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Abstract—In this paper, we propose a contactless carotid
sensing method for blood pressure (BP) estimation at 2.4 GHz.
Carotid pulsations are measured as the forward transmission
coefficient S21 using a vector network analyzer (VNA). To obtain
stable heartbeat representations, we perform band-pass filtering
and envelope processing to suppress slow drift, posture- and
distance-induced amplitude changes, and respiration components.
Recognizing the different temporal characteristics of systolic
blood pressure (SBP) and diastolic blood pressure (DBP), we
adopt a task-specialized dual-model design: a one-dimensional
convolutional neural network (1D-CNN) regressor for SBP and
a one-dimensional residual network (ResNet-1D) regressor for
DBP, with optional linear post-calibration. Evaluation follows a
subject-independent protocol with disjoint participants between
development and test cohorts. On the test cohort, SBP achieves
mean absolute error (MAE) 6.20 mmHg and root mean square
error (RMSE) 7.30 mmHg, while DBP achieves MAE 3.99 mmHg
and RMSE 5.18 mmHg. We also conducted a comprehensive
panel of agreement and consistency analyses (e.g., Bland–Altman
and related metrics). The results indicate near-zero bias and good
overall consistency across subjects, suggesting that microwave
carotid sensing combined with task-specialized learning enables
effective cuffless BP estimation and shows practical potential for
continuous monitoring.

Index Terms—Microwave, blood pressure, contactless sensing,
machine learning

I. Introduction

Hypertension is a major, yet preventable and controllable,
global health burden. According to the World Health Organiza-
tion (WHO), an estimated 1.4 billion adults aged 30–79 years
were living with hypertension in 2024, while population-level
control rates remain suboptimal [1]. These facts imply that
intermittent, office-based measurements are insufficient. There
is a pressing need for more frequent and context-appropriate
blood pressure assessment.

Conventional cuff-based devices remain the clinical and
home reference standard with mature accuracy. However,
measurements are intermittent, and cuff inflations can cause
discomfort and nocturnal disturbance, limiting long-duration
monitoring. Studies have reported that nighttime ambulatory
blood pressure monitoring (ABPM) may provoke arousals and
degrade sleep quality, affecting adherence and data quality
[2], [3]. By contrast, photoplethysmography (PPG) improves
convenience but still requires tight skin contact and is highly
sensitive to sensor–skin coupling and motion; moreover, sweat,
skin pigmentation or tattoos, ambient light, and temperature
can degrade signal quality and accuracy [4]. These limitations
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Fig. 1. Overall experimental flow.

motivate contactless approaches to improve comfort and ap-
plicability across daily-life scenarios.

Building on microwave and millimeter-wave (mmWave)
sensing, Shi et al. in [5] used a single mmWave radar to
form delay and Doppler representations with motion sup-
pression and evaluated blood pressure (BP) regression under
a leave-one-subject-out (LOSO) protocol; the reported mean
error (ME) and standard deviation (SD) were 0.87 and 5.01
mmHg for systolic blood pressure (SBP), and 1.55 and 5.27
mmHg for diastolic blood pressure (DBP). Singh et al. in
[6] synchronized two frequency-modulated continuous-wave
(FMCW) radars at the chest and the wrist to compute pulse
transit time (PTT) and pulse wave velocity (PWV), combining
these metrics with wrist morphology for regression; on five
subjects (fifty measurements each), the root mean square error
(RMSE) was 3.33 mmHg (SBP) and 3.14 mmHg (DBP). Zhao
et al. in [7] employed a 24 GHz linear frequency-modulated
continuous-wave (LFMCW) sensor at the carotid site and
applied a modified ResNet-18 for end-to-end estimation; on
one hundred subjects, the record-wise mean absolute error
(MAE) was 3.51 mmHg (SBP) and 2.44 mmHg (DBP).
These methods are closest to ours but rely on specialized
motion/time–frequency pipelines, dual-device alignment and
synchronization, or band/model–specific designs with het-
erogeneous reporting, which complicate deployment, weaken
alignment robustness, hinder comparability, and may constrain
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cross-subject generalization.
In signal preprocessing, Qiu et al. in [8] presented a

radar-oriented preprocessing chain with Kalman denoising
and multi-scale band-pass filtering, followed by beat-wise
segmentation, temporal alignment, and amplitude normaliza-
tion to produce stable cardiac segments. Wang et al. in
[9] obtained baseband magnitude via demodulation, applied
a bidirectional fourth-order Butterworth band-pass filter and
downsampling, then performed linear detrending and ampli-
tude standardization, constructed derivative channels, and used
cross-correlation for temporal alignment to emphasize the
upstroke and foot while unifying timing. These processing-
heavy pipelines improve input quality but introduce multi-stage
dependencies and parameter sensitivities (filters, segmentation,
alignment) whose cross-device and cross-scenario robustness
remains to be established.

Fig. 1 presents a 2.4 GHz contactless carotid-sensing
scheme. A single-tone microwave link at the carotid site
is monitored to capture subtle temporal fluctuations in the
received magnitude |S21(t)|. To obtain stable and comparable
cardiac representations, preprocessing includes: (i) respiratory-
reference cancellation via least squares(LS) to suppress low-
frequency wander; (ii) narrowband notches at the respira-
tory fundamental and its low-order harmonics to attenuate
harmonic leakage; and (iii) envelope-adaptive normalization
(EAN), a respiration-aware automatic gain control, to stabilize
gain and baseline across subjects and segments. Cardiac-band
branches are then extracted for regression. Because systolic
and diastolic estimation rely on different discriminative cues,
a task-specialized dual model is adopted—1D-CNN for SBP
and ResNet-1D for DBP—with optional linear post-calibration.

The contributions of this paper are as follows:

• We built a 2.4 GHz, single-link, single-site contactless
carotid-sensing setup that can be deployed quickly on
site for proof-of-concept evaluation. Using commodity
RF and antenna modules together with bench-top VNA
instrumentation, a reproducible prototype was realized,
and the signal chain can in principle migrate to integrated,
low-power wearable or edge implementations.

• We chose the carotid artery as the target site to acquire
pulsations closer to central hemodynamics, reducing in-
terference from heart sounds and structural complexity at
the precordial region.

• We designed a magnitude-only signal-processing pipeline

that includes respiratory cancellation, harmonic notch
filtering, and envelope-adaptive normalization (EAN) to
stabilize gain and baseline and to suppress respiratory
sidebands, producing consistent cardiac-band inputs that
support SBP and DBP regression.

II. Measurement Methods
A. Signal principle and Preprocessing

1) Signal principle: Measurements are performed at a sin-
gle tone f0 = 2.4GHz. The instrument records the logarithmic
magnitude of the forward transmission coefficient:

∣∣S21(t)
∣∣
dB

= 20 log10
∣∣S21(t)

∣∣ = 20 log10

∣∣∣∣
srx(t)

stx(t)

∣∣∣∣ , (1)

where stx(t) is a single-tone excitation radiated toward the
carotid region and srx(t) is the received signal after interaction
with neck tissues. The transmit and receive antennas together
with the subject can be modeled as a slowly time-varying two-
port network at f0:

S21(t) = H(f0, t) = A(t) ejϕ(t), (2)

and only the magnitude channel is available. The linear mag-
nitude A(t) = |S21(t)| is therefore used as the observable.

Slow variations in A(t) are mainly induced by changes in
near-field coupling and mutual impedance caused by minute
surface displacements. When the carotid site is targeted, the
observable is well approximated by the superposition of a
respiratory term and a cardiac term,

A(t) = A0[1 + αr r(t) + αc c(t)] + nA(t), (3)

where r(t) represents respiration in 0.1 to 0.5 Hz, c(t) rep-
resents cardiac micro-motion in 0.7 to 2.0 Hz, A0 is a static
baseline, αr and αc are coupling coefficients that depend on
placement and subject factors, and nA(t) aggregates instru-
ment noise and small motion. Fig. 1 summarizes the overall
sensing-to-regression concept.

2) Preprocessing: The objective is to extract pulse-related
components from the observed magnitude sequence. Fig. 2
illustrates the overall pipeline. The raw A(t) = |S21(t)| is
converted into six time-domain channels that serve as inputs
to the downstream models, as shown in Fig. 3. All processing
is performed in the linear domain of A(t).

Interface unification is applied first. Baseline correction
removes very slow additive drift and device offsets so that
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Fig. 3. Six-channel signals: (a) breathing reference (0.1–0.5 Hz); (b)
respiration-removed, low-pass (5 Hz cutoff); (c) respiration-removed, notch-
suppressed; (d) envelope-adaptive normalization (EAN) signal; (e) heartbeat
band, narrow (0.9–2.0 Hz); (f) heartbeat band, wide (0.8–3.0 Hz).

segments from different subjects share a comparable zero level
and scale. Sampling-rate unification avoids step-size discrep-
ancies across recordings and keeps filter and segmentation
parameters consistent.

Respiratory cancellation follows. From (3) the observable
contains a respiratory term r(t) whose low-frequency wander
can obscure cardiac details in 0.7–2.0Hz. A smoothed res-
piratory reference r̃(t) is obtained by band-pass filtering in
0.1–0.5Hz and is discretized as r̃[n]. The coupling strength
and a slow baseline term are estimated by ridge-regularized
least squares and then subtracted:

ŵ = argmin
w

∥∥a−Xw
∥∥2
2
+ λ∥w∥22, (4)

where w is the coefficient vector, a is the observation vec-
tor formed by A[n], and X stacks x[n] = [r̃[n], r̃[n −
1], . . . , r̃[n−L+1], 1, n/N ]⊤. Here λ is the ridge parameter,
L is the lag order, and N is the segment length.

sclean[n] = A[n]− x[n]⊤ŵ, (5)

where sclean[n] denotes the residual after LS-based removal
of the respiratory coupling. To suppress nonphysiological
high-frequency noise such as quantization spikes and short
transients, and to provide a stable baseline for the subsequent
stages, a light low-pass is applied:

slp[n] = LP5Hz{ sclean[n] } , (6)

where slp[n] is the sequence after a 5 Hz cutoff low-pass, and
LP5Hz{·} denotes the low-pass operator with a 5 Hz cutoff.
The choice of 5 Hz is above the upper edge of the cardiac-wide
band at 3.0 Hz, so distortion to the target band is negligible.

Interference near the cardiac neighborhood is then addressed
in two steps. The first step targets harmonic leakage: the inter-
action between periodic respiration and the system response
produces narrow spectral lines at the respiratory fundamental

fr and its second harmonic 2fr. Narrowband notches are
placed at fr and 2fr, yielding narrowband-suppressed signal
snotch[n]. This change is most evident in the spectrum because
the sharp lines at fr and 2fr are attenuated, whereas the time-
domain trace may look similar to (5).

The second step handles slowly varying gain and baseline
drift. Unlike the initial baseline correction that treats additive
drift, real recordings often exhibit multiplicative scaling caused
by posture and scattering geometry, which can be approxi-
mated as

snotch[n] ≈ g[n] sc[n] + u[n], (7)

where g[n] > 0 is a slowly varying gain envelope, sc[n]
is the cardiac-near component, and u[n] is a small additive
residual. To stabilize this multiplicative variation, envelope-
adaptive normalization (EAN) is applied:

snorm[n] =
snotch[n]

e[n]
, (8)

where e[n] denotes the smoothed envelope obtained after
cardiac-near prefiltering and is used as a proxy for the slowly
varying gain g[n]. Dividing snotch[n] by e[n] yields the
amplitude-normalized trace snorm[n], which stabilizes inter-
segment gain and baseline. From snorm[n], we then extract
the branches for the following regression.

Two cardiac branches are finally extracted to balance mor-
phology sensitivity and robustness. A narrow branch of 0.9 to
2.0 Hz emphasizes the upstroke and peak details, and a wider
branch of 0.8 to 3.0 Hz preserves more envelope trends. All
inputs used for learning are standardized within each segment
by z-scoring to prevent cross-segment statistical leakage. The
envelope e(t) is only an intermediate for (8) and is not
provided to the models.

By default, each training and evaluation sample is an 8 s
segment resampled to 120 Hz. We stack six channels to form
the input tensor of shape C×T = 6×960 (channels × time).

B. Models
1) Physiology-informed model selection: Physiology and

waveform analysis indicate that systolic blood pressure (SBP)
is dominated by rapid, localized morphology around the early-
systolic upstroke and the late-systolic peak, with augmentation
influenced by the timing of forward and reflected waves [10].
In contrast, diastolic blood pressure (DBP) reflects longer time-
scale behavior related to peripheral resistance and arterial
compliance, manifested as a slow diastolic envelope and decay
[11]. Guided by these mechanisms, SBP is modeled with a 1D-
CNN that emphasizes local and fast patterns, whereas DBP is
modeled with a ResNet-1D whose residual stacking enlarges
the effective temporal field for integrating slow envelopes and
low-frequency trends [12]. This pairing is consistent with
reports that convolutional architectures, particularly ResNet
variants, are effective for cuffless BP estimation from pulsatile
waveforms [13], [14].

For comparability, both architectures produce two scalar
outputs, SBP and DBP, and we report the intended pairings
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Fig. 4. Model structure for 1D-CNN and ResNet-1D.

TABLE I
1D–CNN (SBP).

Layer Type k/s/p OutCh OutLen

Input Six-channel signals – 6 960
Conv1a Conv1d 7/1/3 32 960
Conv1b Conv1d 5/1/2 64 960
DW5 Depthwise Conv1d 5/1/2 64 960
PW Pointwise 1×1 1/1/0 96 960
GAP Global Average Pool – 96 1
FC-1 Linear (+GELU) – 64 1
FC-2 Linear (SBP/DBP) – 2 1

k/s/p = kernel/stride/padding.

together with cross-task baselines, where each architecture
is evaluated on the non-designated target, under identical
data splits and training settings. Layer-wise architectures are
summarized in Table I and Table II; high-level blocks are
shown in Fig. 4.

2) 1D-CNN for SBP regression: The input X ∈ RC×T

is a multi-branch stack of preprocessed signals such as the
envelope-normalized trace and the cardiac narrow/wide bands.
A convolutional block is summarized by

CBc
k,s(x) = ϕ

(
BN

(
Conv c

k,s(x)
))
, (9)

with 1D convolution Conv c
k,s, batch normalization (BN), and

activation ϕ GELU. The temporal encoder is the composition

HSBP =
(
CBcL

kL,sL
◦ · · · ◦ CBc2

k2,s2
◦ CBc1

k1,s1

)
(X), (10)

followed by global average pooling (GAP) over time to obtain
a compact representation. A linear head then outputs scalar
SBP.

Layer-level notes aligned with Fig. 4 and Table I. The
first two temporal convolutions keep stride one and preserve
sequence length so that upstroke slope and peak sharpness
are not attenuated. Next, a depthwise convolution operates
channel-by-channel to retain short, per-branch receptive fields
and emphasize local morphology, and a subsequent pointwise
1×1 convolution mixes information across channels to increase

TABLE II
ResNet–1D (DBP).

Layer Type / Structure k/s/p
(c1; c2) OutCh OutLen

Input Six-channel signals – 6 960
Stem Conv7 (+BN, GELU) 7/2/3 32 480
Res-block 1a Conv(3)×2 + id skip 3/1/1; 3/1/1 32 480
Res-block 1b Conv(3)×2 + id skip 3/1/1; 3/1/1 32 480
Res-block 2a Conv(3)×2 + 1×1 proj skip 3/2/1; 3/1/1 64 240
Res-block 2b Conv(3)×2 + id skip 3/1/1; 3/1/1 64 240
Res-block 3a Conv(3)×2 + 1×1 proj skip 3/2/1; 3/1/1 96 120
Res-block 3b Conv(3)×2 + id skip 3/1/1; 3/1/1 96 120
Res-block 4a Conv(3)×2 + 1×1 proj skip 3/2/1; 3/1/1 128 60
Res-block 4b Conv(3)×2 + id skip 3/1/1; 3/1/1 128 60
GAP Global Average Pool – 128 1
FC-1 Linear (+GELU) – 64 1
FC-2 Linear (SBP/DBP) – 2 1

(c1; c2) = k/s/p of conv1/conv2; “id skip” = identity shortcut; “proj skip”
= 1×1 projection shortcut.

capacity with little parameter cost. BN and GELU stabilize
optimization on short segments, and GAP removes absolute
timing within the 8s window, improving robustness to mi-
nor misalignment. Overall, the stack is biased toward local
amplitude/gradient cues that are informative for SBP while
remaining lightweight; the head produces both SBP and DBP
for consistent reporting across architectures.

3) ResNet-1D for DBP regression: The DBP branch is
a residual 1D network built from BasicBlocks with identity
shortcuts; 1×1 projection shortcuts are used when stride or
channels change. A block is expressed as

BBc
k,s(x) = xskip ⊕ BN2

(
Conv c

k,1

(
σ(BN1(Conv

c
k,s(x)))

))
,

(11)
where ⊕ is elementwise addition, σ is GELU, and xskip =
x when shapes match, otherwise xskip = Conv c

1,s(x). The
backbone is the composition of L such blocks,

HDBP =
(
BBcL

kL,sL
◦ · · · ◦ BBc2

k2,s2
◦ BBc1

k1,s1

)
(X), (12)

optionally with dilation to enlarge the temporal field without
a large parameter cost. Global average pooling aggregates the
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sequence, and a linear head yields scalar DBP.
Layer-level notes aligned with Fig. 4 and Table II. A strided

stem enlarges the temporal field at the outset. Each stage
transition halves the sequence length, progressively aggregat-
ing longer-range context, suppressing high-frequency noise,
and reducing sensitivity to minor timing jitter—properties
desirable for modeling diastolic decay and low-frequency en-
velopes. Identity shortcuts preserve gradient flow when shapes
match; projection shortcuts align the residual and main paths
when stride or channel count changes. Within each block, two
1D convolutions with BN and GELU provide stable nonlinear
modeling on short recordings. After the final stage, GAP
summarizes the sequence and the head yields the two BP
estimates used for reporting.

III. Experiments and Results Analysis
The dataset comprises 270 eight-second carotid recordings

from 7 adult participants, each paired with a synchronous
cuff-based blood pressure reference. Unless otherwise noted,
a subject-stratified 7/2/1 split (train/validation/test) is adopted.
Performance on this small, controlled cohort is reported us-
ing MAE, RMSE, Pearson’s correlation coefficient r, and
Bland–Altman statistics (bias ± SD in mmHg and limits of
agreement, LoA). MAE reflects the average absolute error
and is interpretable while being less sensitive to outliers.
RMSE penalizes large deviations more heavily and thus re-
flects stability. Pearson’s r quantifies linear association but
not agreement, so Bland–Altman analysis supplies bias and
LoA (±1.96×SD), which is standard practice for assessing
agreement with a clinical reference.

We use 1D-CNN for SBP and ResNet-1D for DBP as the
intended pairing, and we also evaluate both models on both
targets as cross-task baselines for comparison.

A. Measurement preparation and setup
Fig. 5 sketches the measurement scene. A vector network

analyzer (Keysight FieldFox N9914A) drove a TX–RX patch-
antenna pair aimed at the carotid while the participant sat with
head support at a 6 cm stand-off. We recorded 8s single-tone
CW trials at 2.4 GHz and logged the magnitude of |S21(t)|;
a home cuff monitor provided the concurrent BP reference.

VNA

Antennas

Home BP
Monitor

Fig. 5. Experiment scenes and devices.

TABLE III
Acquisition configuration and protocol

Item Setting
Instrument Keysight FieldFox N9914A (VNA)
Measurement S21 magnitude, single-tone (zero-span)
Carrier f0 2.4 GHz (CW; start = stop = 2.4 GHz)
IF bandwidth BIF 3 kHz
Sweep points N 10001
Record length T 8 s
Effective rate Fs 1250Hz
Sampling interval ∆t 0.8ms
TX power Ptx 3 dBm
Antennas patch antennas (placement fixed)
Stand-off distance 6 cm (to carotid sinus)
Posture Seated, head supported
Reference Resource Home cuff monitor, concurrent

To ensure repeatability, antenna placement/polarization and
cabling were kept fixed across trials. Full instrument settings
are listed in Table III.

B. Performance and difference comparisons
Table IV reports subject-wise metrics, with intended pair-

ings marked within each target block. To facilitate pairwise
comparison, we include a ∆ row defined as ∆ = 1D-CNN −
ResNet-1D. Positive values indicate the 1D-CNN entry is
larger; negative values indicate the ResNet-1D entry is larger.
For composite statistics, differences are computed component-
wise: bias and SD separately; LoA lower and upper limits
separately.

For SBP, the 1D-CNN yields lower MAE and RMSE, higher
correlation r, and tighter dispersion (lower SD and narrower
LoA) than ResNet-1D; the ∆ row within the SBP block reflects
these consistent gains.

For DBP, the advantage shifts to ResNet-1D, which attains
lower MAE/RMSE, higher r, and reduced spread relative to
CNN; the corresponding ∆ indicates a small increase in error
and dispersion when using CNN for DBP.

Cross-task baselines follow the expected pattern: DBP based
on 1D-CNN widens LoA and increases SD, whereas SBP
based on ResNet-1D attenuates localized features and lowers r.
Mean bias remains close to zero for both targets, and residual
error is dominated by spread.

C. Scatter and agreement analysis
The scatter plots in Fig. 6 cluster near the identity with

least-squares slopes close to one, indicating strong linearity.
Mild compression at the high-SBP end coincides with sparser
coverage in that range and the larger SBP RMSE.

Bland–Altman analysis shows mean bias near zero and ap-
proximately balanced dispersion across the range, with no clear
proportional bias. Outliers appear mainly near range extremes:
high SBP and low DBP, which is consistent with edge-of-
range scarcity and residual respiratory or motion leakage when
amplitudes are small.

IV. Conclusion and Future Work
We presented a magnitude-only, single-link 2.4GHz

carotid-sensing pipeline for cuffless blood pressure estimation
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TABLE IV
Subject-wise test performance under a fixed split (n = 27; 7 subjects). ∆: difference within each target block.

Target Model MAE RMSE r bias ± SD (mmHg) LoA

SBP
1D-CNN 6.20 7.30 0.936 −1.18 ± 7.34 [−15.57, 13.21]
ResNet-1D 6.69 8.90 0.907 −2.32 ± 8.75 [−19.47, 14.84]
∆ −0.49 −1.60 +0.029 +1.14 /−1.41 [+3.90,−1.63 ]

DBP
1D-CNN 4.62 5.80 0.931 1.81 ± 5.61 [−9.19, 12.81]
ResNet-1D 3.99 5.18 0.942 0.63 ± 5.24 [−9.65, 10.90]
∆ +0.63 +0.62 −0.011 +1.18 /+0.37 [+0.46,+1.91 ]

(a) 1D-CNN (b) ResNet-1D
Fig. 6. Test-set parity plots (predicted vs. reference) for SBP and DBP.

based on |S21(t)| in single-tone CW. With a lightweight
band-pass/envelope preprocessing chain and a task-specialized
pairing, the system achieves competitive subject-wise accuracy
with consistent agreement and small overall bias on this small,
controlled cohort, so the present results should be regarded as
an initial proof of concept, which provides a basis for future
studies with more compact, low-power sensing hardware.

We will (i) scale to larger and more diverse cohorts with
multi-session/site validation; (ii) enrich sensing with phase or
multi-frequency channels and assess robustness to posture and
placement; (iii) perform systematic ablations with uncertainty
quantification; and (iv) optimize hardware, firmware, and
runtime toward real-time, privacy-preserving deployment.
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from photoplethysmogram using a spectro-temporal deep neural net-
work,” Sensors, vol. 19, no. 15, p. 3420, 2019.

[14] C. Qin, Y. Li, C. Liu, and X. Ma, “Cuff-less blood pressure prediction
based on photoplethysmography and modified resnet,” Bioengineering,
vol. 10, no. 4, p. 400, 2023.

865


