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Abstract—Generalized Category Discovery is one of the most
practical image classification tasks. It utilizes both labeled and
unlabeled data for training, classifying both known and unknown
data. However, previous research did not assume that the total
number of classes within the dataset is unknown, despite this
setting. This led to a contradiction: while unknown data is in-
cluded, the number of classes must be known. To resolve this, we
previously proposed a self-organizing classifier using prototype
merging, achieving high accuracy even under conditions where
the number of classes is unknown. Nevertheless, this approach
suffered from reduced accuracy for known class samples. This
paper proposes an improved method that utilizes a novel metric,
prototype responsibility, in the merging computation. The result
confirms improved accuracy for known classes compared to
existing methods. We also discuss remaining challenges for this
research.

Index Terms—Image Recognition, Image Classification, Self-
Supervised Learning, Driver-Assistance, Road Damage Detec-
tion, Self-Organizing Classifier

I. INTRODUCTION

The growing demand for intelligent perception in au-
tonomous driving and infrastructure management has accel-
erated advancements in computer vision. Deep learning, in
particular, has enabled models to achieve near human-level
accuracy in visual classification and recognition tasks. These
achievements have facilitated real-world applications such
as road condition monitoring and advanced driver-assistance
systems. However, most of these successes rely heavily on
supervised learning, which requires extensive amounts of
annotated data. The high cost of data labeling limits the
scalability of such approaches, while models trained in closed-
set conditions struggle to recognize previously unseen cate-
gories, reducing their robustness in dynamic environments. To
improve the efficiency of infrastructure maintenance, recent
technologies have integrated on-board cameras and LiDAR
sensors with 3D digital maps to update spatial information
in real time. Mobile Mapping Systems (MMS) can capture
accurate 3D data but are costly and impractical for frequent
deployment. A more efficient strategy is to exploit pre-
acquired point clouds and camera imagery using automatic
classification techniques. Nevertheless, purely supervised ap-
proaches cannot adapt to the diversity of unlabeled data or
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the continuous emergence of new visual patterns typically
encountered in real-world road scenes. These challenges
have motivated the development of semi-supervised learning,
which leverages both labeled and unlabeled data for training.
Among such frameworks, Generalized Category Discovery
(GCD) [1] has emerged as a promising task setting that simul-
taneously classifies known and unknown categories within a
dataset. GCD assumes partial label availability and aims to
discover novel classes while preserving recognition accuracy
for known ones. Vaze et al. [1] first established a strong
baseline by combining DINO-pretrained Vision Transformers
[2] with feature-space clustering, while Wen et al. later
proposed SimGCD [3], a parametric classification model
incorporating contrastive learning and entropy regularization,
achieving state-of-the-art performance with reduced compu-
tational complexity. Despite these advances, most existing
GCD methods rely on the unrealistic assumption that the
total number of categories is known in advance. Estimating
this number often requires multiple clustering or retraining
stages, which greatly increases computational overhead. Con-
sequently, developing a model that can dynamically adapt to
an unknown number of categories remains an open challenge.
To address this issue, we proposed a self-organizing classifier
in our previous work [4]. Our prior model automatically
merges classifier prototypes during training. By optimizing
the classifier’s output dimension based on inter-prototype
similarity, the proposed model maintains high classification
accuracy without prior knowledge of the true number of
categories. Experiments on benchmark datasets demonstrate
that our method not only improves recognition of unknown
categories but also enhances overall stability and efficiency
compared with existing GCD approaches.

II. RELATED WORKS
A. Generalized Category Discovery

Generalized Category Discovery(GCD) is one of the semi-
supervised learning tasks proposed by S. Vaze et al. [1]. Its
key feature is the use of datasets containing both labeled
and unlabeled images. Furthermore, the unlabeled images
include not only those belonging to the same class as the
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labeled samples but also those belonging to unknown classes.
The goal is to classify all these samples. They employed a
Vision Transformer pre-trained by DINO [2], fine-tuned via
contrastive learning [5], as the backbone. Pre-training with
DINO has been shown to help form distinct clusters in the
feature space [2]. Applying clustering in this feature space
prevents overfitting to labeled known samples while achieving
high accuracy on unseen samples. S. Vaze et al. demonstrated
a heuristic method is effective for deciding an optimal number
of classes: they run clustering multiple times and adopted
the number of classes that maximize the accuracy on labeled
data [1]. However, performing clustering iterations repeatedly
remains computationally challenging.

B. SimnGCD

S. Vaze et al. avoided parametric classification, citing its
tendency to overfit to known samples [1]. However, X. Wen
et al. proposed SimGCD [3], a model employing parametric
classification precisely because of its computational advan-
tages over clustering. Their method also utilizes a backbone
pre-trained by DINO and combines training with frameworks
such as contrastive learning [3] and self-distillation. Further-
more, to mitigate prediction bias, they introduced a mean
entropy term to the loss function. This term encourages the
model to provide uniform predictions across all categories. As
a result, despite not using clustering, they achieved accuracy
comparable to S. Vaze et al.’s method. However, SimGCD
shares a common limitation as other GCD method:the re-
quirement of the true number of classes as prior knowledge.

III. ProPoSED METHOD

Our proposed model is based on SimGCD, applying its core
techniques: backbone representation learning, self-distillation
using data augmentation, and maximizing average entropy.
The core of our contribution is the self-organizing classifier
algorithm. Figure 1 illustrates the model structure and learn-
ing flow. Our model consists of a backbone that converts im-
ages into feature representations and a classifier that converts
these feature representations into class-specific probabilities.
During training, an MLP that reduces the dimensionality of
the feature representations is inserted after the backbone and
used for representation learning.
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Fig. 1. Model structure of the proposed method
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A. Representation Learning

Our method employs contrastive loss for representation
learning, similar to SimGCD. We compute self-supervised
contrastive loss for all samples and additionally apply su-
pervised contrastive loss for labeled samples. Equation (1)
denotes self-supervised contrastive loss, and Equation (2)
denotes supervised contrastive loss.
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Here, z is the vector obtained by inputting the backbone
feature representation into an MLP, and 7, and 7, are temper-
ature parameters. Furthermore, B denotes the set of samples
within a batch, and B; denotes the subset of labeled samples
within B. The former generates two distinct views z and 2z’
from the same image and trains the model to make their
feature representations similar. The latter utilizes labeled data
and forces the model to obtain similar feature representations
for data belonging to the same class.

Lrep = (1

B. Parametric Classification
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The learning of parametric classification also follows the
SimGCD approach, taking the form of self-distillation. For
one of the two views, the logit generated from that view is
used as a pseudo-label for training. Furthermore, for labeled
samples, conventional supervised learning is also employed.
Equation (4) shows the logit calculation formula for self-
distillation.
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Here, h is the hidden feature output by the backbone, and
c € C represent the prototype vector and the set of the
prototypes. Additionally, 75 is the temperature parameter.
Similarly, two logits p; and g; are generated from the two
views derived from the same image. Since g; is used as a
soft pseudo-label for self-distillation, a smaller temperature
parameter value than p; is employed to encourage sharper
predictions from the model. Furthermore, the temperature
parameter is set smaller as learning progresses, starting from
the early stages where the feature space is unstable and
pseudo-label reliability is low. This ensures self-distillation
yields more accurate predictions. Classification learning is
performed using these logits via the standard cross-entropy
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For annotated data, common supervised learning is also
performed using the one-hot labels y;, not just the pseudo
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labels. Additionally, to mitigate model prediction bias, an
average entropy term is introduced, encouraging the model
to make uniform predictions even for unknown classes. Its
form is shown in Equation (6). S. Vaze et al. demonstrated
this loss enhances robustness against the number of unknown
classes.

H(p) = - ), pWlogp” ©)

k

The final classification objective function is expressed as
follows.

Loty = (1- )L
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C. Output Dimension Optimization

The core contribution of our proposed method is achieved
by this algorithm. The self-organizing classifier can become
a robust model for unknown classes by merging the proto-
types it holds based on their mutual similarity. When the
classes contained within a dataset are unknown, we set an
initial number of prototypes to be relatively large. We then
optimize the model structure by performing a process that
merges overly similar prototypes, which are a factor reducing
accuracy. Our previous method [4] performed a merging
process on pairs of prototypes whose similarity exceeded a
threshold, combining them into their average vector. However,
this approach risked merging prototype vectors of distinct
known classes. Furthermore, it did not consider the rela-
tive influence each prototype has on predictions, potentially
leading to inappropriate modifications of prototype vectors
during merging. To address these limitations, we propose
an enhanced algorithm that resolves these issues and im-
proves accuracy. Our previous method [4] risked merging
vectors representing known classes with each other or with
other vectors. This could cause the classification capabilities
acquired through supervised learning to be lost, potentially
reducing accuracy. To prevent this, we imposed restrictions
on the merging of prototypes representing known classes
based on label information. Specifically, pairs of known
classes are excluded from merging. When merging with
prototypes outside known classes, the prototype not belonging
to a known class is unilaterally invalidated. Furthermore, for
merging unknown prototypes, a metric called responsibility
is introduced, representing how many samples belong to each
prototype. Responsibility 7 is calculated as follows:
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The definition of responsibility follows a probabilistic
interpretation similar to the E-step in the Expectation-
Maximization (EM) algorithm. Summing over all samples
yields a measure of prototype occupancy, which naturally
reflects its representational strength within the feature space.
Although our formulation does not perform a full EM op-
timization, it adopts this probabilistic intuition to stabilize
prototype merging without additional iterations. To prevent
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numerical instability caused by scale differences among pro-
totypes, the responsibility values are normalized within each
merging operation as

ﬁ(k) _ 77(k)
Zjeca 77(j)

where C, denotes the set of prototypes under consideration.
This normalization ensures consistent scaling of merging
weights and prevents dominant prototypes from biasing the
update. During merging, a new vector is calculated based on
this using the following formula:
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This calculation ensures that prototypes with many sam-
ples—those possessing numerous feature vectors in their
vicinity—are given greater weight during merging. This algo-
rithm aims to improve accuracy while reducing computational
load.

IV. EXPERIMENT
A. Experimental Setup

We conducted experiments on two datasets, CIFAR-10 and
the Road Damage Dataset (RDD), to verify the effectiveness
of the proposed method. CIFAR-10 is commonly used for
performance evaluation in GCD. The Road Damage Dataset
is primarily used for road damage detection tasks and consists
of images depicting road cracks and manholes. This study
conducted experiments on this dataset with the application
of GCD in mind for fields such as optimizing infrastructure
maintenance for roads and supporting safe driving. Details
of the datasets are shown in Table I. For the experiments,
the backbone used was RepViT [6] trained on ImageNet-1K
[7]. Hyperparameters were set primarily following SimGCD.
Training was conducted for 200 epochs with a batch size
of 128. The learning rate decayed from 0.1 to O following
a cosine annealing function. The pseudo-label temperature
7y was linearly adjusted from 0.07 to 0.04 over 30 epochs.
The parameter A, determining the ratio of supervised to
self-supervised learning loss, was set to 0.35. For the self-
organizing classifier merging algorithm, the merging start
epoch was set to 120, after sufficient learning progress. Proto-
type pairs with cosine similarity values exceeding 0.15 were

TABLE I
DETAILS OF THE DATASETS
Dataset Labelled Unlabelled
Images Classes Images Classes
CIFAR-10  12.5K 5 37.5K 10
RDD 21.3K 5 13.5K 7




targeted for merging. The merging threshold for cosine simi-
larity was empirically set to 0.15. This value corresponds ap-
proximately to the inflection point of the similarity histogram
(Fig. 2), where the inter-class and intra-class similarities begin
to separate. Using this threshold provided stable merging
behavior across multiple preliminary trials. Regarding the
initial value for the output dimension, it was empirically set
to 100 under the assumption that the dataset contents are
completely unknown. This value provides sufficient capacity
for the classifier to self-organize and has been validated as
a stable initialization in preliminary experiments. However,
the method itself does not depend on this particular number;
the output dimension can be adjusted according to dataset
complexity.

B. Evaluation

Model evaluation is primarily based on accuracy. As well
as GCD and SimGCD, the Hungarian algorithm [8] solves
the linear assignment problem between predicted labels and
ground truth labels to calculate the accuracy. The accuracy is
calculated by Equation 11.
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Additionally, to ensure reliable evaluation, we also calculated
the F1 score, precision, and recall.

V. REsuLTs

The results of experiments for each dataset using this
method are shown in Table II. To compare the effectiveness of
the methods, Table II also shows the accuracy for SimGCD,
our prior work [4]. Each represents scores: All for the entire
dataset, Old for known samples, and New for unknown
samples. Furthermore, the F1 score and mean precision are
shown in Table III and Table IV. These results demonstrate
that our proposed self-organizing classifier achieves higher
accuracy than SimGCD when the number of classes in
the dataset is unknown. Furthermore, Table II shows our
method’s significant improvement in accuracy compared to
before introducing responsibilities and the deactivation of
prototype merging for known classes in CIFAR-10. However,
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Fig. 2. Similarity histogram after learning
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the accuracy of our novel method is lower than our prior
method on RDD. Furthermore, comparing the F1 score and
precision reveals that our proposed method yields lower
values for unknown classes in Table III and Table IV. On
the other hand, the high accuracy in Table II suggests that
misclassifying known samples as unknown ones, or misclas-
sifications between unknown classes, are having an impact.
In other words, our method exhibits a greater tendency to
predict unknown samples. Figure 3 shows the loss curve
during training of the proposed method. Although occasional
sharp increases occur even before prototype integration, the
curve is generally decreasing.

TABLE II
ACCURACY ON THE DATASETS

CIFAR-10 RDD
All Old New All Old New
Proposed Method ~ 82.16  87.20 77.12 8420 86.88  74.90
Prior Method 7499 75.00 7498 85.68 88.02 77.55
SimGCD 73.04 7622 69.86 78.59 79.19 76.50
TABLE III
F1 SCORE ON THE DATASETS
CIFAR-10 RDD
All Old New All Old New
Proposed Method ~ 79.09 91.75 6643 8143 88.52 63.71
Prior Method 74.08 8275 6540 83.09 8894 68.47
SimGCD 78.95 8459 7331 78.84 83.11 68.14
TABLE IV
MEAN PRECISION ON THE DATASETS
CIFAR-10 RDD
All Old New All Old New
Proposed Method ~ 78.72 9743  60.01 83.57 9272  60.71
Prior Method 77.82 9583 59.80 84.08 91.72 65.01
SimGCD 91.17 9849 83.84 8442 92.04 6536
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Fig. 3. Loss curve during training



VI. DiscussioN
A. Comparison with Conventional Methods

The proposed method achieved higher accuracy compared
to existing methods on CIFAR-10. This is attributed to incor-
porating responsibility considerations into prototype merging
and minimizing changes to prototypes of known classes.
Experimental results demonstrate a significant improvement
in accuracy for known classes. In particular, the restriction
on merging prototypes within known classes appears to have
been highly effective. This likely stems from the beneficial
merging of prototypes distributed around the clusters of
known classes, which would otherwise cause excessive frag-
mentation of the feature space. However, the new method did
not improve accuracy compared with our previous approach
for RDD. The different progress of prototype merging could
cause it. Figure 4 shows the change in the number of proto-
types in RDD for the three methods tested in this experiment.
Even under identical conditions, our self-organizing classifier
can produce varying learning results. This is likely because
similarity is the only criterion used for merging. Intuitively,
we hypothesize that overly similar prototype pairs may incor-
rectly split classes, thereby reducing accuracy. However, pairs
with a significant impact accuracy are not necessarily more
similar than the threshold. This mismatch is thought to cause
the instability of the results.We plan to review the integration
criteria to achieve more stable results in the future.

B. Limitations and Future Directions

Our proposed method achieved significant improvements
in accuracy. However, at present, a detailed analysis of its
algorithm has not been performed. In this study, the merging
threshold was selected empirically based on the similarity
distribution. However, the sensitivity of this hyperparameter
has not yet been systematically analyzed. Future work will
include a detailed investigation of the threshold’s influence
on model stability and class discovery accuracy, potentially
leading to an adaptive thresholding strategy guided by sim-
ilarity statistics. Through these efforts, we will deepen our
understanding of merging criteria, build models adaptable
to a wide range of benchmarks, and conduct more detailed
analyses of their performance.

Another limitation is that the responsibility-based merging
was heuristically defined. Although inspired by probabilistic
clustering, the current formulation does not guarantee con-
vergence to an optimal partition. Future research will explore
a fully probabilistic framework, for example, by integrating
an EM-like expectation step or Bayesian prototype updating
scheme, to provide theoretical convergence guarantees.

VII. CoNCLUSION

This paper proposes an improved method for self-
organizing classifiers for GCD and verifies its performance
under conditions where the number of classes is unknown.
The results achieved an overall improvement in accuracy.
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Fig. 4. The change of output dimension

Notably, significant improvement was observed for known
classes, suggesting that the merging constraints for known
classes and the introduction of responsibility scores were
effective. In future research, we plan to explore adaptive
determination of the merging threshold to further enhance
the robustness of the self-organizing process across different
datasets.
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