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Abstract— Current network control systems struggle to adapt
to changing conditions. Integrating machine learning (ML) at
the network layer can improve Quality of Service (QoS) by
dynamically adjusting protocol parameters. This paper
presents an ML-enhanced Cognitive QoS On-Demand
Routing Protocol for Cognitive Radio Ad-Hoc Networks
(CRAHNSs), focusing on modifying AODV  protocol
parameters to better handle network dynamics. The proposed
DQN-QoS-CAODYV protocol uses reinforcement learning to
select efficient routes with minimal delay and high
throughput, even under channel switching and user mobility.
Simulations show that it outperforms both QoS-CAODYV and
ML-AODV in terms of overhead, packet delivery ratio,
interference, throughput, delay, and packet loss.
Keywords—Cognitive  Radio  Ad-Hoc  Networks
(CRAHNs), QoS, Machine Learning (ML), Ad-Hoc On-
Demand Distance Vector (A0DV), QoS-AODV, DON-QoS-
CAODYV.

I. INTRODUCTION

The detection of unused spectrum in Cognitive Radio
(CR) systems has gained significant interest due to its
potential to enhance wireless communication. CR enables
unlicensed users to access licensed bands opportunistically
without interfering with primary users (PUs). Wireless ad hoc
networks offer a strong architecture for studying CR- based
routing, leading to the development of various protocols for
Cognitive Radio Ad Hoc Networks (CRAHNs) [1] [2] [3]
[4].Each routing protocol in CRAHN aims to achieve different
goals, such as minimizing delay, reducing hops, and ensuring
PU protection. CRAHN routing can follow proactive or
reactive strategies, and integrating Quality of Service (QoS) is
critical for meeting application demands [4] [5] [6].

The convergence of CR with Machine Learning (ML)
marks a major advancement in wireless networks. ML-
enabled CR supports dynamic adaptation in environments like
10T, vehicular networks, and UAV communications. These
intelligent systems help optimize energy use, reduce
interference, and improve latency, throughput, and security.
The fusion of ML-based CR with these evolving wireless
networks holds the promise of creating intelligent, efficient,
and universally accessible wireless communication systems
tailored to the spectrum demands of next-generation
applications and services [11].

This work reviews the role of Al in cognitive radios,
distinguishing between supervised learning (which uses prior
knowledge) and unsupervised learning (ideal for unknown RF
environments). Both are crucial for enabling real cognitive
decision-making in dynamic spectrum contexts. We conduct
a comprehensive review of diverse learning approaches
proposed for cognitive radios, categorizing them into
supervised and  unsupervised learning  paradigms.
Unsupervised learning is introduced as an independent
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learning mechanism well-suited for unfamiliar radio
frequency (RF) environments, while supervised learning
methods leverage prior information available to cognitive
radios during the learning process[8] [9].

II. RELATED WORK

The Ad hoc On-Demand Distance Vector (AODV)
protocol is widely used in mobile ad hoc networks (MANETS)
due to its reactive nature, which establishes routes only when
needed. This on-demand mechanism minimizes control
overhead and adapts well to highly dynamic network
topologies.
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Fig. 1. Tllustration of the AODV Route Discovery Mechanism

Despite its efficiency and simplicity, AODV lacks native
support for Quality of Service (QoS) metrics such as delay,
bandwidth, packet loss, and throughput—factors crucial for
real-time or high-priority applications. To address this, several
enhancements have been proposed to integrate QoS
considerations into AODV, enabling the protocol to make
routing decisions based on performance requirements.
Building on these principles, the Cognitive AODV (CAODV)
protocol was developed to meet the unique needs of Cognitive
Radio Ad Hoc Networks (CRAHNS).

CRAHNSs allow nodes to dynamically sense and utilize
underused spectrum bands, requiring routing protocols that
can adapt to both network topology and spectrum availability.
CAODV extends AODV by incorporating spectrum-related
information into the RREQ messages.
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Fig. 2 Cognitive AODV routing protocol.

A. Literature review of QoS in Cognitive Radio Ad
Hoc Networks

The creation of QoS-supporting routing protocols is the
contribution of the CRAHN routing protocol design. Different
QoS is required by the applications running in CRAHNS,
including bandwidth, jitter, latency, delay, and package loss
[10][11][12]. They may require all of the services, or only one
of them. For voice communication, the routing protocol with
QoS support might identify the application service
requirements and select the path with the least amount of jitter,
end-to-end latency, and delay variation. In the absence of QoS
support, the routing protocol could not be able to meet
application needs since it would assign the path and spectrum
only according to its routing metric.
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Fig. 3. QoS-Based Path Establishment in Cognitive Radio Ad Hoc Networks

In [13], the authors introduced three QoS metrics—
blocking, dropping, and failure probabilities—to evaluate
network performance but overlooked the impact of primary
users (PUs). Although a power control method was proposed,
network performance remained limited. Performance
improves when secondary users (SUs) quickly access
spectrum and reduce switching time. However, the proposed
QoS-based routing lacked explicit throughput consideration,
focusing instead on bandwidth and latency. A K-shortest Q-
Routing approach was suggested to reduce delay, but the
shortest path is not always optimal.
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1.

Cognitive Radio Ad Hoc Networks have attracted growing
interest for applications like disaster response and military
operations. AODV is a widely used reactive routing protocol
in MANETS, but it faces challenges such as high overhead,
discovery delays, and limited scalability. To overcome these
issues, researchers have explored enhancements, including
machine learning (ML)-based approaches. This review
examines how ML can improve AODV’s performance in
CRAHNs. ML-based AODV approaches apply machine
learning to improve routing decisions by learning from past
network behavior. These techniques help predict link quality,
assess node mobility, and optimize route selection, enhancing
AODV’s performance in CRAHNSs[21].

One of the early works in this domain is the ML-AODV
approach proposed by Li et al. (2011). They employed a
support vector machine (SVM) algorithm to predict link
quality based on features such as signal strength and packet
loss rate. The predicted link quality was then used to select the
most reliable route for data transmission. The results showed
that ML-AODYV outperformed traditional AODV in terms of
packet delivery ratio and end-to-end delay.
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Fig.4 ML-AODV Routing Performance

Another ML-based AODV approach was introduced by
Sharma and Jain (2013), where they applied a decision tree
algorithm to estimate node mobility. By con- sidering factors
like speed, direction, and acceleration, the decision tree
algorithm predicted the future location of nodes, enabling
proactive route maintenance and improved routing decisions.
The experimental evaluation demonstrated that the proposed
approach achieved better performance in terms of route
stability and packet delivery ratio compared to traditional
AODV. Furthermore, Chen et al. (2017) proposed an ML-
based AODV approach that utilized a random forest algorithm
to predict the optimal route for data transmission. The random
forest model was trained using historical data on network
conditions, includ- ing link quality, node mobility, and traffic
load. The experimental results showed that the ML-AODV
approach significantly reduced the control overhead and
improved the overall network performance[21] .

Several studies have evaluated and compared different
ML-based AODV approaches to assess their effectiveness in
enhancing the performance of MANETS. For instance, Kumar
et al. (2019) conducted a comparative analysis of various ML
algorithms, including SVM, decision tree, and random forest,



applied to the AODV routing protocol. Their results indicated
that the random forest algorithm outperformed the other
algorithms in terms of packet delivery ratio, end-to-end delay,
and energy consumption. Similarly, Sharma et al. (2020)
evaluated the performance of ML-AODYV approaches using
different ML algorithms, such as k-nearest neighbors (KNN),
naive Bayes, and artificial neural networks (ANN). Their
findings revealed that ANN- based ML-AODYV achieved the
highest packet delivery ratio and lowest end-to-end delay
compared to other ML algorithms [21].

This is mainly due to fluctuations in node speeds, energy
consumption, and network congestion. In the ML-AODV
architecture, each mobile node maintains a list of immediate
(1-hop) neighbors via periodic HELLO packets. The source
node checks its routing table for a route to the destination. If
found, it begins data transmission; if not, it broadcasts a
RREQ packet to its 1-hop neighbors. Upon receiving the
RREQ, anode checks if'it is the destination; if not, it calculates
a trust value and compares it to a threshold. If the trust value
exceeds the threshold, it is saved in the RREQ packet. The
RREQ packet structure includes additional fields beyond the
standard AODV protocol. In a MANET, the lack of
centralized control requires mobile nodes to act as routers,
relying on mutual trust for data exchange. When intermediate
nodes receive an RREQ, they first check if the destination
matches their own address. if so, no further processing is
needed.

This process is repeated regularly. Nodes with trust values
above the threshold act as dynamic relay forwarders, while
those below are labeled capacity attackers, contributing to
blackhole attacks. The trust value is stored in both the ML-
AODV RREQ message and the source node’s routing
database. Each node’s trust is updated based on recent data
exchanges with neighbors, ensuring a current reliability
measure.

Cognitive Ad Hoc Networks (CRAHNS) have attracted
considerable interest for their ability to adapt dynamically to
network changes and enhance performance. These networks
use machine learning to enable cognitive functions, allowing
nodes to learn from the environment and make intelligent
decisions [22]. Reinforcement learning, widely applied in
CRAHN:S, helps nodes improve decisions through trial-and-
error feedback, such as selecting optimal routing paths in
dynamic settings [22]. Deep learning, a subset of machine
learning, also shows strong potential. Neural networks can
analyze complex data, aiding in tasks like spectrum sensing,
channel allocation, and resource management [23].

Support Vector Machines (SVM) are widely used in
CRAHNSs for tasks like spectrum sensing and decision-
making. As a supervised learning algorithm, SVM can classify
available spectrum bands based on parameters such as signal
strength. This allows for efficient allocation to appropriate
nodes [23]. Machine learning significantly improves spectrum
utilization in CRAHNs by enabling nodes to adapt
dynamically, make intelligent access decisions, and enhance
overall efficiency. It also boosts network reliability by
allowing nodes to adjust to changing conditions allocation by
predicting network congestion and dynamically adjusting
transmission power and channel allocation. For instance, Li et
al. (2019) proposed a reinforcement learning-based approach
that optimized resource allocation in CRAHNs by learning
from network states and making intelligent decisions to
minimize congestion and max- imize throughput.
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Furthermore, machine learning algorithms have been utilized
in CRAHNS to improve spectrum sensing, which is crucial for
cognitive radios to detect and utilize available spectrum bands
efficiently. Traditional spectrum sensing techniques often face
high false alarm and miss detection rates, resulting in
inefficient spectrum use [24].

IV. PROPOSED WORK

In the enhanced DQN-QoS-CAODV protocol, each node
leverages a Deep Q-Network (DQN) to smartly manage
decisions related to spectrum access, routing, and relay
selection. The DQN processes a complex network state
containing channel availability, residual energy, link
expiration time, route expiration, and trust values. Upon
receiving a RREQ packet, a node consults its trained DQN
model to determine the optimal action whether to forward,
drop, or select a specific relay node and channel. The reward
mechanism Stimulates decisions that lead to successful packet
delivery and efficient spectrum usage, while penalizing
actions that cause interference, congestion, or involve
untrusted nodes. The trust value, regularly updated through
real-time neighbor interactions, further guides the DQN in
distinguishing between reliable and potentially malicious
nodes. This integration allows nodes to adapt dynamically to
the network environment and improves overall performance
and security.

The DQN can be used as an intelligent decision-making
mechanism that helps mobile nodes learn the optimal actions
(e.g., channel selection, trusted relay selection, or forwarding
decisions) by interacting with the dynamic network
environment. It allows nodes to select the best available
spectrum channel, to choose the most reliable relay node, to
optimize routing based on QoS parameters (for example
latency, link expiration time, residual energy) and to avoid
malicious nodes by learning from trust-based feedback and
penalizing unsafe behavior.
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Fig. 5 Performance Evaluation of the DQN-QoS-CAODV Routing
Protocol

This innovative framework introduces several key features
and benefits:



Adaptive routing decisions: ML algorithms are
employed to enable the CAODV protocol to adaptively
learn and optimize routing decisions.

Dynamic Spectrum Management: ML techniques can
assist in real-time spectrum sensing and decision-
making. The CAODV protocol, augmented with ML
capabilities, can intelligently learn from historical
spectrum usage data and make informed decisions on
channel selection, minimizing interference and
enhancing overall spectral efficiency

Predictive Network Performance: ML models can be
trained to predict potential network disruptions,
interference patterns, or node failures based on
historical data. By proactively identifying and
addressing these issues, the CAODV protocol can
improve reliability and reduce latency in
communication.

Energy Efficiency: ML algorithms can be utilized to
optimize energy consumption in mobile nodes within
the CRAHN. By learning and predicting the energy
consumption patterns of nodes, the CAODV protocol
can facilitate energy-aware routing, prolonging the
network lifetime and reducing the environmental
impact.

Security Enhancement: ML techniques can contribute
to anomaly detection and intrusion prevention. The
CAODV protocol, when integrated with ML-based
security measures, can identify and mitigate malicious
activities, such as blackhole attacks or unauthorized
access, thereby enhancing the overall security of the
network

Learning from User Behavior : ML models can
analyze user behavior patterns, such as movement
trends and communication preferences. This
information can be leveraged by the CAODYV protocol
to anticipate and optimize routing decisions,
improving the overall quality of service for users.

Each mobile node in the DQN-QoS-CAODV architecture
maintains an initial list of its 1-hop neighbors by periodically
exchanging HELLO packets. When a node needs to establish
a route, a local Deep Q-Network (DQN) agent constructs a
state that includes factors such as the best available spectrum
channel, link quality, and trust values of neighboring nodes.
Based on this state and its learned Q-function, the DQN selects
the optimal action which neighbor to forward to and which
channel to use. The Route Request (RREQ) is then broadcast
with this optimized information. When an intermediate
secondary user (SU) node receive an RREQ :

1. It checks if it is currently sharing the spectrum with
Primary User (PU). (If yes, it appends available
spectrum information and rebroadcasts the packet).

The node’s DQN evaluates an immediate reward
based on factors like estimated delay, residual
energy, and compliance with QoS constraints
(example; throughput, latency).
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3. If the reward exceeds a certain threshold, the node
forwards the RREQ; otherwise, it discards it—thus

reducing interference and poor routing choices.

If no valid route is found, the source node periodically
initiates new RREQs. Each round allows the DQN agents to
learn and refine their routing policies based on feedback in the
form of rewards and penalties. At the destination, multiple
potential paths may be available. The destination’s DQN
computes the Q-value for each path incorporating metrics like
Link Expiration Time (LET), Route Expiration (RE), and QoS
performance and selects the route with the highest Q-value,
ensuring both optimal reliability and minimal delay.

Nodes exceeding the DQN-defined trust threshold are
marked as dynamic relay forwarders, while those falling
below are flagged as potential intruders (e.g., blackhole or
flooding threats). Trust values and DQN weights are
continuously updated based on recent exchanges with
neighboring nodes, allowing real-time adaptation and accurate
reliability assessment.

V. PERFORMANCE EVALUATION

A-  Simulation environment
We used the NS-3 Simulator to apply the AODV module,
with the possibility of adding an ML module via Python/C++.
The use of DQN in NS-3 is enabled through the ns3-ai

module, which utilizes shared memory between Python and
C++.

TABLE I. OF ENVIRONMENT SIMULATION

Parameter Value / Range
Simulation Area 1000 x 1000 m?
Number of Nodes 10 to 50
Mobility Model Random Waypoint
Node Speed 1-20 m/s
Simulation Time 300 seconds/seanario run
Transmission Range 250 meters
Routing Protocols Compared QoS-CAODV, DQR,
DDPG CAODV
DQN-QoS-CAODV
Traffic Type CBR (UDP)
Packet Size 512 bytes
Packet Rate 4 packets/sec
MAC Protocol IEEE 802.11
Propagation Model Two-Ray Ground
Bandwidth 2 Mbps
Channel Access dynamic
Trust Model (for ML- QoS) Behavior-based with
reinforcement updates
Learning Algorithm Deep Q-Network (DQN)
QoS Metrics Delay, PDR, Overhead,
Trust Accuracy

The DQN model implemented in our protocol consists of
three fully connected layers with 128, 64, and 32 neurons
resulting in approximately 12,000 trainable parameters,
respectively, using ReLU activation. The input vector
includes channel quality, queue length, link delay, and
neighboring node availability, while the output layer provides
a Q-value for each possible next hop. We used a learning rate
0f0.001, a replay buffer of 10,000 transitions, and a batch size
of 64. The target network is updated every 200 training steps.



B- Simulation results:

In this section, we present the results obtained from the
comparative analysis of three protocols:

QoS-CAODV, DQR (Deep Q-Routing is a reinforcement
learning—based routing protocol designed for highly dynamic
wireless networks such as CRAHNS. It extends classic Q-
routing by using a Deep Q-Network (DQN) to estimate
optimal forwarding decisions), DDPG CAODV (is a
reinforcement learning—based routing protocol designed for
CRAHN:E. It extends the classical AODV routing protocol by
enabling nodes to learn intelligent routing decisions using the
Deep Deterministic Policy Gradient (DDPG) algorithm). And
DQN-QoS-CAODV.

The objective of this study was to evaluate the
performance of these approaches in terms of various metrics,
including packet delivery ratio, end-to-end delay, network
throughput and packet loss.

1) Packet Delivery Ratio (PDR): The PDR is an
important metric that indicates the percentage of
successfully delivered packets out of the total packets
generated.
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Fig. 6 PDR vs number of nodes .

The results in figure 6 show that PDR decreases for all
protocols as the number of nodes increases, which is expected
due to higher contention, interference, and routing overhead
in complicated networks. However, the DQN-QoS-CAODV
protocol consistently achieves the highest PDR across all
scenarios, demonstrating its superior ability to maintain
reliable packet delivery under increasing network load. This
improvement is attributed to the deep reinforcement learning
mechanism, which enables the protocol to select more stable
and high-quality routes. The figure clearly highlights the
robustness and effectiveness of DQN-QoS-CAODV in
delivering packets reliably in dynamic and large-scale
cognitive radio networks.

2) End-to-End Delay: The end-to-end delay is
another crucial metric that measures the time taken for a
packet to travel from the source to the destination.
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Fig. 7 End to End delay vs number of nodes

Figure 7 presents the comparison of end-to-end delay
among DQN-QoS-CAODV, CAODV with QoS, and
traditional ML AODV for different network sizes. It can be
observed that DQN-QoS-CAODYV consistently achieves the
lowest end-to-end delays, outperforming both CAODV with
QoS and traditional ML AODV. This reduction in delay is due
to the intelligent routing decisions of DQN-QoS-CAODV,
which efficiently select the optimal paths while considering
the QoS requirements of the packets, even under varying
network sizes.

3) Network Throughput:  Network throughput
refers to the amount of data that can be transmitted over
a network in a given time period.
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Fig. 8 Throughput vs number of nodes .

Figure 8 presents the comparison of network throughput
between DQN-QoS-CAODV, DQR, and DDPG-CAODV for
varying network sizes. The results indicate that DQN-QoS-
CAODV achieves consistently higher throughput than DQR,
due to its ability to make intelligent routing decisions based
on real-time network states. While DDPG-CAODV can
achieve slightly higher throughput in highly dynamic
scenarios, DQN-QoS-CAODV provides a strong balance
between performance and computational efficiency,
demonstrating its effectiveness in optimizing network
resource utilization across different network scales.

4) Packet Loss: Refers to the sum of all packets that
were lost while running the simulation. Its number of



nodes that transmitted from the source but were never
received by the destination.
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Fig. 9 Packetloss vs number of nodes.

Figure 9 illustrates the variation in packet loss across
different node densities for QoS-CAODV, DQR, DQN-QoS-
CAODV, and DDPG-CAODV. While packet loss increases
with higher node density in DQR, QoS-CAODYV, and DDPG-
CAODV, the DQN-QoS-CAODV protocol consistently
achieves the lowest packet loss, outperforming the other
protocols by approximately 12% under dense network
conditions. This demonstrates the superior capability of DQN-
QoS-CAODV in maintaining reliable packet delivery while
efficiently adapting to varying network densities.

5) overhead: Routing overhead refers to the
additional control packets required for maintaining and
updating routing information. Figure 4 illustrates the
comparison of routing overhead among DQN-QoS-CAODV,
QoS-CAODV, DQR, and DDPG-CAODV.

Routing Overhead
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Fig. 10 overhead vs number of nodes.

The results of figure 10 show that DQN-QoS-CAODV
consistently achieves the lowest routing overhead across
different network sizes and traffic loads, outperforming the
other protocols. This reduction in overhead can be attributed
to its intelligent routing decisions, which optimize resource
utilization and minimize unnecessary control message
exchanges.

Experimental results show that the DQN converges after
approximately 4,000 training iterations, with Q-values
stabilizing as the exploration rate decreases. This convergence
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behavior demonstrates the robustness of the proposed routing
strategy under dynamic CRAHN conditions.

In summary, the results of our study demonstrate that
DQN-QoS-CAODV outperforms QoS-CAODV, DQR, and
DDPG-CAODYV in terms of packet delivery ratio, end-to-end
delay, routing overhead, network throughput, and packet loss.
Furthermore, DQN-QoS-CAODV  maintains  superior
performance across various network sizes and mobility
patterns, highlighting its effectiveness and suitability for
highly dynamic cognitive radio ad hoc networks.

VI. CONCLUSION

This paper investigates how machine learning (ML) can
enhance Quality of Service (QoS) in Cognitive Radio Ad
Hoc Networks (CRAHNS). Traditional routing approaches
often struggle with dynamic network topologies and varying
traffic patterns, whereas ML-based techniques can adapt to
changing conditions and learn from past experiences. ML has
demonstrated significant potential in improving QoS metrics
such as throughput, end-to-end delay, packet loss, and
routing overhead. In the context of routing, ML enables the
prediction of link quality and the selection of reliable paths
by leveraging network data including signal strength,
interference levels, and node mobility..
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