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Abstract—The requirement for classifying terrain images is
increasing with a fast pace due to various important applications
such as agriculture, urban planning, and environmental moni-
toring. Therefore, a variety of pre-trained classification models
such as VGG, ResNet, MobileNet, and also Swin-Transformer
V2, have been adopted to enhance the accuracy for classifying
the satellite images. However, these improvements often come
at the cost of increased computational resources, which can be
infeasible for edge devices with limited re-training capabilities.
In this paper, we integrate the variational quantum circuits into
the deep learning model for image classification, which offers
superior classification performance with a reduced number of
retraining parameters. By utilizing the parameter shift rule, we
can compute the gradients of the variational quantum circuit’s
parameters without relying on traditional backpropagation meth-
ods. This characteristic enhances the retraining capabilities of
our proposed approach when implemented on edge quantum
computers. Despite the limitations posed by Noisy Intermediate-
Scale Quantum (NISQ) technology, which restricts the number
of qubits available for experimentation, our method effectively
combines the advantages of a frozen pretrained SwinV2 encoder
with the training efficiency of variational quantum circuits.
Therefore, our approach enables us to harness the high accuracy
associated with cutting-edge classical deep learning models while
simultaneously benefiting from the reduced training parameters
characteristic of quantum circuits. Our proposed methodology
demonstrates competitive performance, achieving accuracy levels
comparable to state-of-the-art classical models on the EuroSAT
dataset. Notably, this is accomplished with a significantly lower
number of training parameters, highlighting the potential of
integrating quantum computing techniques into the domain of
image classification.

Index Terms—Satellite image classification, Quantum machine
learning, Variational Quantum Circuit.
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I. INTRODUCTION

Ground images captured by satellites are essential for a
wide array of applications across numerous fields, including
agriculture, urban planning, disaster management, and environ-
mental monitoring. These images provide valuable insight that
enhances our understanding of land use, vegetation cover, and
urban development, making them invaluable for researchers,
policymakers, and businesses alike. The ability to analyze and
interpret these satellite images enables stakeholders to make
informed decisions based on accurate and timely informa-
tion. One of the most significant advancements in leverag-
ing satellite imagery is terrain satellite image classification,
which involves categorizing various land types based on their
visual characteristics. This classification process is crucial for
applications such as crop monitoring, forest management, and
urban expansion analysis, facilitating evidence-based decision-
making that can have far-reaching social, economic, and
environmental implications [1].

The rapid advancements in deep learning technologies have
transformed the landscape of satellite image classification.
Convolutional Neural Networks (CNNs) [2] have emerged as
powerful tools for this task, with notable architectures such
as VGG [3], ResNet [4], MobileNetV2 [5], and transformer-
based models like Swin Transformer leading the way [6].
VGG, recognized for its straightforward architecture, employs
a series of convolutional layers with small filters, effectively
capturing hierarchical features in images. ResNet introduced
the innovative concept of residual learning, which enables
the training of much deeper networks without encountering
issues related to vanishing gradients. This depth allows ResNet
to model complex patterns in satellite imagery effectively.
MobileNetV2, designed specifically for mobile and edge ap-
plications, incorporates depthwise separable convolutions that
drastically reduce model size while preserving performance.
In contrast, the Swin Transformer utilizes self-attention mech-
anisms, enabling it to capture complex visual patterns and
abstract information of context within images efficiently. The
unstructured data pattern representation ability of classical
deep learning models is also contributed to by multi-modal
LLM advancements [7], [8]. These abstract features are as
informative as the original data, even being able to be used
as an alternative in data communication [9]. Despite these
advancements, a significant trade-off exists between improved
accuracy and the computational resources required for train-
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ing and deploying these models [10]. But the deployment
of sophisticated models on edge devices often necessitates
substantial processing power, which can limit their practicality
in real-world applications where resources are constrained.

As the field of artificial intelligence continues to evolve, the
realm of quantum computing has also begun to make notable
strides, particularly with the rise of Noisy Intermediate-Scale
Quantum (NISQ) technology [11]. Within this context, Vari-
ational Quantum Circuits (VQCs) have gained attention as a
promising approach for various applications, including image
classification [12]. VQCs possess the potential to achieve
competitive classification performance while utilizing fewer
parameters compared to traditional deep learning models. This
efficiency is particularly beneficial in scenarios with limited
computational resources, as VQCs can operate effectively on
quantum hardware, which may not have the capacity to support
large classical models [13].

Gradient-based optimization techniques play a crucial role
in the training of VQCs. Among these techniques, finite
difference methods and the parameter shift rule are particularly
noteworthy [12]. The finite difference method approximates
the gradient of a function by evaluating it at slightly perturbed
values of the parameters, providing a straightforward means
of estimating gradients. On the other hand, the parameter shift
rule allows for the computation of gradients directly from the
output of the quantum circuit without the need for traditional
backpropagation methods. This characteristic is particularly
advantageous for VQCs, as it enables the efficient optimization
of parameters in environments where conventional optimiza-
tion techniques may be less effective or impractical.

One of the standout features of VQCs is their ability to
maintain classification accuracy with a reduced number of
training parameters. This capability is significant for appli-
cations where computational resources are limited, such as
on edge devices, which are often constrained by power and
processing capabilities. By leveraging the inherent efficiency
of quantum circuits, researchers can achieve high levels of
classification performance while minimizing the computa-
tional burden associated with retraining. This dual advantage
creates exciting opportunities for deploying advanced image
classification methods in real-world scenarios, ensuring that
even in resource-limited settings, high-quality analysis remains
achievable.

Despite the promising potential of quantum computing,
current quantum simulations face significant limitations that
restrict the number of qubits available for experiments and in-
fluence circuit selection. The Noisy Intermediate-Scale Quan-
tum (NISQ) systems are characterized by their limited qubit
counts, typically ranging from a few dozen to a few hundred
qubits [14]. This constraint can hinder the complexity of the
quantum circuits that can be implemented, as many algorithms
and applications require a larger number of qubits to fully
realize their potential. Additionally, qubit coherence times and
gate fidelity in NISQ devices are often suboptimal, leading
to increased noise and errors during computation. These
challenges necessitate careful circuit design and selection, as
researchers must create models that can operate effectively
within these limitations. The ability to scale up quantum

circuits and improve error rates is crucial for unlocking
the full capabilities of quantum computing, particularly for
applications in image classification and other complex tasks.

Looking to the future, the trend of equipping satellites
with quantum computing capabilities presents enormous po-
tential for advancing satellite image classification. As quantum
technology continues to develop, the prospect of leveraging
quantum computing resources within satellite applications
could revolutionize how we process and analyze the vast
amounts of data captured by modern satellites. The integration
of quantum computing into remote sensing technology may
lead to enhanced processing speeds and improved accuracy,
making it possible to derive more meaningful insights from
satellite data that can inform a wide range of applications,
from disaster response to climate change monitoring [15]. In
summary, our main contributions are as follows:

• We propose a hybrid method that maintains competitive
performance while reducing retraining resource require-
ments. This approach combines classical and quantum
techniques, allowing us to achieve high accuracy without
the mentioned tradeoff.

• Our approach effectively leverages quantum computing
resources in the NISQ era. We optimize our method-
ology to utilize the limited qubit resources of Noisy
Intermediate-Scale Quantum devices. By designing quan-
tum circuits that maintain performance in the presence of
constraints, we capitalize on the advantages of quantum
computing without relying on fault-tolerant architectures.

• We conduct a wide range of experiments to analyze
the classification capabilities of Variational Quantum
Circuits. By incorporating a diverse range of classical
baseline models in our evaluations, we provide a com-
prehensive comparison that underscores the strengths of
the hybrid variational Quantum Circuits.

II. METHODOLOGY
A. Background

Our proposed classification model adopts a hybrid quantum-
classical architecture, which is built upon the mathematical
principles of quantum mechanics. Specifically, the core of
the classifier is a VQC, which requires an understanding
of basic quantum information theory and parameterized gate
operations.

1) Qubit Notation and State Representation: Qubit is the
fundamental component of quantum information. In contrast
to classical bit, which exists in a definite state of 0 or 1, a
qubit can exist in a superposition of both states. The two
computational basis states, |0〉 and |1〉, are represented by
vectors in the Hilbert space [16]:

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
. (1)

A general single-qubit state, |ψ〉, is a linear combination of
these basis states:

|ψ〉 = α |0〉+ β |1〉 , (2)

where α and β are complex numbers known as probability am-
plitudes, satisfying the normalization condition |α|2+|β|2 = 1.
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The probability of measuring the state as |0〉 is |α|2, and the
probability of measuring |1〉 is |β|2 [16].

For an n-qubits system, the state space can be represented
as the tensor product of n single-qubit spaces, spanning 2n

dimensions. A general n-qubit state |Ψ〉 is denoted by a vector
of 2n basis amplitudes:

|Ψ〉 =
∑

x∈{0,1}n

cx |x〉 , where
∑

x∈{0,1}n

|cx|2 = 1, (3)

where |x〉 represents an n-bit binary string.
2) Basic Quantum Gates: Quantum computation is per-

formed by applying unitary operations, known as quantum
gates, to the qubit state vectors via matrix multiplication. The
following gates are fundamental to constructing VQCs [16].

a) Hadamard Gate (H): The Hadamard gate creates
an equal superposition state from a basis state. Its matrix
representation is:

H =
1√
2

(
1 1
1 −1

)
. (4)

b) Controlled-NOT Gate (CX or CNOT ): The CNOT
gate is a two-qubit entangling gate, essential for creating
quantum entanglement. This gate works with a pair of a control
qubit and a target qubit, flipping the target state only if the
control qubit is |1〉. By the nature of 2 qubits input, CNOT
gate’s matrix representation in the quantum state space is:

CX =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (5)

c) Rotation Gates (Rx, Ry, Rz): Parameterized rotation
gates are the core building blocks of VQCs, as their rotation
angles θ serve as the trainable parameters. They perform a
rotation about a specific axis on the Bloch sphere.

Rx(θ) =

(
cos( θ2 ) −i sin( θ2 )

−i sin( θ2 ) cos( θ2 )

)
. (6)

Ry(θ) =

(
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

)
. (7)

Rz(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
. (8)

3) Quantum Data Encoding: To use classical data x =
(x1, x2, . . . , xM ) within a quantum circuit, it must first be
encoded into the quantum state |ψ(x)〉. This process, known
as quantum embedding, maps the M -dimensional classical
feature vector into the 2n-dimensional Hilbert space.

a) Angle Embedding (Parameter Encoding): Angle em-
bedding is a resource-frugal method that maps the classical
features directly to the rotation angles of single-qubit gates.
For a feature vector x = (x1, . . . , xn), where n is the number
of qubits, the data can be encoded using Ry gates:

|ψ(x)〉 =

(
n⊗

i=1

Ry(xi)

)
|0〉⊗n

. (9)

This encoding is simple to implement and results in shallow
circuits, which is advantageous in the NISQ era.

b) Amplitude Embedding: Amplitude embedding is a
dense encoding strategy where the normalized classical fea-
tures are mapped directly to the amplitudes of the quantum
state. To encode a vector x ∈ R2n , the resulting quantum
state is:

|ψ(x)〉 = 1

||x||

2n−1∑
i=0

xi |i〉 . (10)

B. Overall architecture
The proposed hybrid quantum-classical model integrates a

robust pre-trained classical network for feature extraction with
a compact VQC as the final classification layer. This architec-
ture is designed to exploit the high accuracy of classical deep
learning while minimizing the number of retraining parameters
in the final layer.

The overall flow begins with a raw satellite image input
x, defined as a three-dimensional tensor of height (H), width
(W ), and channels (C): x ∈ RH×W×C . The image is first
processed by the classical encoder function, Enc(.), which in
this work is produced by the frozen weight structure of the
Swin Transformer V2. This process extracts a high-level, D-
dimensional feature vector Venc from the input image x:

Venc = Enc(x), Venc ∈ RD. (11)

The resulting high-dimensional classical feature Venc is then
prepared for quantum processing. Since the dimension shape
of features must align with the number of qubits available,
Venc is passed through a classical projection layer, Proj(.),
which compresses or adjusts the feature dimension from D to
n, the required number of qubits for the VQC. This produces
the projected vector Vproj :

Vproj = Proj(Venc), Vproj ∈ Rn. (12)

The projected vector Vproj is subsequently used as input for
the VQC, which acts as the trainable classification head. The
VQC consists of a data encoding block (using Vproj) followed
by a parameterized Ansatz U(θ) with trainable parameters
θ. The output of the VQC is obtained by measuring the
expectation value of an observable operator Ô on the final
quantum state, providing a vector of classification scores:

V QC(x; θ) = 〈Ô〉 = 〈0|U†(x, θ)ÔU(x, θ) |0〉 . (13)

The core of the hybrid model is the VQC, which acts as
a highly expressive, non-linear classifier. For embedding the
projected classical feature vector Vproj ∈ Rn into the quantum
state, we utilize the resource-frugal angle embedding strategy.
This method ensures minimal circuit depth by mapping each
feature component Vproj,i directly onto the rotation angle of a
single-qubit gate. The Ansatz, or parameterized quantum layer,
is built using N layers of the PennyLane Strong Entanglement
Circuit. This circuit structure is characterized by alternating
layers of single-qubit rotations (which act as trainable pa-
rameters) and CNOT entangling layers, which ensure high
connectivity and expressive power across all n = 10 qubits.
Finally, the classification scores are derived by measuring
the expectation value of the PauliZ observable across the
output qubits. This standard measurement scheme provides
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Fig. 1. The overall architecture of the projection layer has two stages of training to take advantage of both classical neural networks and VQCs.

the necessary classical output vector for the final Softmax
classification layer.

Finally, the resulting expectation values from the VQC
are passed through a classical Softmax activation function,
yielding the final probability distribution p over the defined
terrain classes:

p = Softmax(V QC(Vproj , θ)). (14)

The entire system is trained end-to-end by minimizing a
classical loss function the cross-entropy loss through the
optimization of the quantum circuit’s parameters θ, while the
classical encoder’s weights remain fixed to ensure resource
efficiency during retraining. The cross-entropy loss is shown
as follows.

Lce(p, y) = −
C∑
i=1

yi log(pi). (15)

C. Two stage training framework

Due to the limitations of Noisy Intermediate-Scale Quan-
tum (NISQ) devices, particularly the restricted number of
qubits (n), the high-dimensional feature vector Venc must
be compressed into a lower-dimensional space Vproj ∈ Rn.
The classical projection layer Proj(.) optimally maps the
complex information from the D-dimensional feature space
to n dimensions. The training process consists of two stages
to ensure high-quality features for the VQC. The main purpose
of the two-stage training is to create a static projection layer
without increasing the number of trainable parameters for later
retraining on an edge device. In both stages of the training
process, the pretrained weights of the classical encoder are
frozen and not trained.

1) First Training Stage: In this stage, the weights of the
Proj(.) layer are optimized alongside the VQC parameters θ
using a subset of the training dataset. The goal is to reduce
dimensionality while preserving discriminative information,
creating an optimal latent representation Vproj .

2) Second Training Stage: This stage focuses on refining
the quantum classification head, with the Proj(.) layer’s
weights frozen. The remaining dataset is used solely to train
the VQC parameters θ. This separation allows for efficient
learning of non-linear decision boundaries against a stable
input, leading to a more stable and accurate final model. After
deploying the model to the edge device, only this stage is
required for retraining the model. The Proj(.) will act as a
static projector function.

III. EXPERIMENTS
A. Datasets

The EuroSAT dataset [17] serves as a benchmark for land
use and land cover (LULC) classification in remote sensing. It
is derived from the Sentinel-2 satellite provided by the Coper-
nicus Earth observation program. The dataset is comprised of
27,000 labeled and geo-referenced image patches, each 64×64
pixels in size. The dataset is categorized into 10 classes, which
include: AnnualCrop, Forest, HerbaceousVegetation, Highway,
Industrial, Pasture, PermanentCrop, Residential, River, and
SeaLake. The balanced nature and high-resolution multi-
spectral data of EuroSAT make it an ideal and rigorous
benchmark for evaluating the performance of deep learning
and hybrid quantum-classical classification models.

B. Experiment setup

The experiments were executed on a high-performance
Ubuntu server environment, utilizing an NVIDIA H100 GPU
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for all classical deep learning and simulation tasks, providing
the necessary computational speed for training and evaluation.
For the quantum circuit simulation and gradient computation,
the PennyLane [18] quantum computing framework was
employed. The classical encoder component, the Swin Trans-
former V2, was initialized using pretrained weights from the
Base version SwinV2-B [6], with these weights subsequently
frozen to maintain feature quality and reduce the retraining
cost. For rigorous evaluation, the full dataset was split into
a 70% training set, a 15% validation set, and a 15% testing
set. The model optimization was carried out using the AdamW
optimizer [19] with a fixed learning rate of 0.0001. The total
training process spanned 10 epochs, leveraging a batch size
of 64. Consistent with constraints on current NISQ hardware,
the VQC was implemented using n = 10 qubits. The number
of Strong Entanglement Layers we use in the VQC is N = 5.

C. Experiment result

For comprehensive comparison, our experiments evaluated
the performance of the proposed hybrid quantum-classical
model against several established classical architectures: fine-
tuned VGG19, ResNet50, MobileNetV2, and SwinV2-B on the
EuroSAT dataset [17]. Despite operating with a significantly
lower count of trainable parameters in its final classification
layer, as detailed in Table III-C, the hybrid approach achieved
a competitive result compared to the fully classical models.
Specifically, our hybrid VQC model demonstrated a test ac-
curacy of 0.93654. This result is notably competitive when
compared to the test accuracies of the pure classical models,
which achieved 0.917289, 0.88148, 0.9037, and 0.91975 for
VGG19, ResNet50, MobileNetV2, and SwinV2-B, respec-
tively. Furthermore, the robust performance extends to the val-
idation dataset, where the hybrid quantum model achieved the
highest validation accuracy of 0.93852. This result surpasses
the validation accuracies of the classical counterparts, the
detailed validation accuracy shown in Fig. 2. These findings
collectively demonstrate a robust improvement in both classi-
fication accuracy and the efficiency of the retraining process,
affirming the potential of our proposed hybrid architecture.
The hybrid VQC model requires only 150 trainable parameters
for retraining, representing a significant reduction compared to
the classical models.

TABLE I
NUMBER OF TRAINABLE PARAMETERS REQUIRED FOR RE-TRAINING

Model # Trainable parameters
VGG19 3,212,682

ResNet50 263,562
MobileNetV2 656,778

SwinV2-B 132,490
Hybrid VQC 150

IV. CONCLUSION

In this paper, we propose a hybrid variational quantum
circuit model for satellite image classification, effectively
integrating classical deep learning techniques with quantum
computing principles. Our approach leverages the strengths

Fig. 2. Validation accuracy diagram

of pretrained models, specifically the Swin Transformer V2,
and combines them with the efficiency of VQCs. The re-
sults demonstrated competitive classification performance on
the EuroSAT, achieving accuracies surpassing state-of-the-art
classical models while significantly reducing the number of
retraining parameters. This research highlights the potential of
quantum machine learning in enhancing image classification
capabilities, particularly in resource-constrained environments,
and paves the way for future explorations into the integration
of quantum computing in remote sensing applications.
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