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Abstract— Current network control systems struggle to adapt 
to changing conditions. Integrating machine learning (ML) at 
the network layer can improve Quality of Service (QoS) by 
dynamically adjusting protocol parameters. This paper 
presents an ML-enhanced Cognitive QoS On-Demand 
Routing Protocol for Cognitive Radio Ad-Hoc Networks 
(CRAHNs), focusing on modifying AODV protocol 
parameters to better handle network dynamics. The proposed 
DQN-QoS-CAODV protocol uses reinforcement learning to 
select efficient routes with minimal delay and high 
throughput, even under channel switching and user mobility. 
Simulations show that it outperforms both QoS-CAODV and 
ML-AODV in terms of overhead, packet delivery ratio, 
interference, throughput, delay, and packet loss. 

Keywords—Cognitive Radio Ad-Hoc Networks
(CRAHNs), QoS, Machine Learning (ML), Ad-Hoc On-
Demand Distance Vector (AODV), QoS-AODV, DQN-QoS-
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I. INTRODUCTION 
The detection of unused spectrum in Cognitive Radio 

(CR) systems has gained significant interest due to its 
potential to enhance wireless communication. CR enables 
unlicensed users to access licensed bands opportunistically 
without interfering with primary users (PUs). Wireless ad hoc 
networks offer a strong architecture for studying CR- based 
routing, leading to the development of various protocols for 
Cognitive Radio Ad Hoc Networks (CRAHNs) [1] [2] [3] 
[4].Each routing protocol in CRAHN aims to achieve different 
goals, such as minimizing delay, reducing hops, and ensuring 
PU protection. CRAHN routing can follow proactive or 
reactive strategies, and integrating Quality of Service (QoS) is 
critical for meeting application demands [4] [5] [6]. 

The convergence of CR with Machine Learning (ML) 
marks a major advancement in wireless networks. ML- 
enabled CR supports dynamic adaptation in environments like 
IoT, vehicular networks, and UAV communications. These 
intelligent systems help optimize energy use, reduce 
interference, and improve latency, throughput, and security. 
The fusion of ML-based CR with these evolving wireless 
networks holds the promise of creating intelligent, efficient, 
and universally accessible wireless communication systems 
tailored to the spectrum demands of next-generation 
applications and services [11]. 

This work reviews the role of AI in cognitive radios, 
distinguishing between supervised learning (which uses prior 
knowledge) and unsupervised learning (ideal for unknown RF 
environments). Both are crucial for enabling real cognitive  
decision-making in dynamic spectrum contexts. We conduct 
a comprehensive review of diverse learning approaches 
proposed for cognitive radios, categorizing them into 
supervised and unsupervised learning paradigms. 
Unsupervised learning is introduced as an independent 

learning mechanism well-suited for unfamiliar radio 
frequency (RF) environments, while supervised learning 
methods leverage prior information available to cognitive 
radios during the learning process[8] [9]. 

II. RELATED WORK 
The Ad hoc On-Demand Distance Vector (AODV) 

protocol is widely used in mobile ad hoc networks (MANETs) 
due to its reactive nature, which establishes routes only when 
needed. This on-demand mechanism minimizes control 
overhead and adapts well to highly dynamic network 
topologies. 

Fig. 1. Illustration of the AODV Route Discovery Mechanism 

Despite its efficiency and simplicity, AODV lacks native 
support for Quality of Service (QoS) metrics such as delay, 
bandwidth, packet loss, and throughput—factors crucial for 
real-time or high-priority applications. To address this, several 
enhancements have been proposed to integrate QoS 
considerations into AODV, enabling the protocol to make 
routing decisions based on performance requirements. 
Building on these principles, the Cognitive AODV (CAODV) 
protocol was developed to meet the unique needs of Cognitive 
Radio Ad Hoc Networks (CRAHNs). 

CRAHNs allow nodes to dynamically sense and utilize 
underused spectrum bands, requiring routing protocols that 
can adapt to both network topology and spectrum availability. 
CAODV extends AODV by incorporating spectrum-related 
information into the RREQ messages. 
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Fig. 2 Cognitive AODV routing protocol. 

 
A. Literature review of QoS in Cognitive Radio Ad 

Hoc Networks 
The creation of QoS-supporting routing protocols is the 

contribution of the CRAHN routing protocol design. Different 
QoS is required by the applications running in CRAHNs, 
including bandwidth, jitter, latency, delay, and package loss 
[10][11][12]. They may require all of the services, or only one 
of them. For voice communication, the routing protocol with 
QoS support might identify the application service 
requirements and select the path with the least amount of jitter, 
end-to-end latency, and delay variation. In the absence of QoS 
support, the routing protocol could not be able to meet 
application needs since it would assign the path and spectrum 
only according to its routing metric. 

 
Fig. 3. QoS-Based Path Establishment in Cognitive Radio Ad Hoc Networks 

. 

In [13], the authors introduced three QoS metrics—
blocking, dropping, and failure probabilities—to evaluate 
network performance but overlooked the impact of primary 
users (PUs). Although a power control method was proposed, 
network performance remained limited. Performance 
improves when secondary users (SUs) quickly access 
spectrum and reduce switching time. However, the proposed 
QoS-based routing lacked explicit throughput consideration, 
focusing instead on bandwidth and latency. A K-shortest Q- 
Routing approach was suggested to reduce delay, but the 
shortest path is not always optimal. 

 

III. MACHINE LEARNING 
Cognitive Radio Ad Hoc Networks have attracted growing 

interest for applications like disaster response and military 
operations. AODV is a widely used reactive routing protocol 
in MANETs, but it faces challenges such as high overhead, 
discovery delays, and limited scalability. To overcome these 
issues, researchers have explored enhancements, including 
machine learning (ML)-based approaches. This review 
examines how ML can improve AODV’s performance in 
CRAHNs. ML-based AODV approaches apply machine 
learning to improve routing decisions by learning from past 
network behavior. These techniques help predict link quality, 
assess node mobility, and optimize route selection, enhancing 
AODV’s performance in CRAHNs[21]. 

One of the early works in this domain is the ML-AODV 
approach proposed by Li et al. (2011). They employed a 
support vector machine (SVM) algorithm to predict link 
quality based on features such as signal strength and packet 
loss rate. The predicted link quality was then used to select the 
most reliable route for data transmission. The results showed 
that ML-AODV outperformed traditional AODV in terms of 
packet delivery ratio and end-to-end delay. 

 

   Fig.4 ML-AODV Routing Performance 

 

Another ML-based AODV approach was introduced by 
Sharma and Jain (2013), where they applied a decision tree 
algorithm to estimate node mobility. By con- sidering factors 
like speed, direction, and acceleration, the decision tree 
algorithm predicted the future location of nodes, enabling 
proactive route maintenance and improved routing decisions. 
The experimental evaluation demonstrated that the proposed 
approach achieved better performance in terms of route 
stability and packet delivery ratio compared to traditional 
AODV. Furthermore, Chen et al. (2017) proposed an ML- 
based AODV approach that utilized a random forest algorithm 
to predict the optimal route for data transmission. The random 
forest model was trained using historical data on network 
conditions, includ- ing link quality, node mobility, and traffic 
load. The experimental results showed that the ML-AODV 
approach significantly reduced the control overhead and 
improved the overall network performance[21] . 

Several studies have evaluated and compared different 
ML-based AODV approaches to assess their effectiveness in 
enhancing the performance of MANETs. For instance, Kumar 
et al. (2019) conducted a comparative analysis of various ML 
algorithms, including SVM, decision tree, and random forest, 
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applied to the AODV routing protocol. Their results indicated 
that the random forest algorithm outperformed the other 
algorithms in terms of packet delivery ratio, end-to-end delay, 
and energy consumption. Similarly, Sharma et al. (2020) 
evaluated the performance of ML-AODV approaches using 
different ML algorithms, such as k-nearest neighbors (KNN), 
naive Bayes, and artificial neural networks (ANN). Their 
findings revealed that ANN- based ML-AODV achieved the 
highest packet delivery ratio and lowest end-to-end delay 
compared to other ML algorithms [21]. 

This is mainly due to fluctuations in node speeds, energy 
consumption, and network congestion. In the ML-AODV 
architecture, each mobile node maintains a list of immediate 
(1-hop) neighbors via periodic HELLO packets. The source 
node checks its routing table for a route to the destination. If 
found, it begins data transmission; if not, it broadcasts a 
RREQ packet to its 1-hop neighbors. Upon receiving the 
RREQ, a node checks if it is the destination; if not, it calculates 
a trust value and compares it to a threshold. If the trust value 
exceeds the threshold, it is saved in the RREQ packet. The 
RREQ packet structure includes additional fields beyond the 
standard AODV protocol. In a MANET, the lack of 
centralized control requires mobile nodes to act as routers, 
relying on mutual trust for data exchange. When intermediate 
nodes receive an RREQ, they first check if the destination 
matches their own address. if so, no further processing is 
needed. 

This process is repeated regularly. Nodes with trust values 
above the threshold act as dynamic relay forwarders, while 
those below are labeled capacity attackers, contributing to 
blackhole attacks. The trust value is stored in both the ML-
AODV RREQ message and the source node’s routing 
database. Each node’s trust is updated based on recent data 
exchanges with neighbors, ensuring a current reliability 
measure. 

Cognitive Ad Hoc Networks (CRAHNs) have attracted 
considerable interest for their ability to adapt dynamically to 
network changes and enhance performance. These networks 
use machine learning to enable cognitive functions, allowing 
nodes to learn from the environment and make intelligent 
decisions [22]. Reinforcement learning, widely applied in 
CRAHNs, helps nodes improve decisions through trial-and- 
error feedback, such as selecting optimal routing paths in 
dynamic settings [22]. Deep learning, a subset of machine 
learning, also shows strong potential. Neural networks can 
analyze complex data, aiding in tasks like spectrum sensing, 
channel allocation, and resource management [23]. 

Support Vector Machines (SVM) are widely used in 
CRAHNs for tasks like spectrum sensing and decision-
making. As a supervised learning algorithm, SVM can classify 
available spectrum bands based on parameters such as signal 
strength. This allows for efficient allocation to appropriate 
nodes [23]. Machine learning significantly improves spectrum 
utilization in CRAHNs by enabling nodes to adapt 
dynamically, make intelligent access decisions, and enhance 
overall efficiency. It also boosts network reliability by 
allowing nodes to adjust to changing conditions allocation by 
predicting network congestion and dynamically adjusting 
transmission power and channel allocation. For instance, Li et 
al. (2019) proposed a reinforcement learning-based approach 
that optimized resource allocation in CRAHNs by learning 
from network states and making intelligent decisions to 
minimize congestion and max- imize throughput. 

Furthermore, machine learning algorithms have been utilized 
in CRAHNs to improve spectrum sensing, which is crucial for 
cognitive radios to detect and utilize available spectrum bands 
efficiently. Traditional spectrum sensing techniques often face 
high false alarm and miss detection rates, resulting in 
inefficient spectrum use [24]. 

IV. PROPOSED WORK 
 

In the enhanced DQN-QoS-CAODV protocol, each node 
leverages a Deep Q-Network (DQN) to smartly manage 
decisions related to spectrum access, routing, and relay 
selection. The DQN processes a complex network state 
containing channel availability, residual energy, link 
expiration time, route expiration, and trust values. Upon 
receiving a RREQ packet, a node consults its trained DQN 
model to determine the optimal action whether to forward, 
drop, or select a specific relay node and channel. The reward 
mechanism Stimulates decisions that lead to successful packet 
delivery and efficient spectrum usage, while penalizing 
actions that cause interference, congestion, or involve 
untrusted nodes. The trust value, regularly updated through 
real-time neighbor interactions, further guides the DQN in 
distinguishing between reliable and potentially malicious 
nodes. This integration allows nodes to adapt dynamically to 
the network environment and improves overall performance 
and security. 

The DQN can be used as an intelligent decision-making 
mechanism that helps mobile nodes learn the optimal actions 
(e.g., channel selection, trusted relay selection, or forwarding 
decisions) by interacting with the dynamic network 
environment. It allows nodes to select the best available 
spectrum channel, to choose the most reliable relay node, to 
optimize routing based on QoS parameters (for example 
latency, link expiration time, residual energy) and to avoid 
malicious nodes by learning from trust-based feedback and 
penalizing unsafe behavior. 

       

   Fig. 5 Performance Evaluation of the DQN-QoS-CAODV Routing 
Protocol 

 
This innovative framework introduces several key features 

and benefits: 
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• Adaptive routing decisions: ML algorithms are 
employed to enable the CAODV protocol to adaptively 
learn and optimize routing decisions. 

• Dynamic Spectrum Management: ML techniques can 
assist in real-time spectrum sensing and decision- 
making. The CAODV protocol, augmented with ML 
capabilities, can intelligently learn from historical 
spectrum usage data and make informed decisions on 
channel selection, minimizing interference and 
enhancing overall spectral efficiency 

• Predictive Network Performance: ML models can be 
trained to predict potential network disruptions, 
interference patterns, or node failures based on 
historical data. By proactively identifying and 
addressing these issues, the CAODV protocol can 
improve reliability and reduce latency in 
communication. 

• Energy Efficiency: ML algorithms can be utilized to 
optimize energy consumption in mobile nodes within 
the CRAHN. By learning and predicting the energy 
consumption patterns of nodes, the CAODV protocol 
can facilitate energy-aware routing, prolonging the 
network lifetime and reducing the environmental 
impact. 

• Security Enhancement: ML techniques can contribute 
to anomaly detection and intrusion prevention. The 
CAODV protocol, when integrated with ML-based 
security measures, can identify and mitigate malicious 
activities, such as blackhole attacks or unauthorized 
access, thereby enhancing the overall security of the 
network 

• Learning from User Behavior : ML models can 
analyze user behavior patterns, such as movement 
trends and communication preferences. This 
information can be leveraged by the CAODV protocol 
to anticipate and optimize routing decisions, 
improving the overall quality of service for users. 

 

Each mobile node in the DQN-QoS-CAODV architecture 
maintains an initial list of its 1-hop neighbors by periodically 
exchanging HELLO packets. When a node needs to establish 
a route, a local Deep Q-Network (DQN) agent constructs a 
state that includes factors such as the best available spectrum 
channel, link quality, and trust values of neighboring nodes. 
Based on this state and its learned Q-function, the DQN selects 
the optimal action which neighbor to forward to and which 
channel to use. The Route Request (RREQ) is then broadcast 
with this optimized information. When an intermediate 
secondary user (SU) node receive an RREQ : 

 

1. It checks if it is currently sharing the spectrum with 
Primary User (PU). (If yes, it appends available 
spectrum information and rebroadcasts the packet). 
 

2. The node’s DQN evaluates an immediate reward 
based on factors like estimated delay, residual 
energy, and compliance with QoS constraints 
(example; throughput, latency). 
 

3. If the reward exceeds a certain threshold, the node 
forwards the RREQ; otherwise, it discards it—thus 
reducing interference and poor routing choices. 

 

If no valid route is found, the source node periodically 
initiates new RREQs. Each round allows the DQN agents to 
learn and refine their routing policies based on feedback in the 
form of rewards and penalties. At the destination, multiple 
potential paths may be available. The destination’s DQN 
computes the Q-value for each path incorporating metrics like 
Link Expiration Time (LET), Route Expiration (RE), and QoS 
performance and selects the route with the highest Q-value, 
ensuring both optimal reliability and minimal delay. 

Nodes exceeding the DQN-defined trust threshold are 
marked as dynamic relay forwarders, while those falling 
below are flagged as potential intruders (e.g., blackhole or 
flooding threats). Trust values and DQN weights are 
continuously updated based on recent exchanges with 
neighboring nodes, allowing real-time adaptation and accurate 
reliability assessment. 

V. PERFORMANCE EVALUATION 

A- Simulation environment 
We used the NS-3 Simulator to apply the AODV module, 

with the possibility of adding an ML module via Python/C++. 
The use of DQN in NS-3 is enabled through the ns3-ai 
module, which utilizes shared memory between Python and 
C++. 

 

TABLE I. OF ENVIRONMENT SIMULATION 

 

 

 
The DQN model implemented in our protocol consists of 

three fully connected layers with 128, 64, and 32 neurons 
resulting in approximately 12,000 trainable parameters, 
respectively, using ReLU activation. The input vector 
includes channel quality, queue length, link delay, and 
neighboring node availability, while the output layer provides 
a Q-value for each possible next hop. We used a learning rate 
of 0.001, a replay buffer of 10,000 transitions, and a batch size 
of 64. The target network is updated every 200 training steps. 

Parameter Value / Range 
Simulation Area 1000 × 1000 m² 

Number of Nodes 10 to 50 
Mobility Model Random Waypoint 

Node Speed 1 – 20 m/s 
Simulation Time 300 seconds/seanario run 

Transmission Range 250 meters 
Routing Protocols Compared  QoS-CAODV, DQR, 

DDPG CAODV 
DQN-QoS-CAODV 

Traffic Type CBR (UDP) 
Packet Size 512 bytes 
Packet Rate 4 packets/sec 

MAC Protocol IEEE 802.11 
Propagation Model Two-Ray Ground 

Bandwidth 2 Mbps 
Channel Access dynamic 

Trust Model (for ML- QoS) Behavior-based with 
reinforcement updates 

Learning Algorithm Deep Q-Network (DQN) 
QoS Metrics Delay, PDR, Overhead, 

Trust Accuracy 
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B- Simulation results: 
In this section, we present the results obtained from the 

comparative analysis of three protocols:  

QoS-CAODV, DQR (Deep Q-Routing is a reinforcement 
learning–based routing protocol designed for highly dynamic 
wireless networks such as CRAHNs. It extends classic Q-
routing by using a Deep Q-Network (DQN) to estimate 
optimal forwarding decisions), DDPG CAODV (is a 
reinforcement learning–based routing protocol designed for 
CRAHNs. It extends the classical AODV routing protocol by 
enabling nodes to learn intelligent routing decisions using the 
Deep Deterministic Policy Gradient (DDPG) algorithm). And 
DQN-QoS-CAODV.  

The objective of this study was to evaluate the 
performance of these approaches in terms of various metrics, 
including packet delivery ratio, end-to-end delay, network 
throughput and packet loss. 

1) Packet Delivery Ratio (PDR): The PDR is an 
important metric that indicates the percentage of 
successfully delivered packets out of the total packets 
generated. 

     Fig. 6 PDR vs number of nodes . 

The results in figure 6 show that PDR decreases for all 
protocols as the number of nodes increases, which is expected 
due to higher contention, interference, and routing overhead 
in complicated networks. However, the DQN-QoS-CAODV 
protocol consistently achieves the highest PDR across all 
scenarios, demonstrating its superior ability to maintain 
reliable packet delivery under increasing network load. This 
improvement is attributed to the deep reinforcement learning 
mechanism, which enables the protocol to select more stable 
and high-quality routes. The figure clearly highlights the 
robustness and effectiveness of DQN-QoS-CAODV in 
delivering packets reliably in dynamic and large-scale 
cognitive radio networks. 

2) End-to-End Delay: The end-to-end delay is 
another crucial metric that measures the time taken for a 
packet to travel from the source to the destination. 

 
 
 
 

 
 

Fig. 7 End to End delay vs number of nodes 

 

Figure 7 presents the comparison of end-to-end delay 
among DQN-QoS-CAODV, CAODV with QoS, and 
traditional ML AODV for different network sizes. It can be 
observed that DQN-QoS-CAODV consistently achieves the 
lowest end-to-end delays, outperforming both CAODV with 
QoS and traditional ML AODV. This reduction in delay is due 
to the intelligent routing decisions of DQN-QoS-CAODV, 
which efficiently select the optimal paths while considering 
the QoS requirements of the packets, even under varying 
network sizes. 

3) Network Throughput: Network throughput 
refers to the amount of data that can be transmitted over 
a network in a given time period. 

 

  Fig. 8 Throughput vs number of nodes . 

 

Figure 8 presents the comparison of network throughput 
between DQN-QoS-CAODV, DQR, and DDPG-CAODV for 
varying network sizes. The results indicate that DQN-QoS-
CAODV achieves consistently higher throughput than DQR, 
due to its ability to make intelligent routing decisions based 
on real-time network states. While DDPG-CAODV can 
achieve slightly higher throughput in highly dynamic 
scenarios, DQN-QoS-CAODV provides a strong balance 
between performance and computational efficiency, 
demonstrating its effectiveness in optimizing network 
resource utilization across different network scales. 

4) Packet Loss: Refers to the sum of all packets that 
were lost while running the simulation. Its number of 
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nodes that transmitted from the source but were never 
received by the destination. 

 

Fig. 9 Packetloss vs number of nodes. 

 

Figure 9 illustrates the variation in packet loss across 
different node densities for QoS-CAODV, DQR, DQN-QoS-
CAODV, and DDPG-CAODV. While packet loss increases 
with higher node density in DQR, QoS-CAODV, and DDPG-
CAODV, the DQN-QoS-CAODV protocol consistently 
achieves the lowest packet loss, outperforming the other 
protocols by approximately 12% under dense network 
conditions. This demonstrates the superior capability of DQN-
QoS-CAODV in maintaining reliable packet delivery while 
efficiently adapting to varying network densities. 

 

5) overhead: Routing overhead refers to the 
additional control packets required for maintaining and 
updating routing information. Figure 4 illustrates the 
comparison of routing overhead among DQN-QoS-CAODV, 
QoS-CAODV, DQR, and DDPG-CAODV. 
      

  Fig. 10 overhead vs number of nodes. 

 

     The results of figure 10 show that DQN-QoS-CAODV 
consistently achieves the lowest routing overhead across 
different network sizes and traffic loads, outperforming the 
other protocols. This reduction in overhead can be attributed 
to its intelligent routing decisions, which optimize resource 
utilization and minimize unnecessary control message 
exchanges. 

Experimental results show that the DQN converges after 
approximately 4,000 training iterations, with Q-values 
stabilizing as the exploration rate decreases. This convergence 

behavior demonstrates the robustness of the proposed routing 
strategy under dynamic CRAHN conditions. 

In summary, the results of our study demonstrate that 
DQN-QoS-CAODV outperforms QoS-CAODV, DQR, and 
DDPG-CAODV in terms of packet delivery ratio, end-to-end 
delay, routing overhead, network throughput, and packet loss. 
Furthermore, DQN-QoS-CAODV maintains superior 
performance across various network sizes and mobility 
patterns, highlighting its effectiveness and suitability for 
highly dynamic cognitive radio ad hoc networks. 

VI. CONCLUSION 

This paper investigates how machine learning (ML) can 
enhance Quality of Service (QoS) in Cognitive Radio Ad 
Hoc Networks (CRAHNs). Traditional routing approaches 
often struggle with dynamic network topologies and varying 
traffic patterns, whereas ML-based techniques can adapt to 
changing conditions and learn from past experiences. ML has 
demonstrated significant potential in improving QoS metrics 
such as throughput, end-to-end delay, packet loss, and 
routing overhead. In the context of routing, ML enables the 
prediction of link quality and the selection of reliable paths 
by leveraging network data including signal strength, 
interference levels, and node mobility..  
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