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Abstract— Municipal roads constitute the majority of the
roadway network, making their timely maintenance crucial for
public safety. While deep-learning-based object detectors such
as YOLO have achieved remarkable performance in road
damage detection, they operate under closed-set conditions and
thus fail to recognize unseen damage types. This study aims to
address this limitation by developing an open-set road damage
recognition framework that integrates Low-Density Latent
Expansion (LDLE) and Class Anchor Clustering (CAC)
mechanisms. LDLE expands feature representations of known
classes into sparse latent regions, facilitating the discovery of
unknown samples, whereas CAC imposes class-wise anchors to
promote intra-class compactness and inter-class separation. To
reduce the computational cost associated with optimal
transport—based methods, the proposed framework replaces the
OT distance with a lightweight CAC loss, enabling efficient and
stable feature learning. Experiments conducted on public
benchmark datasets demonstrate that LDLE enhances
unknown-class separability, while CAC stabilizes the training
process by reducing intra-class variance. Although the
preliminary version of this study did not evaluate road damage
datasets, the revised work now includes experiments on
RDD2022. While recognition accuracy slightly decreased
compared with the closed-set baseline, the findings highlight the
potential of density-based expansion and distance-based
clustering for open-set recognition, laying the groundwork for
future application to real-world road damage scenarios.
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1. INTRODUCTION

Municipal roads constitute nearly 80% of the total
roadway network used in daily transportation [1], making
their maintenance and safety management a major
responsibility for local governments. However, routine
inspection and assessment of pavement conditions remain
labor-intensive,  time-consuming, and  economically
demanding. Undetected surface deterioration—such as
cracking, delamination, or differential settlement—can
degrade drainage performance and structural integrity, leading
to hazardous driving conditions. To address these challenges,
numerous computer-vision-based road damage detection
techniques have been developed in recent years. Moreover,
with the increasing prevalence of autonomous and connected
vehicles, the ability to recognize and localize road damage
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accurately has become even more critical. In this study, the
main evaluation is conducted on the RDD2022 dataset, which
contains diverse and real-world road—damage categories
collected from several regions. This dataset provides a
realistic setting for assessing the open-set detection capability
of the proposed framework.

Traditional object detectors have achieved remarkable
progress on closed-set datasets, where training and testing
share identical classes and distributions. Several studies have
utilized large-scale road damage datasets collected
collaboratively by municipalities, successfully applying
lightweight object detectors such as YOLO to achieve high
detection accuracy and real-time performance [2], [3].
Nevertheless, in real-world applications, object detectors
often encounter unseen or unknown damage types that do not
appear in the training data. When such cases arise,
conventional detectors tend to misclassify novel instances into
the nearest known categories, undermining the system’s
reliability and safety.

To overcome this limitation, open-set and open-world
object detection (OWOD) frameworks have been actively
explored [4]-[7]. While previous open-world object detection
studies mainly focused on expanding detection pipelines or
novelty scoring, this work emphasizes embedding-space
regularization. Although lightweight detectors such as YOLO
achieve high accuracy and real-time performance on closed-
set road-damage datasets, they inherently lack mechanisms for
handling unknown classes. Therefore, in this work, YOLO-
based detectors are used solely as closed-set baselines, while
our proposed method focuses on embedding-based open-set
mechanisms such as LDLE and CAC that explicitly address
unknown-class detection. This focus bridges a relatively
unexplored gap between feature-space structure and open-set
robustness. However, LDLE and CAC impose conflicting
embedding behaviors: LDLE expands low-density regions,
whereas CAC enforces compact clustering. This contrast
makes unified optimization unstable. The proposed approach
reduces the computational cost of optimal transport—based
methods while maintaining comparable accuracy, achieving
stable and lightweight training suitable for edge-level
deployment. Methods such as OW-DETR introduce novelty
classification mechanisms into Transformer architectures,
while UC-OWOD further categorizes unknown samples into
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multiple novel classes and proposes dedicated evaluation
protocols. Building on these advances, our study focuses on
improving the feature embedding and class separation for
open-set road damage detection.

Specifically, we adopt the OpenDet-CWA framework [8]
as our baseline and replace the computationally demanding
optimal transport (OT) distance used in its loss formulation
with the Class Anchor Clustering (CAC) loss proposed by
Miller et al. [9]. The CAC loss enables efficient distance-
based clustering by anchoring class centers in the embedding
space, thereby promoting compact intra-class features and
clear inter-class separation without the heavy computational
overhead of OT.

Our contributions can be summarized as follows:

(1). We integrate the CAC loss into an open-world detection
framework to examine its effect on latent feature distribution
and training stability.

(2). The proposed fusion of LDLE and CAC achieves a
notable reduction in computational cost and training time
while maintaining consistent optimization behavior.

(3). These results indicate the potential of the proposed
approach as a lightweight and efficient foundation for future
large-scale road damage recognition tasks on edge devices.

II. RELATED WORKS

A. Road Damage Detection

Early studies on automated road inspection mainly
focused on image-based crack detection using handcrafted
features such as edge or texture descriptors. With the advent
of deep learning, convolutional neural networks (CNNs) have
been widely applied to road damage detection and
classification. Large-scale collaborative efforts among local
governments have enabled the creation of benchmark datasets
that contain thousands of annotated road images captured by
smartphones and vehicle-mounted cameras [2]. Using these
datasets, object detectors such as Faster R-CNN and YOLO
have demonstrated high accuracy. However, these models
inherently operate under closed-set assumptions and therefore
cannot detect unseen categories, leading to degraded
performance in real-world scenarios. This limitation
motivates the need for open-set approaches.

B. Open-Set and Open-World Object Detection

To improve robustness against unknown categories, open-
set recognition (OSR) and open-world object detection
(OWOD) have gained significant attention. In OSR, models
are trained to recognize known classes while rejecting samples
from unknown classes. Scheirer et al. [10] first formalized this
concept using threshold-based recognition. Later, deep-
learning-based methods introduced distance- or embedding-
based mechanisms to distinguish known from unknown
samples.

Extending this concept to object detection, OW-DETR [6]
integrates novelty classification and objectness scoring into a
Transformer-based detector, enabling the discovery of
unknown instances without additional supervision.
Furthermore, UC-OWOD [7] enhances this framework by
introducing class grouping for unknown samples and
proposing a new evaluation protocol that explicitly measures
unknown-class  detection performance. These works
collectively highlight the importance of designing robust
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Fig.1. Visualization of the embedding space in 2D.
Circular and square markers represent objects belonging
to known classes. The objective is to reduce the cluster
size of objects (circles and squares) belonging to the
same known class, that is, to transform the distribution
from (a) to (b). This contraction enlarges the triangular
region corresponding to unknown classes, thereby
improving the accuracy of unknown-class estimation.

embedding spaces for unknown detection. Our work extends
these insights by focusing specifically on the interaction
between dispersion-based (LDLE) and anchor-based (CAC)
embedding regularization under an open-set detection setting.

C. Distance-Based Loss Functions and Optimal
Transport

Recent research has explored distance-based learning
objectives to achieve better class separation and
discriminative feature representations. In particular, optimal
transport (OT)-based losses have been incorporated into
open-set detection frameworks to align class distributions and
regularize embeddings [8]. Although the OT distance provides
a theoretically elegant formulation for comparing feature
distributions, its computation requires iterative optimization
(e.g., Sinkhorn iterations), leading to substantial
computational cost. This makes OT-based approaches less
suitable for real-time applications such as mobile road-
damage detection. Figure 1 illustrates a conceptual diagram of
the two-dimensional visualization in the embedded space.

D. Class Anchor Clustering Loss

To address the computational burden of OT-based
methods, Wang et al. proposed the Class Anchor Clustering
(CAC) loss [9], a distance-based objective designed for open-
set recognition. CAC loss introduces learnable class anchors
in the embedding space and minimizes intra-class distances
while enlarging inter-class margins. By jointly optimizing
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Fig.2. Example of a 3D logit space learned with the CAC
loss. (a) shows an example of open-set recognition
trained with the cross-entropy loss, while (b) illustrates
the case trained with the CAC loss, where known-class
clusters become more compact and separable, thereby
improving the discriminability of unknown classes.



classification and clustering objectives, the model learns more
compact and separable feature representations without relying
on costly transport computations. Figure 2 illustrates an
example of the three-dimensional logit space learned using the
CAC loss.

In contrast to conventional OT-based methods that
emphasize distribution alignment, this study focuses on
embedding-space optimization, complementing detection-
oriented approaches such as OW-DETR and UC-OWOD. By
positioning LDLE and CAC within this framework, our
approach addresses the underexplored challenge of balancing
feature dispersion and compactness to enhance open-set
recognition capability.

[II. PROPOSED METHOD

The proposed framework improves open-set road damage
detection by integrating Class Anchor Clustering (CAC) and
Low-Density Latent Expansion (LDLE) in a two-stage
optimization pipeline. Unlike conventional approaches that
merge multiple embedding objectives into a single loss
function, this framework separates their roles across two
phases to avoid conflicting gradients. Phase 1 constructs a
compact and stable embedding space using CAC, while
Phase 2 employs LDLE to enhance the separability between
known and unknown samples, retaining a weakened CAC
head to preserve structural coherence. This division ensures
smooth convergence and prevents the degradation typically
observed in unified-loss formulations.

A. Phase 1: CAC-Based Embedding Formation

Phase 1 is dedicated to constructing a clean and well-
structured embedding space for known classes. CAC
introduces learnable anchor vectors, each representing the
center of a specific class cluster. The CAC loss is defined as:

Leac = Zi I f(x) — ay, I?
=B 2y N F () — 1% 1

Minimizing this loss encourages each feature f(x;)to be
pulled toward its corresponding class anchor while being
repelled from anchors of all other classes. This optimization
produces compact intra-class clusters supported by well-
separated inter-class margins, resulting in a geometrically
stable embedding manifold. Such structured embeddings
provide an essential initialization for Phase 2, in which LDLE
performs feature-space expansion without destabilizing the
cluster organization.

B. Phase 2: LDLE with a Weak CAC Embedding Head

Phase 2 applies LDLE to expand low-density regions
surrounding known clusters in order to increase the
separability of unknown samples. The LDLE objective is
defined as

LipLe = Lget + ADip (f (%)), 2
where Dppencourages features to disperse into low-density
regions of the latent space. Although LDLE effectively reveals
unknown-class boundaries, it can destabilize the structured
embedding learned in Phase 1, sometimes leading to partial
collapse of cluster geometry. To mitigate this issue, Phase 2
retains a weakened version of the CAC head, which acts as a
stabilizing force and anchors each known-class cluster.
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The resulting loss function for Phase 2 is

weak

Lphasez = LupLe + YLcac » 3)

where vy is set to a sufficiently small value (typically 0.05-0.1).
This formulation ensures that LDLE drives dispersion
primarily along low-density directions, while the weak CAC
term preserves coherent class structures, preventing over-
expansion and retaining the embedding topology established
in Phase 1.

C. Integration Strategy and Expected Outcomes

In earlier drafts, our explanation of the interaction between
LDLE and CAC was insufficient, which may have made it
unclear why unified optimization is challenging. We therefore
provide a more explicit clarification here: LDLE expands low-
density regions by pushing feature representations outward,
while CAC encourages compact clustering around class
anchors. Because these objectives act in opposite directions,
optimizing them simultaneously can introduce competing
gradients and reduce training stability. By transitioning to a
two-stage approach, Phase 1 focuses exclusively on CAC to
establish compact embeddings, and Phase 2 subsequently
applies LDLE to promote separation between known and
unknown regions. To address this conceptual ambiguity, we
also clarify why the unified-loss setting required an a-weight
balancing term. When LDLE-driven dispersion and CAC-
driven clustering were forced to act simultaneously, their
opposing objectives led to unstable updates. By presenting
these mechanisms more clearly, we motivate the use of a two-
stage training strategy in which each objective is optimized in
a separate phase.

The combination of these complementary mechanisms is
expected to enhance separability between known and
unknown classes, stabilize the embedding distribution during
training, and reduce computational cost by replacing optimal
transport computations with CAC’s lightweight distance-
based formulation. Ultimately, the resulting model is designed
to support efficient open-set road damage detection suitable
for real-time deployment on edge devices and mobile
platforms, where computational resources are limited.

IV.EXPERIMENT AND RESULTS

A. Experimental Setup

To evaluate the proposed two-stage framework,
experiments were conducted using the RDD2022 dataset,
which contains diverse, real-world road damage categories
collected from multiple countries. In the open-set
configuration, a subset of categories was designated as known,
while the remaining categories, including ambiguous or rare
types, were grouped as unknown. Two models were
compared: an LDLE-only baseline and the proposed two-
stage 2-Stage system. Training was performed using
Detectron2 with a ResNet-50 FPN backbone on a single
NVIDIA GPU running a Linux environment. Mixed-precision
training was disabled to maintain numerical stability
throughout optimization.

Open-set performance was assessed using standard OSR
and OWOD evaluation metrics, including mean Average
Precision (mAP) over IoU thresholds from 0.5 to 0.95, AP for
known categories (AP@K), AP for the unknown class
(AP@U), and AUROC for unknown-class detection scoring.



Table.1. Open-Set Detection Performance on RDD2022

Method | AP@K AP@U | mAP (0.5-0.95) | AUROC
LDLE 8.72 13.8 11.26 0.5399
2-Stage 5.29 8.98 7.137 0.7149

These metrics provide a comprehensive view of both detection
accuracy and robustness to unknown categories. Quantitative

comparisons and detailed analysis are presented in the
subsequent section.

B. Quantitative Results

The quantitative results are summarized in Table 1, which
reports mAP, AP@K, AP@U, and AUROC for both LDLE
and the proposed two-stage method.

Although the proposed 2-Stage model shows a slight
degradation in AP metrics compared with LDLE alone, it
provides more stable feature embedding and improved
training behavior, which we analyze further.

C. Training Dynamics, Efficiency, and Embedding
Behavior

To better understand the effect of integrating CAC in
Phase 1 and preserving a weak CAC head in Phase 2, we
analyzed the stability of the training process, computational
efficiency, and the resulting embedding structure. As shown
in Figure 3, the proposed two-stage strategy exhibits
noticeably smoother loss trajectories and reduced variance
compared to LDLE. This stabilization helps prevent
embedding collapse and leads to more consistent optimization
behavior, even though the raw AP scores remain lower than
those of LDLE alone.

In addition to loss characteristics, Figure 4 shows the
average time per iteration for both methods. The first phase of
the two-stage approach demonstrates a substantially lower
computational cost than LDLE, resulting in a faster initial
training process. After transitioning to Phase 2, the per-
iteration cost becomes similar to LDLE; however, this shift
does not adversely affect training stability. These observations
indicate that the two-stage framework improves embedding
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Fig.3. Iteration—Loss curves for LDLE and the proposed
2-Stage method. The 2-Stage model shows consistently
lower variance and smoother convergence after the initial
CAC phase, whereas LDLE exhibits higher fluctuation
throughout training. Although LDLE reaches a lower
final loss in some iterations, the 2-stage strategy yields
more stable optimization behavior overall.
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robustness while also providing a faster early-stage
optimization process.

We report mAP (IoU 0.5-0.95), AP@K (mean AP across
known classes), AP@U (AP of the unknown class), and
AUROC based on the unknown-class detection score. These
metrics provide a more complete and objective evaluation of
open-set performance in accordance with prior OSR/OWOD
literature.

V. DISCUSSION

This study introduces a two-stage embedding-based
framework that integrates Class Anchor Clustering (CAC)
with Low-Density Latent Expansion (LDLE) for open-set
road damage detection, and the experimental results reveal
several notable insights. CAC plays a foundational role by
organizing the feature space into compact and coherent intra-
class clusters while preserving distinct margins between
known categories. Through this process, the embedding space
becomes clean, geometrically structured, and highly stable,
enabling more reliable optimization in subsequent stages.
LDLE then builds upon this foundation by expanding the low-
density regions surrounding the clusters, effectively creating
additional geometric space in which unknown samples can be
more clearly distinguished from known ones.

When applied sequentially, the combined method yields
an embedding space characterized by coherent clusters for
known classes, well-defined boundaries between categories,
and expanded low-density regions that function as buffer
zones for unknown samples. These properties collectively
contribute to enhanced interpretability and a more
discriminative latent structure, even though the overall AP
values do not exceed those of the LDLE-only baseline. The
reduction observed in mAP and AP@U indicates a central
challenge inherent to this approach: CAC and LDLE each
encourage beneficial but opposing behaviors—one promoting
compactness and the other encouraging dispersion. Although
the two-stage strategy alleviates much of the direct gradient
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Fig. 4. Iteration—Time curves (500-step moving average)
for LDLE and the proposed 2-Stage method.
The 2-Stage model exhibits a markedly lower per-
iteration computation time during the initial CAC phase,
enabling faster early-stage optimization. After
transitioning to Phase 2, the iteration time becomes
comparable to LDLE; however, this shift does not
negatively affect training consistency. Overall, the two-
stage strategy achieves faster initial learning while
maintaining stable computational behavior throughout
training.
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conflict seen in unified training, it does not completely
eliminate the underlying tension between these objectives.

In addition, the current implementation uses fixed
hyperparameters for both CAC and LDLE (e.g., the CAC
repulsion strength B, the LDLE density coefficient A, and the
switching criterion between stages). Because these parameters
directly control the balance between compactness and
dispersion, their optimization is expected to have a strong
influence on AP performance. Adaptive or data-driven tuning
may further reduce the observed performance gap and
potentially improve both AP@K and AP@U.

Despite this limitation, the improved training stability and
reduced computational overhead demonstrate the potential of
the fusion direction. The results suggest that careful
coordination between CAC and LDLE can continue to
enhance open-set recognition, provided that their competing
influences are better managed. Building upon these findings,
future research will investigate adaptive mechanisms that
dynamically adjust the balance between clustering and
dispersion during training, explore multi-head architectures
capable of functionally decoupling embedding sub-tasks, and
expand large-scale training on diverse road damage datasets
to further improve unknown-class detection and
generalization performance.

VI.CONCLUSION

This work proposed a sequential 2-Stage framework for
open-set road damage recognition. CAC establishes a compact
and discriminative embedding for known classes, while
LDLE expands low-density regions to improve separation
from unknown instances. Although the integrated model did
not exceed the LDLE-only configuration in terms of AP
performance, it achieved greater training stability and reduced
computational overhead.

Because the two-stage framework relies on several key
hyperparameters—such as the LDLE density weight, CAC
margin strength, and the timing of the phase transition—
further optimization of these values may lead to improved
detection performance. As such, the reduced AP metrics
observed in the present results should not necessarily be
interpreted as an inherent limitation of the approach but rather
as an indication of untapped optimization potential.
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These findings highlight both the potential and the
limitations of combining compactness-driven and dispersion-
driven embedding mechanisms. The results suggest that more
adaptive or hierarchical training strategies may further
improve recognition robustness. Future developments will
explore improved scheduling strategies, dual-head networks,
and large-scale validation on diverse road-damage datasets.
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