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Abstract—Transmission impairments are inherent to cellular
communication systems and significantly impact the signal-to-
interference-plus-noise ratio (SINR) at the receiver. Although
several methods exist to mitigate these impairments, the diverse
and stringent quality-of-service (QoS) requirements of 5G and
beyond networks make this problem increasingly challenging.
Among emerging applications, ultra-reliable and low-latency
communications (URLLC) are particularly demanding due to
their strict reliability and latency constraints.

This paper addresses the adaptive power allocation problem
for downlink transmission to satisfy the reliability requirements
of uRLLC users. A detailed mathematical model is developed
for SINR and block error rate (BLER) between a base station
(gNB) and user equipment (UE). The power allocation problem
is formulated as a non-convex optimization problem, aiming
to allocate optimal transmit power across gNB-UE pairs while
maintaining BLER-based reliability targets. To obtain an efficient
solution, a Q-learning-based adaptive power allocation algorithm
is proposed, offering low computational complexity and near-
optimal performance. Simulation results demonstrate that the
proposed approach significantly outperforms fixed power alloca-
tion schemes, achieving higher reliability and improved BLER
retainability in downlink transmission.

Index Terms—5G RAN, Optimization, Reinforcement learning,
Q-learning, Reliability

I. INTRODUCTION

Fifth-generation (5G) and beyond networks are designed
to support applications with diverse Quality-of-Service (QoS)
requirements beyond traditional cellular communications [1].
These applications are broadly classified into three categories:
enhanced Mobile Broadband (eMBB), which demands high
throughput; ultra-Reliable and Low-Latency Communications
(uRLLC), which requires stringent reliability and minimal la-
tency; and massive Machine-Type Communications (mMTC),
which supports a large number of connected devices.

This work focuses on radio resource allocation in the 5G
Radio Access Network (RAN) for uRLLC applications, which
require extremely high reliability (up to 99.999%) and very
low latency (up to 10 ms) [1], [2]. Meeting both these require-
ments simultaneously is inherently challenging due to their
interdependence. Reliability can often be improved through
re-transmissions, but re-transmissions introduce additional la-
tency. Therefore, to meet uRLLC performance targets, the
transmitted information must be correctly received on the first
attempt.
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In practice, wireless transmissions are subject to various im-
pairments, such as faulty feeders, poor voltage standing wave
ratio (VSWR), or base-station failures [3]. Several existing
studies have proposed methods—ranging from power control
to radio resource allocation—to mitigate such impairments
and enhance link reliability [4], [5]. However, most of these
approaches assume a fixed block error rate (BLER) (typically
10~!) for determining the threshold signal-to-interference-
plus-noise ratio (SINR) used in selecting modulation and
coding schemes (MCS) [2]. While suitable for eMBB or
general traffic, this assumption fails to account for the diverse
reliability requirements of emerging uRLLC services.

To address this limitation, this paper revisits the adap-
tive power allocation problem for 5G and beyond networks,
focusing on uRLLC services with heterogeneous reliability
targets. Since transmission reliability is inversely related to
BLER, adaptive power control becomes essential to maintain
service-specific QoS. The key contributions of this work are
summarized as follows:

o Mathematical modeling of SINR and BLER for adaptive
downlink power allocation considering reliability require-
ments.

o Formulation of an optimization problem for adaptive and
optimal transmit power allocation under constraints such
as target BLER and maximum transmission power.

o Development of a reinforcement learning—based (Q-
learning) algorithm to solve the non-convex optimization
problem efficiently in polynomial time, enabling adap-
tive power control for each gNB-UE pair in downlink
transmission.

« Simulation of the 5G downlink channel for various Mod-
ulation and Coding Schemes (MCSs) using MATLAB
to derive curve-fit parameters for approximating BLER
as a function of SINR. Performance is further evaluated
through event-driven simulations, demonstrating that the
proposed approach significantly outperforms fixed power
allocation in achieving higher reliability and lower BLER.

The rest of the paper is organized as follows. Section II
discusses the existing works that focused on adaptive power
allocation in cellular networks. Section III presents the de-
tailed network model with optimization problem. Section IV
presents the proposed Q-learning-based adaptive power allo-
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cation approach. The performance of the proposed approach
is presented in Section V. Finally, Section VI concludes the
paper while highlighting future research directions.

II. RELATED WORK

In this section, we review existing studies on resource
allocation in 5G Radio Access Networks (RANs), with par-
ticular emphasis on power allocation at gNBs for downlink
transmission [4]-[11].

Mismar et al. [4] proposed a reinforcement learning
(RL)-based power allocation method for downlink transmis-
sion to achieve target signal-to-interference-plus-noise ratios
(SINRs) for cellular users. The authors examined both in-
door and outdoor scenarios. In the indoor case, Q-learning
was employed to dynamically adjust gNB transmit power to
meet target SINRs. For outdoor environments, they considered
fault-induced transmission impairments and introduced a self-
organizing network fault management framework using deep
Q-learning. In a related study, Mismar and Evans [5] investi-
gated the indoor scenario exclusively, proposing a Q-learning-
based closed-loop power control scheme to ensure target SINR
satisfaction for cellular users.

Nguyen et al. [6] developed an adaptive power alloca-
tion scheme for multi-connectivity MIMO systems, target-
ing quality-of-experience (QoE) enhancement under imperfect
channel state information. Their method leveraged multi-
connectivity to improve reliability for critical users. In [7],
the authors formulated the adaptive power allocation problem
as a sum-rate maximization task with fairness constraints to
guarantee a minimum data rate for each user. The problem
was solved using a graph neural network—based approach.

Rajanandini and Jaya [11] proposed a meta-heuristic-
based adaptive power allocation strategy considering en-
ergy efficiency. Rabee et al. [8] investigated throughput-
optimized power allocation in energy-harvesting relay-assisted
networks, employing an actor—critic RL framework to achieve
polynomial-time convergence. Tran et al. [9] examined BLER-
based power allocation for mMTC applications. However,
their model lacked power allocation constraints, which is
impractical, and assumed a system-wide BLER target rather
than user-specific reliability requirements. Gao et al. [10]
applied Q-learning for power control to improve throughput,
energy efficiency, and user experience.

While these studies have explored adaptive power alloca-
tion in cellular networks, most have not explicitly addressed
reliability, which is crucial for mission-critical uRLLC ap-
plications. Among the closest works, reliability-aware multi-
connectivity [6] and BLER-based power allocation [9] provide
valuable insights but also exhibit key limitations. First, multi-
connectivity may be impractical in dense deployments due to
limited radio resources and infrastructure constraints. Second,
meta-heuristic approaches such as those in [9] lack conver-
gence guarantees, making them unsuitable for near real-time
decision-making required in dynamic 5G environments.

III. SYSTEM MODEL

We consider a network consisting of multiple gNBs and
multiple users, denoted by a set G and Nyg, respectively. The
gNB sends information to the users using downlink. In order
to receive the information correctly, the signal-to-interference-
plus-noise-ratio (SINR) needs to be above the threshold for
a specific modulation and coding scheme [12]. Furthermore,
individual users may have different reliability requirements
in terms of BLER based on the underlying applications, as
discussed in Section I. We present the SINR and BLER models
in the subsequent sections.

A. SINR and BLER Model

The received base-band signal y,[t] for user ¢ at time ¢ is
denoted by:

y;[t] = hi[t]x;[t] + nolt], Vi € Nug, 9]

where, h;[t] is the channel coefficient that depends on atten-
uation and delay factors. 7o[t] is the Gaussian noise sampled
from N (0,02).

For a given forward link budget, the gNB allocates a
transmit power for user ¢ at time t. Therefore, the received
power PUQ [t] (in dB) is calculated as follows:

PRIt = P[] + G — L — LO[t] + Gy, Vi € Nug,

where, P&“ denotes the transmit power allocated to user ¢
by the transmitting gNB. Grx denotes the antenna gain of
the transmitter. L, represents the loss due to transmission
impairments, discussed later. Ll(f) denotes the path loss and
G"., denotes the antenna gain of the receiving UE.

The received downlink SINR ~(*) for the i-th UE at TTI ¢
is represented as:

Py
no+ Y. Pugo,i
jeg\{o}
For ease of notations, we dropped the time index ¢. In (2), 1
denotes the noise for the AWGN channel. Pyg o, denotes
the inter-cell inference to the user ¢ from all gNBs j € Nyng
except the gNB to which the user is associated.

Now, the BLER for the transmission with SINR fy(i) can be
accurately approximated using the following expression [12]:

M[,y(i)] ~ 1, _ lf 0 < ’Y(Z) < Vth;
Cm eXp(*dm'Y(Z))v if 7(2) > Yth,

~O £ ,Vi € Nug. 2)

3)

where, 7, denotes the threshold SINR, which depends on the
modulation and coding used for the transmission [2]. C,,, and
d,, denote the constant values associated with modulation and
coding [12].

Putting (2) and (3) together, we get

(0
Pk

o+ > Pug,0; i
jeg\{0}

W = Cryexp (~ dn ) @
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which is equivalent to

i 1 (%)
Pl = — |+ Y Pupo,—il log (g ) (5)
m jGQ\{O} m

Finally, we present the expression of the transmit power for
the UE ¢ as follows:

PO =L + L] — Gug — G

1 (4)
T a. Mo + | Z Pug,0, 4| log (g > . (6)
jeg\{o}

B. Problem Statement

The objective is to adjust the transmit power for each user
at TTI ¢, as presented in (6), to meet the target BLER for
reliable transmission. Mathematically,

7 | Nugl
Minimize >~ 3~ P[], (7
t=1 i=1
subject to
:U/(Z)[t} < Mthreshold(’iMVi S NUE7 (83-)
POW < P> vt e {1,...,7}, (8b)

where, (7) denotes that our objective is to minimize the total
transmission power for all users over a period of transmission.
Equation (8a) ensures that the achieved BLER is always less
than the BLER threshold for meeting the reliability of the
associated application. Equation (8b) denotes the total trans-
mission power capacity constraint. The above optimization
problem needs to be run for each gNB-UE pair. Therefore,
in a large-scale networks with multiple gNBs and UEs,
the problem becomes combinatorial. Consequently, finding
optimal solution to the problem is infeasible in polynomial
time. Furthermore, the problem becomes more complex in
the presence of transmission impairments, which are non-
deterministic in nature. We consider the following transmission
impairments: faulty feeder, improper voltage standing wave
ratio (VSWR), and base-station down. Therefore, the network
events related to a downlink transmission are as follows: faulty
feeder, improper VSWR, base-station down, feeder is restored,
VSWR restored, base-station up. We note that the restore
operations are always followed by the associated problem,
without which restore operations cannot take place. To solve
the problem in polynomial time, we apply Q-learning, which
is discussed in subsequent sections.

IV. PROPOSED APPROACH: Q-LEARNING-BASED POWER
ALLOCATION

A. Overview of Q-Learning and Associated Parameters

The Q-learning depends on the Markov decision process
(MDP) [13], which includes a set of states, a set of actions,
transition probabilities, and rewards, which are discussed be-
low.

o Actions: The Q-learning agent, called RL-agent, tunes the
transmit power for each user by issuing power control
commands as actions. We outline the set of actions,
denoted by A, on power control commands for a user
in Table I. The symbol PCJ[t] denotes the power control
command at time ¢. The symbol x; represents the number
of times the PC[¢] command is executed at time ¢.

TABLE I: Set of actions for transmit power control

Action Power control (in dB)
0 PC[t] = 0: No change in transmit power
1 PC[t] = —0.1: Decrease the transmit power
thrice, i.e., total change is —0.3, (k; = 3)

2 PC[{] = —0.1: Decrease the transmit power
once, (k; = 1)

3 PC[{] = +0.1: Increase the transmit power
once, (k; = 1)

4 PC[t] = +0.1: Increase the transmit power

thrice, i.e., total change is +0.3, (k; = 3)

o States: The set of states S is presented in Table II.
We consider a total of five states based on the actions
(outlined above) corresponding to changes in BLER, .

TABLE II: Set of states associated with change in BLER

State  Description
0 No change in BLER
1 Substantial increase in BLER
2 Moderate increase in BLER
3 Moderate decrease in BLER
4 Substantial decrease in BLER

o Transition Probability: The transition probabilities for
each state-action pair, represented as (p : Sx.A4) — [0, 1].
Therefore, p(s’|s, a) denotes the probability of transition
to a new state s’ from current state s with action a.
It becomes very difficult to model all the transition
probabilities using the traditional MDP for a real-world
applications, such as cellular network with many UEs
and gNBs. Instead, we adopt Q-learning algorithm which
is model free well-defined reinforcement learning tech-
nique [13].

e Rewards: When the RL agent takes an action a € A in
state s € S to transition to state s’ € S, it gets a reward
Ts,s’,q- The obtained reward 7 o/ , can be positive if the
RL agent makes a move closer to the objective, else it is
negative. We consider the following rewards:

ro, if 8 =sp,V(s,a) €S x A,

N T if s =s1,V(s,a) € S x A,
Ts,s',a = . (9)

ri, if 8 =s;,V(s,a) €S x A.

As mentioned earlier, we adopt Q-learning algorithm which
is model free and is based on probability distribution function,
known as Q-value function (s, a). It estimates the cumulative
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Fig. 1: Network parameters tuning by RL agent

expected reward for taking an action a in state s. The queue
values Q)(s,a) are updated using:

Qi(s,a) + (1 — @)Qi—1(s,a)
talrset sz}XQt_l(s’,a’)} . (10)
The symbols « and ¢ in (10) denote the learning rate and

discount factor, respectively. The values are as follows: a:
O<a<l,and (:0< (< 1.

B. Q-Learning-based Optimization Problem

The objective is to tune the power control commands (ac-
tions) to adjust the transmit power of each gNB for all the UEs
connected to it for downlink transmission. Mathematically, we
rewrite the optimization problem in (7) as follows:

7 | Nugl| @
min le t], (11
a:[al,az,...,a,.]; ; ‘ [ ]
subject to

M(l) [t} S lut(}fr)eshold’v,i € NUE7 (1221)
POt < P vt e {1,...,7}, (12b)
ar € AVee {1,...,7}. (12¢)

Here in (12b), the transmit power is determined by:
PNt = min{ By, BY[t — Al + rPCl)}, (13)

where, PJP [t — A] denotes the transmission power allocated
for the last transmission. k; denotes the number of times
the power control commands (actions) PC[t] executed, as
mentioned in Table I. Figure 1 presents the schematic diagram
of the network tuning parameters, where the RL agent tunes
the power control commands to meet the target BLER. The
repetition factor determines the number of times the power
control command needs to be executed, as presented in Table I.

Algorithm 1 presents the proposed algorithm for closed loop
power control. The time complexity associated with the power
control algorithm is primarily associated with the state-action
pair. Therefore, the time complexity is O(|S|x|Al) [14],
where |S| and A denote the number of states and actions,
respectively. The state space is exhaustive, which makes |S
fixed. Therefore, the effective time complexity of the power
allocation algorithm is O(].A|).

Algorithm 1 Q-learning-based adaptive power control for
downlink transmission

Inputs: Initial BLER: 4§; BLER threshold: p"). . . for each
user ¢ € Nyg; maximum transmission power: PR®; Set of
states: S; Set of power control commands (actions): A
Output: The sequence of PC commands to achieve the BLER
less than or equal to the threshold BLER in duration 7 for a
downlink transmission.

Note: We remove user index ¢ for simplicity. The below steps

are repeated for each user ¢ € Nyg.
1: The Q-table entries Q € RISIXIAl are set to zero

2: Set time step t < 0
3: Assign current BLER as: p < g
4: Assign current state s <— 0
5: repeat
6: Add time counter as: ¢t ¢+ 1
7: Exploration rate update rule: € <— max(e X d, €min)
8:  Get reward from uniform distribution:  ~ (0, 1)
9: if r < € then
10: Pick an action a randomly from the action set A
> Explore new actions
11: else
12: Pick an action a = arg max, Q(s,a’)
> Exploit optimal actions
13: Execute action a and update P&) [t] using (13)
14: Get the reward r; ./ , and observe next state s

15: Update Q-value table entry as:
Qt(s>a) — (1 - Qt,1(87a)
+a |7s50,0 + (max Qp—1(s, a’)}
16: Switch to new state: s < s’ and u;date W
17: until 1 < [threshold OF £ > T

V. PERFORMANCE EVALUATION
A. Curve-Fit Parameters for Equation (3)

Table IIT shows the values of C,, and d,, for different
modulation and coding schemes (MCS). To determine the
values of C,, and d,,, we consider 32-byte payload for
uRLLC applications and transport block size as 256 [2]. The
simulation is conducted in MATLAB. Using the values of
C,, and d,,, we obtain the SINR threshold values from the
simulation.

B. Proposed Q-Learning-based Results

To evaluate the performance of the proposed scheme, we
use the simulation parameters as presented in Table IV. The
values of other communication parameters are considered
based on the existing studies [4], [6], [8], [13]. To evaluate
the performance of the proposed Q-learning-based approach,
we consider the fixed power allocation (FPA) as the
benchmark scheme. In FPA, the associated gNB allocates
the same transmit power to each PRB, irrespective of the
received SINR and the corresponding BLER for the downlink
transmission. Furthermore, we present the results with MCS
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index 15 due to page limitations. We note that we observed
the similar patterns for other MCSs. We consider retainability

TABLE III: Curve-fit parameters for different MCSs

MCS Modulation Code Cm dm
Index Rate <1024
0 QPSK 30 10.86 x 10° 243.5
1 QPSK 40 7.78 x 10° 179.3
2 QPSK 50 11.76 x 10° 146.7
3 QPSK 64 6.41 x 10° 112
4 QPSK 78 15.18 x 10°  94.72
5 QPSK 99 12.58 x 10° 74.15
6 QPSK 120 4.34 x 10° 58.81
7 QPSK 157 1.24 x 107 46.57
8 QPSK 193 1.38 x 106 37.53
9 QPSK 251 6.66 x 10° 26.55
10 QPSK 308 3.72 x 10° 19.91
11 QPSK 379 2.67 x 10° 15.33
12 QPSK 449 2.21 x 10° 12.06
13 QPSK 526 1.28 x 10° 9.275
14 QPSK 602 8.18 x 10° 7.324
15 16-QAM 340 1.57 x 10° 4.975
16 16-QAM 378 2.78 x 10° 4.46
17 16-QAM 434 1.32 x 10° 3.331
18 16-QAM 490 1.06 x 10° 2.627
19 16-QAM 553 9.02 x 10* 2.033
20 16-QAM 616 6.82 x 10* 1.573
21 64-QAM 438 4.91 x 10* 1.169
22 64-QAM 466 1.75 x 10* 0.948
23 64-QAM 517 1.35 x 10* 0.733
24 64-QAM 567 9.36 x 10® 0.545
25 64-QAM 616 7.95 x 10° 0.426
26 64-QAM 666 6.02 x 10° 0.334
27 64-QAM 719 3.24 x 10® 0.247
28 64-QAM 772 1.06 x 10% 0.172
TABLE IV: Simulation Parameters
Parameter Value
Bandwidth 20 MHz
Number of PRBs 100
Maximum transmit power (P ") 33 dBm
Discount factor (¢) 0.995
Exploration rate (e) 0.9
Learning rate (o) 0.2
Number of states (|S|) 5
Number of actions (].A]) 5

of BLER as the performance metric to show the efficacy of
the proposed scheme. Where, retainability is mathematically
defined as:
1 7 | Nugl
Retainability = 1 — —7— D IE! (w19

t=1 i=1

where, 11(")[t] represents the BLER of i-th user at time ¢. The
symbol uf,fr)eshold is the threshold BLER to meet the reliability
requirement of the underlying application. For the experiment,
we consider the threshold BLER, 1) = between 10~! and

10~%. The expression 1., represents the indicator function,

Episode 7 = 38 — Power Commands

— FPA
—&— Proposed
@ 0.1 o L g *—o—90—9o—0o—9
%
£ 00 o
£ 01
(=3
A
—0.3 1 —e
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Transmit Time Interval (1 ms)

Fig. 2: Power control commands with time

which returns 1 if the condition is true, i.e., if the BLER
is more than the threshold BLER to consider reliability,
otherwise, it is zero. Table V shows the retainability in terms
of BLER using FPA and the proposed scheme. We note that
BLER is very sensitive with a small change in SINR (refer
to (3)) due to power control commands. This leads to a lower
retainability in terms of BLER as seen in the experiment.
However, it is better than the fixed power allocation method.

TABLE V: Percentage of retainability

FPA Proposed
55% 60%

Score

In the following subsections, we discuss the experiment
results on power control, average SINR, and average BLER
with time to compare the proposed scheme with FPA.

C. Power Control

Figure 2 shows the change in power control commands
using the proposed scheme and FPA. As depicted in the
figure, FPA allocates fixed power irrespective of the received
SINR and the associated BLER. Whereas in the proposed
scheme, RL agent adjusts transmit power using power control
commands, as shown in Figure 2. Intuitively, we say that the
proposed scheme provides adaptive power allocation compared
to the fixed power allocation scheme, FPA, as per the state of
the downlink transmission link.

D. Average SINR

Figure 3 depicts the average SINR received by users at each
time interval using the proposed scheme and FPA. As shown
in the figure, the average SINR received by the users using
the proposed scheme is higher than that of using FPA in most
of the transmit time interval. Moreover, the average SINR is
adjusted to meet the target BLER, as discussed in Section V-E.
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Fig. 3: Average SINR received by the users with time
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Fig. 4: Average BLER achieved by the users with time

E. Average BLER

Figure 4 depicts the average BLER achieved by the users.
The proposed scheme achieves significantly lower BLER than
that of using FPA. This is due to the adaptive power control
by the RL agent, which adjusts the transmit power to achieve
the required SINR to meet the target BLER. In contrast, FPA
achieves a higher BLER, even as 10° in multiple transmit
time intervals, due to fixed power allocation irrespective of
the received SINR. We note that the transmitted information
is useless at the user with a BLER 10°. This is because of the
fixed transmit power allocation, which is insufficient to meet
the SINR threshold values. Therefore, FPA may not be suitable
for applications with stringent reliability requirements.

VI. CONCLUSION

In this work, we proposed adaptive power allocation scheme
for supporting stringent reliability requirements by uRLLC
application in 5G and beyond 5G networks. To model the
reliability of a communication link, we used block-error rate
(BLER) for a downlink transmission and we derived the
relation between BLER and SINR for the power allocation
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problem. To solve the non-convex optimization problem for
power allocation, we used reinforcement learning, specifically,
Q learning approach. The simulation was conducted consid-
ering well-established values for channel modeling and Q-
learning approach. The results showed the efficacy of the
proposed scheme over the fixed power allocation approach.
This work considered different communications impair-
ments due to the circuit-level faults. In future, we plan to
consider different environmental impairments in indoor and
outdoor scenarios with the impairments considered in this
work. We plan to use deep Q-learning approach to solve the
power allocation problem with application-specific stringent
reliability requirements and communication impairments. Fur-
thermore, this work considered a fixed modulation and coding
scheme (MCS) for transmission based on SINR and target
BLER. However, we plan to consider different MCS for data
transmission to effectively utilize the radio resources.
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