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Abstract—In contemporary times, it is nearly impossible to
function without mobile devices, along with various technologies
of daily use such as smartwatches, home assistants, smart car
keys, and many more. All these types of devices use wideband
wireless services for communication. With the limited resource
of wideband spectrum, it is not possible to provide service to the
growing demands. The challenge lies in efficiently conducting the
sensing and sharing of the spectrum. Consequently, the cognitive
radio network (CRN) is experiencing increasing demand due
to its innovative mechanisms for spectrum sensing. Moreover,
non-orthogonal multiple access (NOMA) in CRN improves the
spectrum utilization in wireless communications. However, spec-
trum sensing becomes increasingly critical and intricate in the
scenario involving CRN-NOMA. Numerous initiatives have been
taken to enhance the detection of the CRN spectrum and
improve overall performance. Nevertheless, the existing literature
highlights a shortcoming in performance at low Signal-to-Noise
Ratio (SNR) levels, a concern of particular importance due to the
considerable noise inherent within the communication medium.
In this study, we utilized variational quantum circuits (VQCs)
tailored for the noisy intermediate-scale quantum (NISQ) era.
The proposed model leverages the capabilities of a convolutional
neural network (CNN) to capture standout features, VQC are
employed, with additional expressivity achieved via data re-
uploading within the variable layer, resulting in improved per-
formance metrics. Ultimately, to demonstrate the efficacy of our
model, we conducted experiments and performed comparisons
with several state-of-the-art baselines. The findings indicate that
the proposed model consistently surpasses the performance of
baseline models, especially within low SNR conditions, achieving
detection performance close to the optimal level, and showcasing
substantial robustness in environments with significant noise
interference.

Index Terms—Quantum spectrum sensing, Data reuploading,
CNN, Low-SNR sensing, CRN, NOMA

I. INTRODUCTION

Wireless systems rely on electromagnetic spectrum to carry

the signals, and without spectrum, no wireless transmission is

possible. The spectrum is finite, and only a certain frequency

range is suitable for communication. So, syncing different
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spectrum for different countries for different organizations

is very difficult and complicated. Cognitive radio networks

(CRNs) and non-orthogonal multiple access (NOMA) are both

pivotal innovations in improving spectrum utilization in wire-

less communications. CRNs enable dynamic spectrum access

by allowing secondary (unlicensed) users to opportunistically

use underutilized frequency bands when primary (licensed)

users are idle [1]. NOMA, on the other hand, improves spectral

efficiency by allowing multiple users to share the same time-

frequency resources through multiplexing in the power domain

or the code domain [2]. In a CRN-NOMA system, secondary

users can transmit simultaneously at different power levels, po-

tentially increasing network capacity and connectivity without

exclusive spectrum allocation. However, this integration also

presents significant challenges. Already in CRN various forms

of interference are inherent, including cross-tier interference

at both the primary users (PU) and secondary users (SU), and

intra-secondary interference. The overlapping signal structure

of NOMA creates interference within the cell between users

of different power levels, complicating the classic cognitive

radio (CR) task of detecting whether a channel is free. Con-

sequently, spectrum sensing, which involves the detection of

unused spectrum by CR nodes, becomes increasingly critical

and intricate in scenarios involving CRN-NOMA. Fortunately,

researchers have devised methods to address these challenges

effectively. Traditional spectrum sensing techniques, energy

detection (ED), matched filtering (MF), and cyclostationary

detection (CSD), baseline parameters to remain consistent, but

require interface-aware thresholding under NOMA [2]. Wu

et al. [3] develop an adaptive thresholding mechanism that

correlates the probability of detection (Pd) and the probability

of false alarm (Pf ) with user activity and power allocation,

thus enhancing throughput in IoT uplinks. Wu’s adaptive

sensing method led to a substantial improvement in system

throughput.

Furthermore, a significant limitation of conventional ED

and MF is their suboptimal performance in environments

characterized by low signal-to-noise ratios (SNR) or non-

stationary signal conditions, which are prevalent in NOMA

scenarios. Deep learning models excel at learning complex sig-

nal patterns and distinguishing overlapping signals. Recurrent

neural networks (RNNs) and convolutional neural networks

(CNNs) have been applied to detect spectral occupancy in

NOMA waveforms [2], [4]–[7]. Kumar et al. [2] proposed the
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RNN-BiLSTM model to sense NOMA signals under fading

conditions. The model uses sequential learning to discern

subtle characteristics of the signals of the primary users, even

when these signals are intertwined with secondary transmis-

sions. The RNN-BiLSTM model achieved an almost perfect

detection probability at -5 dB, while a traditional energy

detector needed over +2 dB SNR for comparable results.

Researchers continue to advance these models by combining

neural networks with conventional detectors. Neural networks

dynamically adjust the thresholds in the energy detectors or

the output of the matched filters, showing significant improve-

ments in detection accuracy and reliability over traditional

methods [3]. The reinforcement learning (RL) variants opti-

mize the scheduling of sensing activities and the selection of

access modes to enhance long-term throughput while adhering

to interference constraints, as examined in [8].

In case of a more recent trend in networking, quantum

annealing is used in active user detection (AUD) in NOMA

by mapping AUD to an Ising Hamiltonian, showing efficient

runtimes in code-domain scenarios and potential for CRN-

NOMA decision tasks [9]. For radio resource decisions, quan-

tum inspired evolutionary algorithms (QEA) improve NOMA

user pairing versus classical heuristics, increasing the sum rate

with lightweight operators [10].

Evidence in recent works [2], [3] indicates that ML-assisted

detection unlocks the promised gains in the spectral efficiency

of CRN-NOMA. Priorities now include standardizing datasets,

benchmarks, and open-set robustness toward 6G. This study

focused on enhancing spectrum sensing methods using vari-

ational quantum circuits (VQC), where a data-reuploading

mechanism is applied for a more expressive model. Employing

this model, the CR node effectively allocates the spectrum to

SUs. A synopsis of our contributions is presented as follows:

• Initially, we introduced a simulated scenario for NOMA

signals within the framework of CRN.

• Secondly, by utilizing the data re-uploading method

within VQCs, we constructed a convolutional quantum

neural network for spectrum sensing.

• Finally, to demonstrate the efficacy of our model in spec-

trum sensing, we conducted experiments and performed

comparisons with several state-of-the-art baselines in the

domain of spectrum sensing.

II. SYSTEM MODEL

The main communication in CRN-NOMA architecture is

built on the interaction of two tiers of users and their respective

base stations. There are two types of networks. In Fig. 1(a),

the primary and secondary networks are illustrated. In the

primary network (PN), PUs communicate through licensed

spectrum with priority access to the channel. PUs are served

by the primary base station (PBS) and are protected from

harmful interference. However, secondary networks (SNs) are

the cognitive network. SUs are served by the secondary

base station (SBS), also known as the cognitive base station

(CBS). As in PBS, CBS has no specific spectrum for different
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Fig. 1. The architecture of cognitive radio networks with non-orthogonal
multiple access (CRN-NOMA) is illustrated, where purple denotes the primary
network and aqua represents the secondary network.

secondary user groups (SUGs), it has to rely on opportunistic

spectrum sharing.

The proposed method used CRN in interwave mode.

Fig. 1(b) shows the operating paradigm in CRN with NOMA

power domain NOMA. In this architecture, SNs serve multiple

SUs with different power levels. The frame structure consists

of a sensing slot and a data transmission slot. CBS performs

spectrum sensing to detect PU activity before accessing the

spectrum. This sensing process is formulated and executed

within a statistical hypothesis testing framework:

H0 : y(t) = n(t), (1)

H1 : y(t) = hs(s) + n(t) (2)

where h is the channel coefficient between PU and the

cognitive receiver that performs the sensing, n(t) models the

receiver noise and s(t) denotes the PU signal. Detection is

typically performed using energy detection, where the decision

statistic is compared against a predefined threshold. Eq. 3 is

the energy detector test statistics for N number of samples.

T =
1

N

n
∑

i=1

|y(i)|2 (3)

where the decision rule with threshold λ is

T
H1

≷
H0

λ (4)

Therefore, λ should be selected with an optimistic approach,

as otherwise a poor spectrum sensing process can lead to

erroneously concluding that the PUs are inactive. To eradicate

this issue, CRN-NOMA demands a better spectrum sensing

detection mechanism. Two other important phenomena in

CRN-NOMA, Pd and Pf that help to make the optimal de-

tection mechanism. Pd represents the probability of correctly

identifying that the ”PU is present,” as illustrated in Eq. 6,

while Pf refers to the detection circumstance where the ”PU

is present,” yet the communication band remains unutilized,

as outlined in Eq. 5.

Pf (λ) = Q

(

λ/σ2 − 1
√

2/N

)

(5)

Pd(λ, γ) = Q

(

λ/σ2 − (1 + γ)
√

2(1 + 2γ)/N

)

(6)
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A high Pd setting ensures minimal interference with PUs,

while a low Pf setting optimizes SU utilization to achieve

maximum throughput. Our experiment involves plotting a re-

ceiver operating characteristic (ROC) curve for PUs to evaluate

the effectiveness of the chosen method λ in various SNRs.

Hence, the ROC curves demonstrate the balance between Pd

and Pf , providing an assessment of the performance of our

model. The primary objective of the proposed CRN-NOMA

system is to achieve precise spectrum detection, thereby im-

proving the overall efficiency of spectrum utilization.

III. SIMULATION OF UPLINK NOMA DATASET

GENERATION

This section describes the simulation procedure used to

generate the uplink dataset for spectrum sensing in a NOMA

environment. The proposed feature-based spectrum sensing

method encompasses both downlink and uplink transmis-

sions. However, for the purposes of evaluating the proposed

method in this study, we focus solely on uplink transmission.

Consequently, a dataset was generated specifically for our

experimental analysis. MATLAB [11] is utilized to simulate

and construct the synthetic NOMA uplink dataset. The detailed

procedure for data generation is elucidated as follows.

We consider Q PUs transmitting simultaneously using

NOMA and M SUs acting as sensors. During N time samples

in each sensing interval, the received signal is collected. The

dataset contains K such intervals.

The activity state of PUs at time k is represented as a binary

vector:

θ(k) = [θ
(k)
1 , . . . , θ

(k)
Q ]⊤, θ(k)q ∈ {0, 1}. (7)

A. Transmitted Signals

Each PU q transmits symbols with power allocation Ωq ,

where
∑

q Ωq = 1. The baseband signal is modeled as

sq[n] ∼ CN (0,Ωq), n = 1, . . . , N. (8)

B. Channel and Noise Model

In the examined uplink NOMA scenario, the communication

channel connecting each PU to each SU is presumed to adhere

to a flat Rayleigh fading model. The specific flat Rayleigh

fading channel bridging PU q and SU m is represented by

Hq,m ∼ CN (0, 1) (9)

Collecting all links, the channel matrix can be expressed as:

H ∈ C
Q×M (10)

At each SU, the received signal is affected by additive

white Gaussian noise (AWGN) [12], which serves as a model

for thermal noise as well as other independent background

interference sources. The noise sample at the m-th SU and

time instance n is represented as:

wm[n] ∼ CN (0, σ2
m) (11)

where σ2
m is the variance of the noise. In the simulation

presented, it is assumed that all SUs experience unit variance

noise (σ2
m = 1) for simplicity and normalization.

C. Received Signal

Stacking N samples, the signal matrix received for the k-th

snapshot is

Y
(k) =

√
αS diag(θ(k))H+W, (12)

here S ∈ C
N×Q represents the PU symbol matrix, diag(θ(k))

encodes PU activity pattern, H denotes the channel gain, and

W ∈ C
N×M corresponds to additive noise.

D. Signal-to-Noise Ratio (SNR)

The SNR is defined as the ratio of average received signal

power, Ps to average noise power, Pn:

SNR =
E[Ps]

E[Pn]
(13)

Since Ps and Pn vary randomly, a scaling factor α is applied

to normalize the received signal to the desired target SNR =
10SNRdB/10, which is

α =
SNR

Ps/Pn

, SNR =
αPs

Pn

(14)

This guarantees that the effective SNR, after the scaling

process, aligns precisely with the predetermined value.

E. Labels

Every predictive unit activity vector, as referenced in θ(k),

is correspondingly assigned an integer label:

θ
(k)
label =

Q
∑

q=1

θ(k)q 2q−1. (15)

For Q = 2, the classes are {00, 01, 10, 11} → {0, 1, 2, 3}.

The ultimate dataset comprises correlation metrics CC ∈
R

K×2×M×M as features and PU activity states θ ∈
{0, . . . , 2Q − 1}K as labels. Consequently, the dataset encap-

sulates the spatio-temporal statistics of received signals amidst

fluctuating PU activity patterns, channel realizations, and noise

conditions.

IV. PROPOSED MODEL

In this study, we used hybrid quantum convolutional neural

networks (HQCNN) to identify active users within CRNs.

The received signals are transformed into a two-dimensional

covariance matrix, which serves as an analogous image in-

put for our HQCNN model to detect spectrum holes in

the network. Our model architecture leverages the VQC for

training the model as shown in Fig. 2. Our data generated

from the simulation as explained in Section III go through

CNN backbone layers that extract classical features. Then

the classical features are processed for a quantum circuit.

After processing, the main quantum training is performed

which here in Fig. 2 is mentioned as VQC consisting of

multiple variational layers. Each variational layer consists of

angle embedding and entanglement with the input data re-

uploading technique. Finally VQC measurements results in the

generation of classical values corresponding to quantum states.
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Fig. 2. Model architecture showing classical and quantum processing components.

These classical values are subsequently processed through a

classical classifier, after which a loss function is applied to

facilitate the training of the parameters. All components of

the proposed model will be discussed in the following.

TABLE I
CNN LAYER SHAPES AND PARAMETER COUNTS.

Layer Output shape # Params

Conv2d (2→12, 5×5) + Tanh 12 × 28 × 28 612
MaxPool2d (2×2) 12 × 14 × 14 0
Conv2d (12→32, 5×5) + Tanh 32 × 14 × 14 9,632
MaxPool2d (2×2) 32 × 7 × 7 0
Flatten 1,568 0
Linear (1,568→120) + Tanh 120 188,280
Linear (120→84) + Tanh 84 10,164
Linear (84→32) + Softmax 32 2,720

Total 211,408

A. CNN Backbone

Due to the high dimensionality and inherent noise of the raw

input signals, a CNN backbone is employed to extract mean-

ingful and robust representations prior to quantum processing.

The architecture of this network is summarized in Table I.

The CNN consists of two convolutional layers with Tanh

activations, each followed by max pooling, after which the

output is flattened into a 1,568-dimensional vector. This vector

is passed through three fully connected layers (1, 568 →
120 → 84 → 32), where the first two employ Tanh and

the final layer applies Softmax. The resulting 32-dimensional

vector serves as the final feature embedding, defined

z ∈ R
d, d = feature dim = 32 (16)

This embedding is then forwarded into the subsequent

quantum stage.

B. Classical-Quantum Projection

In quantum computing, a qubit state lives in Bloch sphere

as in Eq. 17

|ψ⟩ = cos(
θ

2
) |0⟩+ eiφsin(

θ

2
) |1⟩ (17)

In our proposed model we used VQC, that employ rotations

around the axes of the Bloch sphere on each qubit. RY angle

embedding is used in our proposal, which is single-qubit

rotation gate around y-axes:

R
(

θ
2

)

=

[

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

]

(18)

In Eq. 18, the input θ to the quantum circuit must be a real

parameter. Thus, we present this projection layer delineated

in Eq. 19, which is designed to be learnable. It optimally

compresses the feature space R
d to the quantum encoding

space R
n.

s = Wz + b (19)

Where CNN produces input z ∈ R
d, W ∈ R

n×d is the weight

matrix, b ∈ R
n is the bias, and n = the number of qubits.

Thus far, the progression can be delineated as follows:

input
CNN
−−−−→ z ∈ R

d (20)

Projection
−−−−−−−→ s ∈ R

n (21)

angle=si
−−−−−−→ |0⟩⊗n RY (si)

−−−−→ |ψ⟩ (22)

C. VQC with data re-uploading model

The core of the proposed quantum neural network (QNN)

is the VQC. Additionally, the data re-uploading technique is

employed to improve accuracy, enabling single-qubit models

to achieve neural-network-level expressiveness despite the

no-cloning limitation [13]. In our proposed VQC model as

depicted in Fig. 3, we used 6-qubit VQC with data reupload.

While conventional VQCs rely solely on fixed parameterized

gates, our model incorporates the input data at each variational

layer. Detailed VQC architecture will be discussed next.

The variational layer Li within our proposed VQC is

composed of three distinct components, as delineated below.

a) Input encoding: Classical data are encoded into quantum

states using rotation about y axes in the Bloch sphere

following Eq. 18. In Fig. 3, aqua colored quantum gates

shown for this angle encoding where yi = y1, y2, ..., yn
are the angle of RY gates. Each qubit face with angle

encoding yi that was generated from the projection layer

using Eq. 19.

b) Subsequent to angle encoding, CNOT gates are applied to

each qubit to ensure entanglement. Here, the target qubit

is iteratively designated as the qubit following the control

qubit in a circular manner.

CNOT (|ψ0⟩ → |ψ1⟩), CNOT (|ψ1⟩ → |ψ2⟩), . . . ,

CNOT (|ψn−1⟩ → |ψn⟩), CNOT (|ψn⟩ → |ψ0⟩)
(23)
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Fig. 3. Variational quantum circuit (VQC) with data re-uploading.

c) Finally the variational part of the VQC layers shown in

purple in Fig. 3. Where Rot() is expressed as follows:

Rot(θ, φ, ω) = Rz(ω)Ry(θ)Rz(φ) (24)

Each qubit |ψi⟩ at layer l has its own trainable parameters

(θl,i, φl,i, ωl,i).

After applying n variational layers, a quantum measurement is

performed, yielding a probabilistic outcome over the possible

eigenstates and converting the quantum state into its classical

representation.

D. Classifier

Upon completion of the quantum measurement process, it

yields 2n qubits distinct eigenstates. The probability distribu-

tion of these eigenstates may not correspond directly to the

established classification categories. To match the dimension-

ality of the classification labels, the measured outputs are

passed through a fully connected layer, followed by a Softmax

function (Eq. 25) to select the most probable class.

pi,c =
ezi,c

∑C
j=1 e

zi,j
, c = 1, ..., C = classes (25)

E. Loss Function

In the training loop, cross entropy loss function was utilized.

Eq. 26 applied for our model cross entropy loss for sample

(xi, yi) and batch size B.

LCE = −
1

B

B
∑

i=1

log(pi,yi
) (26)

To optimize the parameters, an Adam optimizer with a learning

rate of η = 1× e−3 was used.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of our proposed model, we

compared it with some of the cutting edge models. The

baselines are: DS2MA: a Deep Spectrum Sensing with Multi-

Antenna [5], and CNN-NOMA: CNN-based Spectrum Sensing

for NOMA) [4], CNN-SαS: CNN-based Spectrum Sensing

under Symmetric α-Stable noise) [6]. These methods serve as

robust benchmarks in the domains of spatial diversity, noise

robustness, and enhanced detection for NOMA, respectively.

To ensure fair comparison, all baseline models architecture

were kept as it is just input and classification classes are

adjusted with our simulation.

Fig. 4. Accuracy comparison of proposed model with baseline methods across
different SNR levels.

Fig. 4 shows the proposed model’s sensing accuracy com-

pared to the baseline. The accuracy of different models are

present on SNR levels ranging from -18 dB to -4 dB. The

proposed model demonstrates an accuracy of 90% or greater

at an SNR level of -13 dB, whereas the nearest competitor,

CNN-NOMA, achieves the same level of accuracy at -12 dB.

The remaining methodologies exhibit comparable accuracy

levels once the SNR exceeds -9 dB. CNN-NOMA exhibits

substantially improved performance within low to mid-SNR

ranges compared to DS2MA and CNN-SαS. However, it

remains inferior to the proposed model at very low SNR

levels. The black line plot in Fig. 4 shows clear understanding

that the proposed model outperforms all baselines in the low

SNR regime (-17 to -12 dB), where spectrum detection is the

most challenging. At high SNRs of -8 dB and above, the

performance of the proposed model converges with that of

CNN-NOMA, attaining nearly perfect accuracy.

In this study, our second experiment was a comparison

of the detection probability for PUs as a function of SNR

shown in Fig. 5. The results show that the proposed model

consistently outperforms the baselines, particularly in the low

SNR regime. CNN-NOMA performs well at mid-to-high SNR,

while DS2MA and CNN-SαS improve with higher SNR. The
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Fig. 5. Detection performance comparison across SNR levels for PU1.

proposed approach excels with near-optimal detection at very

low SNR, showcasing robustness in noisy environments.

Fig. 6. ROC curves of detection probability versus false alarm probability at
different SNR levels.

The ROC provide a comprehensive evaluation of the de-

tection performance under varying decision thresholds. Fig. 6

shows the ROC curves for six SNR levels of our model as

used in PU1, illustrating the relationship between detection

probability and false alarm probability. The proposed model

consistently demonstrates improved detection probabilities

across all levels of SNR. The curves yield a substantial area

under the curve (AUC), even at low SNR, corroborating the

model’s superior detection capabilities and robustness.

Another comparison metric could be the complexity of

the models. While maintaining an identical simulation setup,

the models implemented in DS2MA and CNN-SαS demand

a considerable number of trainable parameters, specifically

93.57 million and 37.92 million, respectively. In contrast, the

CNN-NOMA model requires 243,648 parameters, whereas the

proposed model demonstrates enhanced efficiency by requiring

only 211,634 trainable parameters.

VI. CONCLUSION

We have introduced a quantum sensing mechanism tailored

for wideband spectrum sensing. The core component of this

mechanism is a VQC that leverages data reuploading within its

variational layer. Additionally, it employs CNN head to extract

classical features. Simulations were performed to generate

uplink data using the CRN-NOMA architecture, which was

subsequently used for both training and validation of the

model. Ultimately, our approach was compared to the state-

of-the-art baselines. In terms of sensing accuracy, detection

probability, false alarm probability, and parameters relevant to

model training, the proposed model demonstrated superiority

in the general sense. Furthermore, our experiment demon-

strates that the proposed model is more effective in challenging

noise-dominated environments at low SNR, offering signifi-

cant accuracy gains over baselines.
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