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Abstract— Municipal roads constitute the majority of the 
roadway network, making their timely maintenance crucial for 
public safety. While deep-learning-based object detectors such 
as YOLO have achieved remarkable performance in road 
damage detection, they operate under closed-set conditions and 
thus fail to recognize unseen damage types. This study aims to 
address this limitation by developing an open-set road damage 
recognition framework that integrates Low-Density Latent 
Expansion (LDLE) and Class Anchor Clustering (CAC) 
mechanisms. LDLE expands feature representations of known 
classes into sparse latent regions, facilitating the discovery of 
unknown samples, whereas CAC imposes class-wise anchors to 
promote intra-class compactness and inter-class separation. To 
reduce the computational cost associated with optimal 
transport–based methods, the proposed framework replaces the 
OT distance with a lightweight CAC loss, enabling efficient and 
stable feature learning. Experiments conducted on public 
benchmark datasets demonstrate that LDLE enhances 
unknown-class separability, while CAC stabilizes the training 
process by reducing intra-class variance. Although the 
preliminary version of this study did not evaluate road damage 
datasets, the revised work now includes experiments on 
RDD2022. While recognition accuracy slightly decreased 
compared with the closed-set baseline, the findings highlight the 
potential of density-based expansion and distance-based 
clustering for open-set recognition, laying the groundwork for 
future application to real-world road damage scenarios.   
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I. INTRODUCTION 
Municipal roads constitute nearly 80% of the total 

roadway network used in daily transportation [1], making 
their maintenance and safety management a major 
responsibility for local governments. However, routine 
inspection and assessment of pavement conditions remain 
labor-intensive, time-consuming, and economically 
demanding. Undetected surface deterioration—such as 
cracking, delamination, or differential settlement—can 
degrade drainage performance and structural integrity, leading 
to hazardous driving conditions. To address these challenges, 
numerous computer-vision-based road damage detection 
techniques have been developed in recent years. Moreover, 
with the increasing prevalence of autonomous and connected 
vehicles, the ability to recognize and localize road damage 

accurately has become even more critical. In this study, the 
main evaluation is conducted on the RDD2022 dataset, which 
contains diverse and real-world road–damage categories 
collected from several regions. This dataset provides a 
realistic setting for assessing the open-set detection capability 
of the proposed framework. 

Traditional object detectors have achieved remarkable 
progress on closed-set datasets, where training and testing 
share identical classes and distributions. Several studies have 
utilized large-scale road damage datasets collected 
collaboratively by municipalities, successfully applying 
lightweight object detectors such as YOLO to achieve high 
detection accuracy and real-time performance [2], [3]. 
Nevertheless, in real-world applications, object detectors 
often encounter unseen or unknown damage types that do not 
appear in the training data. When such cases arise, 
conventional detectors tend to misclassify novel instances into 
the nearest known categories, undermining the system’s 
reliability and safety. 

To overcome this limitation, open-set and open-world 
object detection (OWOD) frameworks have been actively 
explored [4]–[7]. While previous open-world object detection 
studies mainly focused on expanding detection pipelines or 
novelty scoring, this work emphasizes embedding-space 
regularization. Although lightweight detectors such as YOLO 
achieve high accuracy and real-time performance on closed-
set road-damage datasets, they inherently lack mechanisms for 
handling unknown classes. Therefore, in this work, YOLO-
based detectors are used solely as closed-set baselines, while 
our proposed method focuses on embedding-based open-set 
mechanisms such as LDLE and CAC that explicitly address 
unknown-class detection. This focus bridges a relatively 
unexplored gap between feature-space structure and open-set 
robustness. However, LDLE and CAC impose conflicting 
embedding behaviors: LDLE expands low-density regions, 
whereas CAC enforces compact clustering. This contrast 
makes unified optimization unstable. The proposed approach 
reduces the computational cost of optimal transport–based 
methods while maintaining comparable accuracy, achieving 
stable and lightweight training suitable for edge-level 
deployment. Methods such as OW-DETR introduce novelty 
classification mechanisms into Transformer architectures, 
while UC-OWOD further categorizes unknown samples into 
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multiple novel classes and proposes dedicated evaluation 
protocols. Building on these advances, our study focuses on 
improving the feature embedding and class separation for 
open-set road damage detection. 

Specifically, we adopt the OpenDet-CWA framework [8] 
as our baseline and replace the computationally demanding 
optimal transport (OT) distance used in its loss formulation 
with the Class Anchor Clustering (CAC) loss proposed by 
Miller et al. [9]. The CAC loss enables efficient distance-
based clustering by anchoring class centers in the embedding 
space, thereby promoting compact intra-class features and 
clear inter-class separation without the heavy computational 
overhead of OT.  

Our contributions can be summarized as follows: 

(1). We integrate the CAC loss into an open-world detection 
framework to examine its effect on latent feature distribution 
and training stability.  

(2). The proposed fusion of LDLE and CAC achieves a 
notable reduction in computational cost and training time 
while maintaining consistent optimization behavior.  

(3). These results indicate the potential of the proposed 
approach as a lightweight and efficient foundation for future 
large-scale road damage recognition tasks on edge devices. 

II. RELATED WORKS 

A. Road Damage Detection 
Early studies on automated road inspection mainly 

focused on image-based crack detection using handcrafted 
features such as edge or texture descriptors. With the advent 
of deep learning, convolutional neural networks (CNNs) have 
been widely applied to road damage detection and 
classification. Large-scale collaborative efforts among local 
governments have enabled the creation of benchmark datasets 
that contain thousands of annotated road images captured by 
smartphones and vehicle-mounted cameras [2]. Using these 
datasets, object detectors such as Faster R-CNN and YOLO 
have demonstrated high accuracy. However, these models 
inherently operate under closed-set assumptions and therefore 
cannot detect unseen categories, leading to degraded 
performance in real-world scenarios. This limitation 
motivates the need for open-set approaches. 

B. Open-Set and Open-World Object Detection 
To improve robustness against unknown categories, open-

set recognition (OSR) and open-world object detection 
(OWOD) have gained significant attention. In OSR, models 
are trained to recognize known classes while rejecting samples 
from unknown classes. Scheirer et al. [10] first formalized this 
concept using threshold-based recognition. Later, deep-
learning-based methods introduced distance- or embedding-
based mechanisms to distinguish known from unknown 
samples. 

Extending this concept to object detection, OW-DETR [6] 
integrates novelty classification and objectness scoring into a 
Transformer-based detector, enabling the discovery of 
unknown instances without additional supervision. 
Furthermore, UC-OWOD [7] enhances this framework by 
introducing class grouping for unknown samples and 
proposing a new evaluation protocol that explicitly measures 
unknown-class detection performance. These works 
collectively highlight the importance of designing robust 

embedding spaces for unknown detection. Our work extends 
these insights by focusing specifically on the interaction 
between dispersion-based (LDLE) and anchor-based (CAC) 
embedding regularization under an open-set detection setting. 

C. Distance-Based Loss Functions and Optimal 
Transport 

Recent research has explored distance-based learning 
objectives to achieve better class separation and 
discriminative feature representations. In particular, optimal 
transport (OT)–based losses have been incorporated into 
open-set detection frameworks to align class distributions and 
regularize embeddings [8]. Although the OT distance provides 
a theoretically elegant formulation for comparing feature 
distributions, its computation requires iterative optimization 
(e.g., Sinkhorn iterations), leading to substantial 
computational cost. This makes OT-based approaches less 
suitable for real-time applications such as mobile road-
damage detection. Figure 1 illustrates a conceptual diagram of 
the two-dimensional visualization in the embedded space. 

D. Class Anchor Clustering Loss 
To address the computational burden of OT-based 

methods, Wang et al. proposed the Class Anchor Clustering 
(CAC) loss [9], a distance-based objective designed for open-
set recognition. CAC loss introduces learnable class anchors 
in the embedding space and minimizes intra-class distances 
while enlarging inter-class margins. By jointly optimizing 

(a)                                              (b) 
Fig.1. Visualization of the embedding space in 2D. 
Circular and square markers represent objects belonging 
to known classes. The objective is to reduce the cluster 
size of objects (circles and squares) belonging to the 
same known class, that is, to transform the distribution 
from (a) to (b). This contraction enlarges the triangular 
region corresponding to unknown classes, thereby 
improving the accuracy of unknown-class estimation.  

(a)                                              (b) 
Fig.2. Example of a 3D logit space learned with the CAC 
loss. (a) shows an example of open-set recognition 
trained with the cross-entropy loss, while (b) illustrates 
the case trained with the CAC loss, where known-class 
clusters become more compact and separable, thereby 
improving the discriminability of unknown classes. 
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classification and clustering objectives, the model learns more 
compact and separable feature representations without relying 
on costly transport computations. Figure 2 illustrates an 
example of the three-dimensional logit space learned using the 
CAC loss.  

In contrast to conventional OT-based methods that 
emphasize distribution alignment, this study focuses on 
embedding-space optimization, complementing detection-
oriented approaches such as OW-DETR and UC-OWOD. By 
positioning LDLE and CAC within this framework, our 
approach addresses the underexplored challenge of balancing 
feature dispersion and compactness to enhance open-set 
recognition capability.  

III. PROPOSED METHOD 
The proposed framework improves open-set road damage 

detection by integrating Class Anchor Clustering (CAC) and 
Low-Density Latent Expansion (LDLE) in a two-stage 
optimization pipeline. Unlike conventional approaches that 
merge multiple embedding objectives into a single loss 
function, this framework separates their roles across two 
phases to avoid conflicting gradients. Phase 1 constructs a 
compact and stable embedding space using CAC, while 
Phase 2 employs LDLE to enhance the separability between 
known and unknown samples, retaining a weakened CAC 
head to preserve structural coherence. This division ensures 
smooth convergence and prevents the degradation typically 
observed in unified-loss formulations. 

A. Phase 1: CAC-Based Embedding Formation 
Phase 1 is dedicated to constructing a clean and well-

structured embedding space for known classes. CAC 
introduces learnable anchor vectors, each representing the 
center of a specific class cluster. The CAC loss is defined as: 

 𝐿𝐿CAC = ∑ ∥ 𝑓𝑓(𝑖𝑖 𝑥𝑥𝑖𝑖) − 𝑎𝑎𝑦𝑦𝑖𝑖 ∥2 
                  −𝛽𝛽∑ ∥ 𝑓𝑓(𝑗𝑗≠𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖) − 𝑎𝑎𝑗𝑗 ∥2.      (1) 

Minimizing this loss encourages each feature 𝑓𝑓(𝑥𝑥𝑖𝑖)to be 
pulled toward its corresponding class anchor while being 
repelled from anchors of all other classes. This optimization 
produces compact intra-class clusters supported by well-
separated inter-class margins, resulting in a geometrically 
stable embedding manifold. Such structured embeddings 
provide an essential initialization for Phase 2, in which LDLE 
performs feature-space expansion without destabilizing the 
cluster organization. 

B. Phase 2: LDLE with a Weak CAC Embedding Head 
Phase 2 applies LDLE to expand low-density regions 

surrounding known clusters in order to increase the 
separability of unknown samples. The LDLE objective is 
defined as 

𝐿𝐿LDLE = 𝐿𝐿det + 𝜆𝜆𝐷𝐷LD(𝑓𝑓(𝑥𝑥)),                           (2) 

where 𝐷𝐷LD encourages features to disperse into low-density 
regions of the latent space. Although LDLE effectively reveals 
unknown-class boundaries, it can destabilize the structured 
embedding learned in Phase 1, sometimes leading to partial 
collapse of cluster geometry. To mitigate this issue, Phase 2 
retains a weakened version of the CAC head, which acts as a 
stabilizing force and anchors each known-class cluster. 

The resulting loss function for Phase 2 is 

𝐿𝐿Phase2 = 𝐿𝐿LDLE + 𝛾𝛾𝐿𝐿CACweak,      (3) 

where γ is set to a sufficiently small value (typically 0.05–0.1). 
This formulation ensures that LDLE drives dispersion 
primarily along low-density directions, while the weak CAC 
term preserves coherent class structures, preventing over-
expansion and retaining the embedding topology established 
in Phase 1. 

C. Integration Strategy and Expected Outcomes 
In earlier drafts, our explanation of the interaction between 

LDLE and CAC was insufficient, which may have made it 
unclear why unified optimization is challenging. We therefore 
provide a more explicit clarification here: LDLE expands low-
density regions by pushing feature representations outward, 
while CAC encourages compact clustering around class 
anchors. Because these objectives act in opposite directions, 
optimizing them simultaneously can introduce competing 
gradients and reduce training stability. By transitioning to a 
two-stage approach, Phase 1 focuses exclusively on CAC to 
establish compact embeddings, and Phase 2 subsequently 
applies LDLE to promote separation between known and 
unknown regions. To address this conceptual ambiguity, we 
also clarify why the unified-loss setting required an α-weight 
balancing term. When LDLE-driven dispersion and CAC-
driven clustering were forced to act simultaneously, their 
opposing objectives led to unstable updates. By presenting 
these mechanisms more clearly, we motivate the use of a two-
stage training strategy in which each objective is optimized in 
a separate phase. 

The combination of these complementary mechanisms is 
expected to enhance separability between known and 
unknown classes, stabilize the embedding distribution during 
training, and reduce computational cost by replacing optimal 
transport computations with CAC’s lightweight distance-
based formulation. Ultimately, the resulting model is designed 
to support efficient open-set road damage detection suitable 
for real-time deployment on edge devices and mobile 
platforms, where computational resources are limited. 

IV. EXPERIMENT AND RESULTS 

A. Experimental Setup 
To evaluate the proposed two-stage framework, 

experiments were conducted using the RDD2022 dataset, 
which contains diverse, real-world road damage categories 
collected from multiple countries. In the open-set 
configuration, a subset of categories was designated as known, 
while the remaining categories, including ambiguous or rare 
types, were grouped as unknown. Two models were 
compared: an LDLE-only baseline and the proposed two-
stage 2-Stage system. Training was performed using 
Detectron2 with a ResNet-50 FPN backbone on a single 
NVIDIA GPU running a Linux environment. Mixed-precision 
training was disabled to maintain numerical stability 
throughout optimization. 

Open-set performance was assessed using standard OSR 
and OWOD evaluation metrics, including mean Average 
Precision (mAP) over IoU thresholds from 0.5 to 0.95, AP for 
known categories (AP@K), AP for the unknown class 
(AP@U), and AUROC for unknown-class detection scoring. 
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These metrics provide a comprehensive view of both detection 
accuracy and robustness to unknown categories. Quantitative  

comparisons and detailed analysis are presented in the 
subsequent section. 

B. Quantitative Results 
The quantitative results are summarized in Table 1, which 

reports mAP, AP@K, AP@U, and AUROC for both LDLE 
and the proposed two-stage method. 

Although the proposed 2-Stage model shows a slight 
degradation in AP metrics compared with LDLE alone, it 
provides more stable feature embedding and improved 
training behavior, which we analyze further. 

C. Training Dynamics, Efficiency, and Embedding 
Behavior 

To better understand the effect of integrating CAC in 
Phase 1 and preserving a weak CAC head in Phase 2, we 
analyzed the stability of the training process, computational 
efficiency, and the resulting embedding structure. As shown 
in Figure 3, the proposed two-stage strategy exhibits 
noticeably smoother loss trajectories and reduced variance 
compared to LDLE. This stabilization helps prevent 
embedding collapse and leads to more consistent optimization 
behavior, even though the raw AP scores remain lower than 
those of LDLE alone. 

In addition to loss characteristics, Figure 4 shows the 
average time per iteration for both methods. The first phase of 
the two-stage approach demonstrates a substantially lower 
computational cost than LDLE, resulting in a faster initial 
training process. After transitioning to Phase 2, the per-
iteration cost becomes similar to LDLE; however, this shift 
does not adversely affect training stability. These observations 
indicate that the two-stage framework improves embedding 

robustness while also providing a faster early-stage 
optimization process. 

 We report mAP (IoU 0.5–0.95), AP@K (mean AP across 
known classes), AP@U (AP of the unknown class), and 
AUROC based on the unknown-class detection score. These 
metrics provide a more complete and objective evaluation of 
open-set performance in accordance with prior OSR/OWOD 
literature. 

V. DISCUSSION 
 This study introduces a two-stage embedding-based 

framework that integrates Class Anchor Clustering (CAC) 
with Low-Density Latent Expansion (LDLE) for open-set 
road damage detection, and the experimental results reveal 
several notable insights. CAC plays a foundational role by 
organizing the feature space into compact and coherent intra-
class clusters while preserving distinct margins between 
known categories. Through this process, the embedding space 
becomes clean, geometrically structured, and highly stable, 
enabling more reliable optimization in subsequent stages. 
LDLE then builds upon this foundation by expanding the low-
density regions surrounding the clusters, effectively creating 
additional geometric space in which unknown samples can be 
more clearly distinguished from known ones. 

When applied sequentially, the combined method yields 
an embedding space characterized by coherent clusters for 
known classes, well-defined boundaries between categories, 
and expanded low-density regions that function as buffer 
zones for unknown samples. These properties collectively 
contribute to enhanced interpretability and a more 
discriminative latent structure, even though the overall AP 
values do not exceed those of the LDLE-only baseline. The 
reduction observed in mAP and AP@U indicates a central 
challenge inherent to this approach: CAC and LDLE each 
encourage beneficial but opposing behaviors—one promoting 
compactness and the other encouraging dispersion. Although 
the two-stage strategy alleviates much of the direct gradient 

     

 
Fig.3. Iteration–Loss curves for LDLE and the proposed 
2-Stage  method. The 2-Stage model shows consistently 
lower variance and smoother convergence after the initial 
CAC phase, whereas LDLE exhibits higher fluctuation 
throughout training. Although LDLE reaches a lower 
final loss in some iterations, the 2-stage strategy yields 
more stable optimization behavior overall. 

     

 
Fig. 4. Iteration–Time curves (500-step moving average) 
for LDLE and the proposed 2-Stage method. 
The 2-Stage model exhibits a markedly lower per-
iteration computation time during the initial CAC phase, 
enabling faster early-stage optimization. After 
transitioning to Phase 2, the iteration time becomes 
comparable to LDLE; however, this shift does not 
negatively affect training consistency. Overall, the two-
stage strategy achieves faster initial learning while 
maintaining stable computational behavior throughout 
training. 

Table.1. Open-Set Detection Performance on RDD2022 

Method AP@K AP@U mAP (0.5–0.95) AUROC

LDLE 8.72 13.8 11.26 0.5399

2-Stage 5.29 8.98 7.137 0.7149  
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conflict seen in unified training, it does not completely 
eliminate the underlying tension between these objectives. 

In addition, the current implementation uses fixed 
hyperparameters for both CAC and LDLE (e.g., the CAC 
repulsion strength β, the LDLE density coefficient λ, and the 
switching criterion between stages). Because these parameters 
directly control the balance between compactness and 
dispersion, their optimization is expected to have a strong 
influence on AP performance. Adaptive or data-driven tuning 
may further reduce the observed performance gap and 
potentially improve both AP@K and AP@U. 

Despite this limitation, the improved training stability and 
reduced computational overhead demonstrate the potential of 
the fusion direction. The results suggest that careful 
coordination between CAC and LDLE can continue to 
enhance open-set recognition, provided that their competing 
influences are better managed. Building upon these findings, 
future research will investigate adaptive mechanisms that 
dynamically adjust the balance between clustering and 
dispersion during training, explore multi-head architectures 
capable of functionally decoupling embedding sub-tasks, and 
expand large-scale training on diverse road damage datasets 
to further improve unknown-class detection and 
generalization performance. 

VI. CONCLUSION 
  This work proposed a sequential 2-Stage framework for 

open-set road damage recognition. CAC establishes a compact 
and discriminative embedding for known classes, while 
LDLE expands low-density regions to improve separation 
from unknown instances. Although the integrated model did 
not exceed the LDLE-only configuration in terms of AP 
performance, it achieved greater training stability and reduced 
computational overhead. 

Because the two-stage framework relies on several key 
hyperparameters—such as the LDLE density weight, CAC 
margin strength, and the timing of the phase transition—
further optimization of these values may lead to improved 
detection performance. As such, the reduced AP metrics 
observed in the present results should not necessarily be 
interpreted as an inherent limitation of the approach but rather 
as an indication of untapped optimization potential. 

These findings highlight both the potential and the 
limitations of combining compactness-driven and dispersion-
driven embedding mechanisms. The results suggest that more 
adaptive or hierarchical training strategies may further 
improve recognition robustness. Future developments will 
explore improved scheduling strategies, dual-head networks, 
and large-scale validation on diverse road-damage datasets. 
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