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Abstract—In contemporary times, it is nearly impossible to
function without mobile devices, along with various technologies
of daily use such as smartwatches, home assistants, smart car
keys, and many more. All these types of devices use wideband
wireless services for communication. With the limited resource
of wideband spectrum, it is not possible to provide service to the
growing demands. The challenge lies in efficiently conducting the
sensing and sharing of the spectrum. Consequently, the cognitive
radio network (CRN) is experiencing increasing demand due
to its innovative mechanisms for spectrum sensing. Moreover,
non-orthogonal multiple access (NOMA) in CRN improves the
spectrum utilization in wireless communications. However, spec-
trum sensing becomes increasingly critical and intricate in the
scenario involving CRN-NOMA. Numerous initiatives have been
taken to enhance the detection of the CRN spectrum and
improve overall performance. Nevertheless, the existing literature
highlights a shortcoming in performance at low Signal-to-Noise
Ratio (SNR) levels, a concern of particular importance due to the
considerable noise inherent within the communication medium.
In this study, we utilized variational quantum circuits (VQCs)
tailored for the noisy intermediate-scale quantum (NISQ) era.
The proposed model leverages the capabilities of a convolutional
neural network (CNN) to capture standout features, VQC are
employed, with additional expressivity achieved via data re-
uploading within the variable layer, resulting in improved per-
formance metrics. Ultimately, to demonstrate the efficacy of our
model, we conducted experiments and performed comparisons
with several state-of-the-art baselines. The findings indicate that
the proposed model consistently surpasses the performance of
baseline models, especially within low SNR conditions, achieving
detection performance close to the optimal level, and showcasing
substantial robustness in environments with significant noise
interference.

Index Terms—Quantum spectrum sensing, Data reuploading,
CNN, Low-SNR sensing, CRN, NOMA

I. INTRODUCTION

Wireless systems rely on electromagnetic spectrum to carry
the signals, and without spectrum, no wireless transmission is
possible. The spectrum is finite, and only a certain frequency
range is suitable for communication. So, syncing different
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spectrum for different countries for different organizations
is very difficult and complicated. Cognitive radio networks
(CRNs) and non-orthogonal multiple access (NOMA) are both
pivotal innovations in improving spectrum utilization in wire-
less communications. CRNs enable dynamic spectrum access
by allowing secondary (unlicensed) users to opportunistically
use underutilized frequency bands when primary (licensed)
users are idle [1]. NOMA, on the other hand, improves spectral
efficiency by allowing multiple users to share the same time-
frequency resources through multiplexing in the power domain
or the code domain [2]. In a CRN-NOMA system, secondary
users can transmit simultaneously at different power levels, po-
tentially increasing network capacity and connectivity without
exclusive spectrum allocation. However, this integration also
presents significant challenges. Already in CRN various forms
of interference are inherent, including cross-tier interference
at both the primary users (PU) and secondary users (SU), and
intra-secondary interference. The overlapping signal structure
of NOMA creates interference within the cell between users
of different power levels, complicating the classic cognitive
radio (CR) task of detecting whether a channel is free. Con-
sequently, spectrum sensing, which involves the detection of
unused spectrum by CR nodes, becomes increasingly critical
and intricate in scenarios involving CRN-NOMA. Fortunately,
researchers have devised methods to address these challenges
effectively. Traditional spectrum sensing techniques, energy
detection (ED), matched filtering (MF), and cyclostationary
detection (CSD), baseline parameters to remain consistent, but
require interface-aware thresholding under NOMA [2]. Wu
et al. [3] develop an adaptive thresholding mechanism that
correlates the probability of detection (FP;) and the probability
of false alarm (P;) with user activity and power allocation,
thus enhancing throughput in IoT uplinks. Wu’s adaptive
sensing method led to a substantial improvement in system
throughput.

Furthermore, a significant limitation of conventional ED
and MF is their suboptimal performance in environments
characterized by low signal-to-noise ratios (SNR) or non-
stationary signal conditions, which are prevalent in NOMA
scenarios. Deep learning models excel at learning complex sig-
nal patterns and distinguishing overlapping signals. Recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs) have been applied to detect spectral occupancy in
NOMA waveforms [2], [4]-[7]. Kumar et al. [2] proposed the
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RNN-BiLSTM model to sense NOMA signals under fading
conditions. The model uses sequential learning to discern
subtle characteristics of the signals of the primary users, even
when these signals are intertwined with secondary transmis-
sions. The RNN-BiLSTM model achieved an almost perfect
detection probability at -5 dB, while a traditional energy
detector needed over +2 dB SNR for comparable results.
Researchers continue to advance these models by combining
neural networks with conventional detectors. Neural networks
dynamically adjust the thresholds in the energy detectors or
the output of the matched filters, showing significant improve-
ments in detection accuracy and reliability over traditional
methods [3]. The reinforcement learning (RL) variants opti-
mize the scheduling of sensing activities and the selection of
access modes to enhance long-term throughput while adhering
to interference constraints, as examined in [8].

In case of a more recent trend in networking, quantum
annealing is used in active user detection (AUD) in NOMA
by mapping AUD to an Ising Hamiltonian, showing efficient
runtimes in code-domain scenarios and potential for CRN-
NOMA decision tasks [9]. For radio resource decisions, quan-
tum inspired evolutionary algorithms (QEA) improve NOMA
user pairing versus classical heuristics, increasing the sum rate
with lightweight operators [10].

Evidence in recent works [2], [3] indicates that ML-assisted
detection unlocks the promised gains in the spectral efficiency
of CRN-NOMA. Priorities now include standardizing datasets,
benchmarks, and open-set robustness toward 6G. This study
focused on enhancing spectrum sensing methods using vari-
ational quantum circuits (VQC), where a data-reuploading
mechanism is applied for a more expressive model. Employing
this model, the CR node effectively allocates the spectrum to
SUs. A synopsis of our contributions is presented as follows:

o Initially, we introduced a simulated scenario for NOMA
signals within the framework of CRN.

o Secondly, by utilizing the data re-uploading method
within VQCs, we constructed a convolutional quantum
neural network for spectrum sensing.

« Finally, to demonstrate the efficacy of our model in spec-
trum sensing, we conducted experiments and performed
comparisons with several state-of-the-art baselines in the
domain of spectrum sensing.

II. SYSTEM MODEL

The main communication in CRN-NOMA architecture is
built on the interaction of two tiers of users and their respective
base stations. There are two types of networks. In Fig. 1(a),
the primary and secondary networks are illustrated. In the
primary network (PN), PUs communicate through licensed
spectrum with priority access to the channel. PUs are served
by the primary base station (PBS) and are protected from
harmful interference. However, secondary networks (SNs) are
the cognitive network. SUs are served by the secondary
base station (SBS), also known as the cognitive base station
(CBS). As in PBS, CBS has no specific spectrum for different
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Fig. 1. The architecture of cognitive radio networks with non-orthogonal
multiple access (CRN-NOMA) is illustrated, where purple denotes the primary
network and represents the secondary network.

secondary user groups (SUGs), it has to rely on opportunistic
spectrum sharing.

The proposed method used CRN in interwave mode.
Fig. 1(b) shows the operating paradigm in CRN with NOMA
power domain NOMA. In this architecture, SNs serve multiple
SUs with different power levels. The frame structure consists
of a sensing slot and a data transmission slot. CBS performs
spectrum sensing to detect PU activity before accessing the
spectrum. This sensing process is formulated and executed
within a statistical hypothesis testing framework:

Ho = y(t) =n(), (1)
Hy o y(t) = hs(s) + n(t) (2)

where h is the channel coefficient between PU and the
cognitive receiver that performs the sensing, n(t) models the
receiver noise and s(t) denotes the PU signal. Detection is
typically performed using energy detection, where the decision
statistic is compared against a predefined threshold. Eq. 3 is
the energy detector test statistics for /N number of samples.

1 &~
T=5 ; ol 3)

where the decision rule with threshold A is

Hi

T\ )

Ho
Therefore, A should be selected with an optimistic approach,
as otherwise a poor spectrum sensing process can lead to
erroneously concluding that the PUs are inactive. To eradicate
this issue, CRN-NOMA demands a better spectrum sensing
detection mechanism. Two other important phenomena in
CRN-NOMA, P; and P; that help to make the optimal de-
tection mechanism. P, represents the probability of correctly
identifying that the ”PU is present,” as illustrated in Eq. 6,
while Py refers to the detection circumstance where the “PU
is present,” yet the communication band remains unutilized,
as outlined in Eq. 5.

Py(A) = Q(%) 5)

Ao? — (1+v)>

(6)
21+ 29)/N

Pd(/\")/) :Q<
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A high P, setting ensures minimal interference with PUs,
while a low P; setting optimizes SU utilization to achieve
maximum throughput. Our experiment involves plotting a re-
ceiver operating characteristic (ROC) curve for PUs to evaluate
the effectiveness of the chosen method A in various SNRs.
Hence, the ROC curves demonstrate the balance between Py
and Py, providing an assessment of the performance of our
model. The primary objective of the proposed CRN-NOMA
system is to achieve precise spectrum detection, thereby im-
proving the overall efficiency of spectrum utilization.

III. SIMULATION OF UPLINK NOMA DATASET
GENERATION

This section describes the simulation procedure used to
generate the uplink dataset for spectrum sensing in a NOMA
environment. The proposed feature-based spectrum sensing
method encompasses both downlink and uplink transmis-
sions. However, for the purposes of evaluating the proposed
method in this study, we focus solely on uplink transmission.
Consequently, a dataset was generated specifically for our
experimental analysis. MATLAB [11] is utilized to simulate
and construct the synthetic NOMA uplink dataset. The detailed
procedure for data generation is elucidated as follows.

We consider () PUs transmitting simultaneously using
NOMA and M SUs acting as sensors. During /N time samples
in each sensing interval, the received signal is collected. The
dataset contains K such intervals.

The activity state of PUs at time k is represented as a binary
vector:

ok) — [Q(k)

k )
W 0SNT, e e {01} %
A. Transmitted Signals
Each PU ¢ transmits symbols with power allocation €2,
where > 4 $%¢ = 1. The baseband signal is modeled as
Sq[n] ~CN(0,9,), n=1,...,N. (8)
B. Channel and Noise Model

In the examined uplink NOMA scenario, the communication
channel connecting each PU to each SU is presumed to adhere
to a flat Rayleigh fading model. The specific flat Rayleigh
fading channel bridging PU ¢ and SU m is represented by

Hym ~CN(0,1) ©))
Collecting all links, the channel matrix can be expressed as:
H e C¥*M (10)

At each SU, the received signal is affected by additive
white Gaussian noise (AWGN) [12], which serves as a model
for thermal noise as well as other independent background
interference sources. The noise sample at the m-th SU and
time instance n is represented as:

Wy [n] ~ CN(0,02) (11)
2

where o, is the variance of the noise. In the simulation
presented, it is assumed that all SUs experience unit variance
noise (02, = 1) for simplicity and normalization.

C. Received Signal

Stacking IV samples, the signal matrix received for the k-th
snapshot is

Y® = /aSdiag(6)H + W, (12)

here S € CV*Q represents the PU symbol matrix, diag(8*))
encodes PU activity pattern, H denotes the channel gain, and
W € CN*M corresponds to additive noise.

D. Signal-to-Noise Ratio (SNR)

The SNR is defined as the ratio of average received signal
power, Ps to average noise power, P,:
E[P,
E[P,]

Since P; and P,, vary randomly, a scaling factor « is applied
to normalize the received signal to the desired target SNR =
10SNRas /10 which is

SNR o P
=——, SNR=
“~ PP, P,
This guarantees that the effective SNR, after the scaling
process, aligns precisely with the predetermined value.

SNR =

(13)

(14)

E. Labels

Every predictive unit activity vector, as referenced in 0",
is correspondingly assigned an integer label:

Q
k _
el(ab)el = Z ot(zk)Qq L
q=1

For @ = 2, the classes are {00,01,10,11} — {0,1,2,3}.

15)

The ultimate dataset comprises correlation metrics CC €
REX2XMXM a9 features and PU activity states 6 €
{0,...,29 — 1}K as labels. Consequently, the dataset encap-
sulates the spatio-temporal statistics of received signals amidst
fluctuating PU activity patterns, channel realizations, and noise
conditions.

IV. PROPOSED MODEL

In this study, we used hybrid quantum convolutional neural
networks (HQCNN) to identify active users within CRNs.
The received signals are transformed into a two-dimensional
covariance matrix, which serves as an analogous image in-
put for our HQCNN model to detect spectrum holes in
the network. Our model architecture leverages the VQC for
training the model as shown in Fig. 2. Our data generated
from the simulation as explained in Section III go through
CNN backbone layers that extract classical features. Then
the classical features are processed for a quantum circuit.
After processing, the main quantum training is performed
which here in Fig. 2 is mentioned as VQC consisting of
multiple variational layers. Each variational layer consists of
angle embedding and entanglement with the input data re-
uploading technique. Finally VQC measurements results in the
generation of classical values corresponding to quantum states.
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Input Signal CNN Backbone Projection vQC Classifier  Loss
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Fig. 2. Model architecture showing classical and quantum processing components.

These classical values are subsequently processed through a
classical classifier, after which a loss function is applied to
facilitate the training of the parameters. All components of
the proposed model will be discussed in the following.

TABLE I
CNN LAYER SHAPES AND PARAMETER COUNTS.

Layer Output shape # Params
Conv2d (2—12,5x%5) + Tanh 12 x 28 x 28 612
MaxPool2d (2x2) 12 x 14 x 14 0
Conv2d (12— 32,5x5) + Tanh 32 x 14 x 14 9,632
MaxPool2d (2x2) 32X 7xT7 0
Flatten 1,568 0
Linear (1,568 — 120) + Tanh 120 188,280
Linear (120 — 84) + Tanh 84 10,164
Linear (84 — 32) + Softmax 32 2,720
Total 211,408

A. CNN Backbone

Due to the high dimensionality and inherent noise of the raw
input signals, a CNN backbone is employed to extract mean-
ingful and robust representations prior to quantum processing.
The architecture of this network is summarized in Table I.

The CNN consists of two convolutional layers with Tanh
activations, each followed by max pooling, after which the
output is flattened into a 1,568-dimensional vector. This vector
is passed through three fully connected layers (1,568 —
120 — 84 — 32), where the first two employ Tanh and
the final layer applies Softmax. The resulting 32-dimensional
vector serves as the final feature embedding, defined

zeRY d= feature_dim = 32 (16)

This embedding is then forwarded into the subsequent
quantum stage.

B. Classical-Quantum Projection

In quantum computing, a qubit state lives in Bloch sphere
as in Eq. 17

0 ; 0
[) = cos(5)10) + e'?sin(5) 1) (17)

In our proposed model we used VQC, that employ rotations
around the axes of the Bloch sphere on each qubit. RY angle
embedding is used in our proposal, which is single-qubit
rotation gate around y-axes:
[ )
cosy sing
RE) = | Bx )

— S1n 5 [¢{0)] 5

(18)

In Eq. 18, the input 6 to the quantum circuit must be a real
parameter. Thus, we present this projection layer delineated
in Eq. 19, which is designed to be learnable. It optimally
compresses the feature space R? to the quantum encoding
space R".

s=Wz+1D (19)

Where CNN produces input z € R4, W € R"*? is the weight
matrix, b € R™ is the bias, and n = the number of qubits.
Thus far, the progression can be delineated as follows:

input CNN, e RY (20)
Projection s c R™ (21)
angle=s; ‘0>®n RY (si) WJ> (22)

C. VQC with data re-uploading model

The core of the proposed quantum neural network (QNN)
is the VQC. Additionally, the data re-uploading technique is
employed to improve accuracy, enabling single-qubit models
to achieve neural-network-level expressiveness despite the
no-cloning limitation [13]. In our proposed VQC model as
depicted in Fig. 3, we used 6-qubit VQC with data reupload.
While conventional VQCs rely solely on fixed parameterized
gates, our model incorporates the input data at each variational
layer. Detailed VQC architecture will be discussed next.

The variational layer L; within our proposed VQC is
composed of three distinct components, as delineated below.

a) Input encoding: Classical data are encoded into quantum
states using rotation about y axes in the Bloch sphere
following Eq. 18. In Fig. 3, aqua colored quantum gates
shown for this angle encoding where y; = y1,¥Y2, ..., Yn
are the angle of RY gates. Each qubit face with angle
encoding y; that was generated from the projection layer
using Eq. 19.

b) Subsequent to angle encoding, CNOT gates are applied to
each qubit to ensure entanglement. Here, the target qubit
is iteratively designated as the qubit following the control
qubit in a circular manner.

CNOT([to) = 1)), CNOT([¢h1) = [th2)), .- -,

CNOT([¢n-1) = |¢n)); CNOT(|thn) — [0))
(23)
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Fig. 3. Variational quantum circuit (VQC) with data re-uploading.

c) Finally the variational part of the VQC layers shown in
purple in Fig. 3. Where Rot() is expressed as follows:

Rot(0, ¢,w) = R.(w)Ry(0)R.(¢) (24)

Each qubit |¢);) at layer [ has its own trainable parameters
(Ori, D, wi i)
After applying n variational layers, a quantum measurement is
performed, yielding a probabilistic outcome over the possible
eigenstates and converting the quantum state into its classical
representation.

D. Classifier

Upon completion of the quantum measurement process, it
yields 27-9ubits distinct eigenstates. The probability distribu-
tion of these eigenstates may not correspond directly to the
established classification categories. To match the dimension-
ality of the classification labels, the measured outputs are
passed through a fully connected layer, followed by a Softmax
function (Eq. 25) to select the most probable class.

ezi,c

Pie=—g —— C= 1,...,C = classes (25)

.
g =1 e~i.j
E. Loss Function

In the training loop, cross entropy loss function was utilized.
Eq. 26 applied for our model cross entropy loss for sample
(24,y;) and batch size B.

B
1
Lop = ] glog(m,yi)

(26)

To optimize the parameters, an Adam optimizer with a learning
rate of 7 = 1 x =3 was used.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of our proposed model, we
compared it with some of the cutting edge models. The
baselines are: DS2MA: a Deep Spectrum Sensing with Multi-
Antenna [5], and CNN-NOMA: CNN-based Spectrum Sensing
for NOMA) [4], CNN-SaS: CNN-based Spectrum Sensing
under Symmetric «-Stable noise) [6]. These methods serve as
robust benchmarks in the domains of spatial diversity, noise
robustness, and enhanced detection for NOMA, respectively.
To ensure fair comparison, all baseline models architecture

were kept as it is just input and classification classes are
adjusted with our simulation.

1.
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Fig. 4. Accuracy comparison of proposed model with baseline methods across
different SNR levels.

Fig. 4 shows the proposed model’s sensing accuracy com-
pared to the baseline. The accuracy of different models are
present on SNR levels ranging from -18 dB to -4 dB. The
proposed model demonstrates an accuracy of 90% or greater
at an SNR level of -13 dB, whereas the nearest competitor,
CNN-NOMA, achieves the same level of accuracy at -12 dB.
The remaining methodologies exhibit comparable accuracy
levels once the SNR exceeds -9 dB. CNN-NOMA exhibits
substantially improved performance within low to mid-SNR
ranges compared to DS2MA and CNN-SaS. However, it
remains inferior to the proposed model at very low SNR
levels. The black line plot in Fig. 4 shows clear understanding
that the proposed model outperforms all baselines in the low
SNR regime (-17 to -12 dB), where spectrum detection is the
most challenging. At high SNRs of -8 dB and above, the
performance of the proposed model converges with that of
CNN-NOMA, attaining nearly perfect accuracy.

In this study, our second experiment was a comparison
of the detection probability for PUs as a function of SNR
shown in Fig. 5. The results show that the proposed model
consistently outperforms the baselines, particularly in the low
SNR regime. CNN-NOMA performs well at mid-to-high SNR,
while DS2MA and CNN-SaS improve with higher SNR. The
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Fig. 5. Detection performance comparison across SNR levels for PUj.

proposed approach excels with near-optimal detection at very
low SNR, showcasing robustness in noisy environments.
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Fig. 6. ROC curves of detection probability versus false alarm probability at
different SNR levels.

The ROC provide a comprehensive evaluation of the de-
tection performance under varying decision thresholds. Fig. 6
shows the ROC curves for six SNR levels of our model as
used in PUj, illustrating the relationship between detection
probability and false alarm probability. The proposed model
consistently demonstrates improved detection probabilities
across all levels of SNR. The curves yield a substantial area
under the curve (AUC), even at low SNR, corroborating the
model’s superior detection capabilities and robustness.

Another comparison metric could be the complexity of
the models. While maintaining an identical simulation setup,
the models implemented in DS2MA and CNN-SaS demand
a considerable number of trainable parameters, specifically
93.57 million and 37.92 million, respectively. In contrast, the
CNN-NOMA model requires 243,648 parameters, whereas the
proposed model demonstrates enhanced efficiency by requiring
only 211,634 trainable parameters.

VI. CONCLUSION

We have introduced a quantum sensing mechanism tailored
for wideband spectrum sensing. The core component of this
mechanism is a VQC that leverages data reuploading within its
variational layer. Additionally, it employs CNN head to extract
classical features. Simulations were performed to generate
uplink data using the CRN-NOMA architecture, which was
subsequently used for both training and validation of the
model. Ultimately, our approach was compared to the state-
of-the-art baselines. In terms of sensing accuracy, detection
probability, false alarm probability, and parameters relevant to
model training, the proposed model demonstrated superiority
in the general sense. Furthermore, our experiment demon-
strates that the proposed model is more effective in challenging
noise-dominated environments at low SNR, offering signifi-
cant accuracy gains over baselines.
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