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Abstract—Mirai remains one of the most pervasive IoT botnets,
whose evolving variants exploit weakly secured devices to launch
large-scale DDoS attacks. Network Intrusion Detection Systems
(NIDS) are one component of the multilayered defense deployed
to safeguard a network. Existing NIDS achieve high accuracy but
remain opaque and vulnerable to subtle, functionality-preserving
code modifications that alter traffic characteristics without chang-
ing malicious intent. This work addresses these gaps by perform-
ing lifecycle-aware analysis of Mirai reconnaissance, exploitation,
infection, and attack using an enriched dataset combining IoT-
23 and CICIoT2023. We correlate source-code behaviors with
discriminative traffic features through SHAP-based explain-
ability and feature-correlation analysis. Using absolute SHAP
contributions, we theoretically and empirically estimate model
degradation bounds without re-training, showing that early-phase
obfuscations reduce classifier logits by ∆z ∈ [−0.24,−0.05] (≈
2–6% confidence loss), while DDoS traffic remains inherently
non-evasive. The framework exposes how explainable models
can quantify robustness, guiding the development of resilient,
interpretable IoT malware detectors.

Index Terms—Internet of Things, IoT Malware life-cycle,
Mirai botnet, Network Traffic Analysis, Anomaly Detection,
Explainable-AI

I. INTRODUCTION

Among IoT malware families, Mirai is among the most
studied due to its ability to exploit weak device configurations
and launch large-scale Distributed-Denial-of-Service (DDoS)
attacks that disrupt critical services [1]. Despite extensive
research, most detection efforts emphasize the attack phase,
overlooking earlier stages such as reconnaissance, exploitation,
and infection, where proactive defense is possible.

Existing network-based intrusion detection techniques,
whether signature-based or learning-based, achieve high re-
ported accuracies but remain fragile against evolving vari-
ants. Signature-based systems rely on fixed traffic signatures
that fail under minor packet or payload alterations [2], [3],
while anomaly-based models generalize better yet behave as
opaque black boxes, limiting interpretability and robustness
in heterogeneous IoT environments [4]. Consequently, subtle
functionality-preserving source-code modifications to Mirai
can suppress behavioral indicators, leading to undetected com-
promises.

Effective detection therefore requires associating Mirai’s
lifecycle behaviors with explainable and verifiable network

features rather than relying solely on statistical correlations.
Explainable AI (XAI) methods such as SHAP provide feature-
level transparency [5], but existing datasets incompletely rep-
resent Mirai’s lifecycle: IoT-23 lacks exploitation traffic, while
CICIoT2023 includes complementary brute-force samples.
Moreover, Mirai’s open-source code, which was used in this
analysis [6], can be trivially altered e.g., replacing TCP scans
with UDP or randomizing credential tables to obscure tell-tale
features. These gaps underscore the need for lifecycle-aware
and code-resilient detection frameworks.

This study addresses these challenges through five contri-
butions: (i) stage-wise mapping of Mirai’s lifecycle to dis-
criminative traffic features, (ii) construction of an enriched
IoT-23 + CICIoT2023 dataset covering all phases, (iii) feature
validation using correlation, Random Forest, Logistic Regres-
sion, and SHAP, (iv) correlation of features with source-code
routines to model realistic obfuscations, and (v) theoretical
quantification of detection degradation via SHAP, showing a
measurable confidence loss when key features are neutralized.
The remainder of the paper reviews related work (Section II),
describes the methodology (Section III), presents source-code
analysis and evasion design (Section IV), discusses results
and degradation estimation (Section V), and concludes with
practical implications (Section VI).

II. RELATED WORK

Network-Traffic-Based Detection: IoT botnet detection,
particularly for Mirai, has relied heavily on network traffic
analysis through either rule-based or learning-based systems.
Signature-driven IDSs such as Snort and Suricata [7], [8]
detect known threats via static byte or header patterns but
fail against encrypted, polymorphic, or zero-day traffic [2].
Studies show that minor behavioral changes allow Mirai
variants to evade such static filters [9], [10]. Learning-based
anomaly detectors including LSTM [11] and CNN models
like ExPose [12] capture temporal and spatial dependencies
for phase-wise identification. However, they suffer from high
false-positive rates in heterogeneous environments [13] and
rely on incomplete datasets: IoT-23 lacks exploitation traffic,
limiting full lifecycle validation [14].

Explainable AI (XAI) for IDS: Explainability frameworks
such as SHAP and LIME [4], [15] improve interpretability by
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linking features to model outputs [16], but most remain post-
hoc tools with poor generalizability across IoT datasets [5].
They also neglect adversarial manipulations at the source-
code level, leaving systems vulnerable when Mirai modifies
protocol usage or credential logic [10].

Source-Code Analysis: Mirai’s architecture and command-
and-control (C2) design have been extensively character-
ized [1], [10], [17], [18], yet few studies quantify how code
changes manifest in traffic features. Sinanović et al. [19]
highlighted this link conceptually but did not evaluate its effect
on model accuracy.

Summary of Gaps: Existing works lack a unified, ex-
plainable framework connecting Mirai’s source code, lifecycle-
specific traffic behaviors, and their measurable influence on
detection confidence. This study addresses that gap by cor-
relating source-level modifications with SHAP-validated net-
work features and theoretically estimating the resulting model
degradation.

III. METHODOLOGY

This study investigates Mirai’s lifecycle through combined
network-traffic and source-code analysis to evaluate how
functionality-preserving code changes affect detectability. To
achieve full lifecycle coverage, an enriched dataset was created
by merging IoT-23 with brute-force traces from CICIoT2023,
capturing reconnaissance, exploitation, infection, persistence,
propagation, and attack phases. Table I gives a brief descrip-
tion of the features extracted by Zeek.

TABLE I: Key Fields in Zeek’s conn.log and Their De-
scriptions

Feature Description
protocol Transport-layer protocol (e.g., TCP, UDP).
service Application service detected (e.g., HTTP, DNS); “–”

if unknown.
duration Connection lifetime in seconds.
orig_bytes Bytes sent from originator to responder.
resp_bytes Bytes sent from responder to originator.
conn_state Final connection outcome: S0 (no reply), SF (normal

close), RSTR (reset), OTH (other). Indicates connec-
tion completeness or anomalies.

local_orig True if the originator host is local.
local_resp True if the responder host is local.
missed_bytes Bytes lost or not captured in trace.
history Encodes packet sequence: S (SYN), H (handshake),

R (reset), D (data), F (FIN). Summarizes state tran-
sitions.

orig_pkts Packets sent by the originator.
orig_ip_bytes Total bytes from originator IP.
resp_pkts Packets sent by the responder.
resp_ip_bytes Total bytes from responder IP.
tunnel_parents Parent tunnels (e.g., VPNs) containing the connec-

tion.

A. Lifecycle Characterization

Each Mirai stage exhibits distinct network artifacts. Re-
connaissance produces rapid TCP SYN probes to Telnet/SSH
ports, yielding incomplete handshakes (S0) and high packet
counts. During exploitation, brute-force logins using default

credentials form short-lived S3 connections with small pay-
loads. The infection phase downloads binaries from command-
and-control (C2) servers, visible as large responder-byte vol-
umes (resp_ip_bytes). Persistence maintains long-lived
connections with minimal state transitions, and the attack
phase generates heavy outbound traffic (OTH) characteristic
of TCP/UDP floods. Finally, propagation resumes scanning
patterns similar to reconnaissance.

B. Feature Validation Pipeline

Four complementary analyzes identified the most discrimi-
native features for each stage: (i) Pearson correlation for linear
associations, (ii) Random-Forest importance for non-linear
relevance, (iii) Logistic-Regression weights for interpretability,
and (iv) SHAP analysis for per-stage explainability of the
Random-Forest model. This ensemble ensured that dominant
features were validated across both statistical and model-based
perspectives.

C. Dataset and Explainability Results

IoT-23 provided labelled traces for reconnaissance, infec-
tion, attack, and propagation, while CICIoT2023 contributed
exploitation samples, yielding phase complete coverage. Core
Zeek connection fields such as conn_state_S0, history,
orig_pkts, resp_ip_bytes, and protocol_tcp
were retained after encoding and normalization. SHAP anal-
ysis revealed consistent feature dominance across phases:
conn_state_S0 and orig_pkts mark reconnaissance;
local_orig and small packet volumes characterize ex-
ploitation; resp_ip_bytes denotes infection via C2 down-
loads; and history with conn_state_OTH distinguishes
attack-phase DDoS floods. These validated features form the
empirical basis for modelling source-level obfuscation and
theoretical degradation estimation.

IV. SOURCE CODE ANALYSIS AND EVASION STRATEGIES

We analyze Mirai’s core routines (Table III) and propose
compact, functionality-preserving evasion techniques that tar-
get the high-impact network features identified by our ex-
plainability pipeline (Table I, Fig. 1, Figs. 8–11). The aim
is not to redesign Mirai but to show small, realistic code-level
tweaks that (i) retain the original control flow (scan → exploit
→ download → attack) and (ii) collectively reduce classifier
reliance on concentrated SHAP attributions.

a) Design principles: Apply joint perturbations across
correlated features (Fig. 1), tune perturbation magnitudes
to align malicious statistics toward benign percentiles
(KS/Wasserstein guidance), and avoid protocol changes un-
supported by the C2 to prevent functional breakage.

b) Functional preservation: The proposed edits keep the
semantic steps required for Mirai to succeed: reconnaissance
still discovers open ports, exploitation still tries credentials,
infection still retrieves and runs payloads, and DDoS retains
volumetric impact. Hence, these changes primarily alter tim-
ing, ordering, and payload framing rather than core logic.
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TABLE II: Phase-wise attribution (top features) and theoretical degradation bounds. Features listed in decreasing attribution;
∆z from SHAP-based bounds; ∆p approximated at baseline p≈0.8.

Phase Top attribution features (ordered)
∑

Top–K |SHAP| Realistic ∆z Approx. ∆p (%)
Reconnaissance / Propagation conn_state_S0, history, orig_pkts, protocol_tcp 0.20 [−0.14, −0.06] 2.0–3.5
Exploitation local_orig, conn_state_S3, orig_bytes, orig_pkts 0.35 [−0.24, −0.10] 3.0–5.5
Infection resp_ip_bytes, service_http, history, protocol_tcp 0.17 [−0.12, −0.05] 1.5–3.0
Attack (DDoS) history, orig_pkts, conn_state_OTH 0.24 [−0.07, −0.02] < 2.0

Notes: (i) Top features derive from per-class absolute SHAP summaries; features are ordered by decreasing attribution. (ii)
∑

Top–K |SHAP| gives the
phase-level upper bound; realistic ∆z assumes 30–70% suppressible contribution under functionality-preserving evasions and observed feature correlations.

(iii) ∆p ≈ σ(f)(1− σ(f))∆z; reported as percentage-point confidence reduction for typical logits (f≈1–1.5).

TABLE III: Concise evasion strategies (functionality-
preserving)

Phase Code target / change Primary expected fea-
ture effect

Reconnaissance scanner.c: inter-
packet jitter, random
source ports, occasional
UDP probes (same dest
ports).

Smear
conn_state_S0,
reduce tight
orig_pkts bursts,
diversify history.

Exploitation attempt_login():
permute credential order,
random delays, segment
credentials.

Broaden orig_bytes
/ orig_pkts
distributions;
weaken repeated
conn_state_S3
signatures.

Infection loader.c: vary URIs/-
headers, chunked or vari-
able transfers (TLS if
supported).

Reduce single-valued
resp_ip_bytes
patterns; increase benign-
like HTTP variability.

Persistence process.c: mimic le-
gitimate process names;
stagger keep-alives.

Make duration /
history resemble
benign long-lived
sessions.

Attack
(DDoS)

attack.c: short-
interval vector rotation
(TCP/UDP/HTTP) while
preserving volume.

Minimal realistic reduc-
tion in volumetric indi-
cators without degrading
attack efficacy.

c) Limits: Volumetric attack traces (high orig_pkts,
OTH) are inherently hard to mask without impairing attack
goals, thus DDoS remains largely observable. Early phases
(reconnaissance, exploitation, infection) are more amenable
to soft obfuscations that measurably reduce classifier logit
contributions.

d) Validation checklist: For any implemented evasion
report: (i) targeted features and pre/post stats (mean, 5/95
pctiles); (ii) distance to benign distributions (KS/Wasserstein);
and (iii) aggregated per-sample ∆z and ∆p. These confirm
distributional grounding and functional integrity.

V. RESULTS AND DISCUSSION

This section summarizes the empirical findings from SHAP
explainability, feature correlation, and theoretical degradation
analysis. Figures 9–12 show phase-wise SHAP distributions,
while Fig. 1 illustrates key inter-feature dependencies that
inform the evasion strategies in Table III.

A. Feature Attribution and Correlation

SHAP and correlation analyzes confirm that each Mi-
rai lifecycle phase has distinct traffic signatures. During

reconnaissance/propagation, conn_state_S0, history,
and orig_pkts dominate, indicating rapid SYN probes
and incomplete TCP handshakes. Exploitation is charac-
terized by local_orig, conn_state_S3, and small
payload sizes, representing brute-force login attempts. In-
fection exhibits strong attribution for resp_ip_bytes
and service_http, reflecting binary downloads from
command-and-control servers. Finally, attack-phase traffic
shows elevated conn_state_OTH and orig_pkts, con-
sistent with DDoS floods. Correlation analysis further re-
veals strong coupling among these fields (e.g., S0 with
orig_pkts, resp_ip_bytes with service_http),
implying that effective obfuscation must perturb feature clus-
ters rather than single metrics.

B. Impact of Source-Level Evasions

Mapping source-level changes to SHAP evidence shows that
early phases are most vulnerable to obfuscation. Introducing
packet jitter and randomized ports in reconnaissance reduces
the model’s logit confidence by ∆z ≈ −0.06 to −0.14.
Credential permutation during exploitation yields ∆z ≈ −0.10
to −0.24, the highest degradation among all stages. Modifying
HTTP header or URI patterns during infection causes smaller
shifts (∆z ≈ −0.05 to −0.12), while DDoS floods remain
largely immutable (∆z > −0.07) due to unavoidable volu-
metric traces. Thus, functionality-preserving code edits can
blur stage boundaries in feature space but cannot hide high-
intensity attacks.

C. Theoretical Model Degradation Estimation

Model degradation is formalized using the SHAP additivity
principle:

f(x) = ϕ0 +
∑
i

ϕi(x), (1)

where f(x) is the classifier logit and ϕi(x) denotes feature
i’s contribution. For an obfuscation transformation T that
neutralizes a subset Scrit of dominant features,

∆z = f(T (x))− f(x) ≈ −
∑

i∈Scrit

ϕi(x). (2)

Aggregating top-K mean(|SHAP|) values per phase yields
realistic ∆z bounds, converted to probability changes by
∆p ≈ σ(f)(1− σ(f))∆z. For logits near 1–1.5, every −0.1
reduction in ∆z lowers detection confidence by roughly 2–3%.
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D. Interpretation and Implications

The estimated ∆z bounds quantify explainable confidence
loss from feasible obfuscations. While exploitation-phase
changes can flip near-threshold predictions, high-confidence
detections remain stable. Overall, SHAP and source-code
correlation confirm that early-stage modifications degrade
network-only models measurably, whereas volumetric DDoS
traffic remains detectable. These results highlight the limitation
of purely network-based IDS and the necessity for hybrid
frameworks that integrate host or behavioral telemetry for
resilient IoT malware detection.
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Fig. 1: Correlation Matrix for each stage in Mirai’s Lifecycle.
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VI. CONCLUSION

This study provided an explainable, lifecycle-aware analysis
of the Mirai botnet, linking source-code routines to network-
level behaviors and quantifying detection resilience through
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SHAP-based feature attribution. By correlating critical traffic
features with Mirai’s operational stages, we showed that early
phases of reconnaissance, exploitation, and infection can be
partially concealed using lightweight, functionality-preserving
source-code perturbations, whereas volumetric DDoS traffic
remains inherently visible. Theoretical logit-level estimates in-
dicated bounded model degradation of ∆z ∈ [−0.24,−0.05],
corresponding to only a 2–6 % reduction in classifier con-
fidence. Thus, while near-threshold samples may evade de-
tection, high-confidence classifications remain robust. These
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results highlight that modern network-only NIDSs are explain-
ably interpretable yet vulnerable to targeted feature obfusca-
tion, motivating hybrid approaches that fuse network, host, and
behavioral telemetry.

Practical Implications: The proposed explainability-driven
framework allows security analysts to pinpoint fragile feature
dependencies and prioritize retraining or sensor fusion where
models exhibit high SHAP concentration. Such insight trans-
forms explainable AI from a post-hoc diagnostic tool into a
proactive defense mechanism, guiding the design of resilient,
trustworthy IoT intrusion-detection systems deployable in real-
world heterogeneous networks.
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