABLE II: QoE metrics

Avg Bitrate Avg Bitrate Avg Stalling
Scenario (Mbps) Fluctuation (Mbps) Time (s)
CBR-BOLA 2.04 0.33 0.00157
CBR-PANDA 1.41 0.03 0.00070
CBR-MPC 2.12 0.48 0.00052
ICP-BOLA 291 0.12 0.00003
ICP-PANDA 2.34 0.01 0.00001
ICP-MPC 2.97 0.10 0.00658
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Fig. 2: CDF of QoE metrics

From the CDF of QoE in Fig. 2(a), it is evident that
scenarios with ICP generally achieve higher QoE compared
to those without ICP. However, we also observe sessions
with low QoE values (e.g., between 0 and 500) even when
ICP is employed. This suggests that ICP may excessively
restrict packet transmission rates in certain sessions, preventing
sufficient communication.

This observation is supported by the bitrate analysis. The
CDF of the average selected bitrate per session in Fig. 2(b)
indicates that while ICP scenarios frequently select higher bi-
trates, there remains a subset of sessions selecting low bitrates
in the range of 0 to 1 Mbps. Similarly, Fig. 2(c) confirms that
scenarios with ICP generally select higher bitrates. However,
in the specific case of PANDA, the use of ICP results in a
notable increase in the selection of lower bitrates. This is
likely due to the interaction between control mechanisms:
since PANDA employs an Additive Increase Multiplicative
Decrease (AIMD) strategy, its combination with the AIMD
mechanism of the ICP may lead to an excessive reduction in
packet transmission rates, forcing certain sessions to settle for
lower bitrates.

Regarding stability, the CDF of bitrate fluctuation in Fig.
2(d) shows that scenarios with ICP exhibit smaller fluctuations
compared to those without ICP. This implies that ICP stabilizes
the network throughput, thereby enabling the ABR algorithm
to select bitrates more consistently. Furthermore, Fig. 2(e)
indicates that stall durations are negligible across all scenarios,
demonstrating that the ABR algorithms effectively suppress
playback interruptions regardless of the ICP configuration.

In summary, ICP in video streaming generally enables ABR
algorithms to select higher bitrates with reduced fluctuation.
However, the excessive restriction of packet transmission rates
by TCC can negatively impact specific sessions, potentially
degrading the fairness of QoE.

D. Simulation Results and Analysis of the Impact of ICP

To further investigate the impact of ICP on adaptive video
streaming over ICN, we analyzed network performance met-
rics. Table III summarizes the total packet drop count, average
Goodput, Goodput fairness, average Goodput fluctuation, and
the average discrepancy between Goodput and bitrate for
each scenario. Additionally, Fig. 3 illustrates the Cumulative
Distribution Functions (CDFs) for Fig. 3(a) Goodput, Fig.
3(b) Goodput fluctuation, and Fig. 3(c) the difference between
Goodput and bitrate. In this study, Goodput is defined as the
total volume of DATA packets received by the client divided
by the session duration.

Regarding packet drops, Table 3 reveals that scenarios
using ICP exhibit significantly fewer drops compared to those
using CBR. The high frequency of packet drops observed
in the absence of ICP implies that ABR algorithms alone
are insufficient for congestion avoidance, leading to network
congestion. Conversely, the implementation of ICP effectively
suppresses congestion.

In terms of Goodput fluctuations, Table III and Fig. 3(a)
indicate that ICP scenarios yield lower values than CBR
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TABLE III: QoS metrics to analyze the impact of TCC

Total Drop Average Goodput Avg Goodput Goodput-Bitrate
Scenario (GB) Goodput (Mbps) | Fairness | Fluctuation (Mbps) | Diff Avg (Mbps)
CBR-BOLA 26.992 410 0.652 2.15 2.81
CBR-PANDA 5.462 5.51 0.822 1.79 423
CBR-MPC 38.081 3.90 0.661 1.88 2.72
ICP-BOLA 0.041 3.36 0.728 0.50 0.84
ICP-PANDA 0.104 452 0.763 1.17 222
ICP-MPC 0.026 3.23 0.732 0.38 0.77
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Fig. 3: QoS metrics to analyze the impact of ICP

scenarios. This reduction is attributed to the ICP mechanism,
which proactively restricts the packet transmission rate to
maintain network stability. In contrast, while CBR scenarios
achieve higher Goodput by aggressively consuming available
bandwidth, this behavior results in severe congestion.
Goodput fairness, Table III demonstrates that, with the
exception of PANDA, ICP scenarios achieve higher fairness
indices than CBR scenarios. This suggests that the stability
provided by ICP enhances fairness among clients. Specifically,
the Goodput CDF in Fig. 3(a) shows that most sessions in
ICP scenarios cluster within the 2 to 4 Mbps range, whereas
CBR scenarios exhibit a wide variance. Similarly, Goodput
fluctuation is lower in ICP scenarios, as shown in Table
III. The CDF in Fig. 3(b) confirms that the majority of

ICP sessions experience fluctuations in the range of 0 to 2
Mbps, while CBR sessions are subject to significantly higher
instability.

As noted in the previous section, the reduced fairness in the
PANDA scenario under ICP is likely caused by the compound-
ing effect of the AIMD control logic present in both the ABR
algorithm and the ICP. This interaction excessively restricts
the packet transmission rate, preventing certain sessions from
achieving sufficient throughput.

Alignment of Bitrate and Goodput finally, the discrepancy
between Goodput and the selected bitrate is smaller in ICP
scenarios compared to CBR, as shown in Table 3. The CDF
in Fig.3(c) corroborates this, indicating that a larger proportion
of sessions in ICP scenarios maintains a small difference
between Goodput and bitrate. This implies that the selected
bitrate is well-aligned with the actual network throughput.
The superior alignment in ICP scenarios is attributed to the
congestion suppression provided by ICP; by ensuring stable
communication, ICP allows the ABR algorithm to make more
consistent and accurate bitrate selections.

IV. CONCLUSION

In this paper, we analyzed the interaction between conges-
tion control and ABR algorithms to evaluate whether conges-
tion control in adaptive video streaming over ICN is feasible
solely using ABR algorithms. The simulation results demon-
strated that employing congestion control yields significantly
higher Quality of Experience (QoE), indicating that relying
exclusively on ABR algorithms is insufficient for effective
congestion avoidance.

Our analysis revealed the mechanism behind these results.
In the absence of ICP, while aggressive bandwidth consump-
tion may temporarily increase Goodput, it inevitably leads to
network congestion and significant Goodput fluctuation. This
instability causes the ABR algorithm to oscillate, resulting
in high bitrate variability and degraded QoE. In contrast,
the deployment of ICP suppresses congestion and stabilizes
communication, thereby enabling the ABR algorithm to con-
sistently select optimal bitrates and enhance overall QoE.

However, it was also observed that ICP can degrade QoE
fairness. This is attributed to the excessive restriction of
packet transmission rates, which prevents certain sessions from
utilizing communication bandwidth efficiently. As a result,
sessions that continuously select lower bitrates have increased,
leading to a degradation in QoE fairness. Based on these
findings, we conclude that ICP is essential for enabling ABR
algorithms to select high bitrates and improve QoE in ICN-
based adaptive video streaming, however, the QoE fairness
issue remains due to TCC’s congestion avoidance mechanism.

In future work, we will focus on designing a router-assisted
congestion control algorithm that operates cooperatively with
ABR algorithms to maintain fairness while maximizing QoE
[18].
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