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Abstract—Unmanned Aerial Vehicle (UAV)-based wireless net-
works have emerged as a flexible solution for providing coverage
in 5G/6G and beyond, but they face significant challenges in
interference management, dynamic topology, and resource alloca-
tion. Rate-Splitting Multiple Access (RSMA) has recently gained
attention as a powerful non-orthogonal multiple access scheme to
enhance spectral efficiency and interference mitigation in multi-
user communications. Meanwhile, Deep Reinforcement Learning
(DRL) techniques are being leveraged to tackle the complex
optimization problems inherent in UAV networks with RSMA,
adapting to dynamic environments and imperfect channel state
information. In this paper, we present a comprehensive review
of DRL approaches applied to UAV-based networks with RSMA,
covering their motivations, recent technological developments,
and state-of-the-art research from 2022 to 2025. We discuss the
background of UAV communications and RSMA, highlight the
role of RSMA in improving UAV network performance, and
survey various DRL-driven solutions for resource allocation,
trajectory design, power control, and other optimizations in
RSMA -enabled UAV networks. A comparative summary of recent
works is provided in tabular form. Furthermore, we identify key
challenges such as multi-agent coordination, real-time learning,
and generalization to varying scenarios. We also outline future
trends, including advanced DRL algorithms, integration with
emerging technologies like reconfigurable intelligent surfaces and
generative Al, and the need for robust and energy-efficient
designs to fully unleash the potential of DRL-empowered RSMA
in UAV networks.

Index Terms—Rate-Splitting Multiple Access (RSMA), Un-
manned Aerial Vehicles (UAV), Deep Reinforcement Learning
(DRL), PPO, DDPG, TD3, SAC, Multi-Agent RL, 6G.

I. INTRODUCTION AND MOTIVATION

Unmanned Aerial Vehicles (UAVs) are increasingly de-
ployed in wireless networks as aerial base stations, relays, or
user equipments to extend coverage and capacity for 5G-and-
beyond systems [10], [14]. UAV-based networks offer high
mobility and flexible deployment, enabling rapid restoration
of communication in disaster zones and providing connectivity
in rural or temporary events [8], [11]. However, these aerial
networks face challenges such as severe interference, dynamic
channel conditions due to UAV mobility, and limited backhaul
capacity [3], [16]. Traditional Orthogonal Multiple Access
(OMA) schemes suffer from limited spectrum efficiency in
multi-user UAV scenarios [1], [27]. Non-orthogonal techniques
like NOMA (Non-Orthogonal Multiple Access) were explored
to allow multiple users on the same resource block, but
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NOMA’s requirement that some users decode others’ mes-
sages leads to performance degradation and stringent power
difference requirements [2].

Rate-Splitting Multiple Access (RSMA) has emerged as a
generalized multiple access strategy that splits each user’s
message into a common part (decodable by all users) and
a private part (intended for one user), enabling successive
interference cancellation (SIC) at receivers [1]. By treating
part of the interference as decodable signal, RSMA strikes a
balance between fully decoding interference and treating it as
noise [2], [27]. Prior research demonstrated that RSMA can
outperform NOMA and other multiple access techniques in
throughput and fairness [1], [2]. In particular, RSMA avoids
the need for one user to decode another’s entire message (a
drawback of NOMA) and offers more flexibility in interference
management [2]. For multi-antenna downlink systems, RSMA
has shown gains under both perfect and imperfect Channel
State Information (CSI) conditions [3], [4]. These advantages
motivate the integration of RSMA into UAV networks, where
interference and dynamic channel variations are pronounced.

Despite RSMA’s benefits, optimizing RSMA parameters
(such as power allocation, precoding vectors, and com-
mon/private rate splits) in UAV networks is challenging. The
joint design of beamforming, rate splitting, user association,
and UAV trajectory leads to a non-convex, high-dimensional
optimization problem [4], [16]. Traditional optimization meth-
ods (e.g., successive convex approximation or brute-force
search) become intractable in these scenarios [23]. Moreover,
UAV networks operate in highly dynamic environments with
time-varying channels and user mobility, requiring adaptive
and real-time decision-making [11].

Deep Reinforcement Learning (DRL) has emerged as a
promising approach to handle such complex decision problems
in communication networks. By modeling the control problem
as a Markov Decision Process (MDP), DRL agents can learn
policies to maximize long-term performance metrics (through-
put, reliability, etc.) by interacting with the environment. DRL
is well-suited for dynamic resource allocation and interference
management due to its ability to learn directly from trial-
and-error and handle uncertainties and partial observability
[6], [7]. In multi-UAV or multi-user settings, multi-agent
DRL frameworks enable distributed learning, aligning with the
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decentralized nature of UAV networks [10].

Motivation: This paper aims to review the state-of-the-art
research at the intersection of DRL, UAV-based networks, and
RSMA. The confluence of these areas is relatively new and
rapidly evolving (most works have appeared in 2022-2025),
and a coherent overview is needed to identify common ap-
proaches and open challenges. We seek to highlight how
DRL algorithms have been applied to optimize RSMA in
UAV networks (for tasks such as power control, beamforming,
trajectory design, user association, etc.), and what performance
gains they achieved. By surveying recent works, we derive
insights into the research challenges unique to DRL-enabled
RSMA systems (e.g., training complexity, multi-agent coordi-
nation, safety constraints) and outline future trends to guide
further investigations.

The rest of this paper is organized as follows. Section 2
provides background on UAV-based communication networks
and enabling technologies. Section 3 discusses the role of
RSMA in UAV networks and its performance benefits. Section
4 reviews various deep reinforcement learning approaches pro-
posed for UAV networks with RSMA, including a comparative
summary of recent works in a table. Section 5 discusses key
challenges and future research directions. Section 6 concludes
the paper.

II. BACKGROUND AND TECHNOLOGIES

UAV-Based Communication Networks: UAV-assisted
wireless networks typically consist of one or multiple UAVs
serving as flying base stations (FlyBS) or relays that provide
connectivity to ground users or augment coverage of terrestrial
base stations [10], [14]. UAVs can be deployed quickly and
repositioned on the fly, which makes them ideal for provid-
ing on-demand coverage, network offloading, and bridging
connectivity in underserved areas [8], [11]. For example,
UAV-BSs have been considered for emergency communication
in disaster scenarios and for connecting rural areas without
infrastructure [5]. UAVs operate at various altitudes: low-
altitude platforms (typically tens to a few hundred meters high)
are agile and inexpensive, while high-altitude platforms (e.g.,
HAPs/balloons at stratospheric heights) cover larger areas but
are often stationary once deployed [28]. UAV networks are
a component of space—air—ground integrated networks (SA-
GIN), envisioned in 6G to provide ubiquitous connectivity by
integrating satellites, aerial platforms, and terrestrial networks
(1], [13].

Challenges in UAV Networks: Unlike fixed terrestrial base
stations, UAV-BSs face strict constraints in backhaul (often
wireless backhaul with limited capacity) and energy (finite
battery life). Interference is a major concern: UAVs often serve
multiple users with line-of-sight links that cause strong inter-
user interference, especially if frequency reuse is employed
[16]. The UAVs’ mobility leads to rapid channel variation,
making it difficult to obtain accurate and timely CSI at the
transmitter or receiver [4], [16]. Furthermore, when multiple
UAVs are used, user association (deciding which UAV serves
which user for uplink and downlink) becomes a complex

problem. Traditional approaches tied each user to the same
station for both uplink and downlink, but decoupling these
associations can yield better rates given the differing link
characteristics [10]. However, designing such decoupled asso-
ciations requires careful interference management and possibly
full-duplex operation with self-interference cancellation [3].
UAV networks must also meet diverse service requirements:
e.g., URLLC (ultra-reliable low-latency communications) for
mission-critical links, requiring stringent delay and reliability
guarantees, or high-throughput for broadband applications.
These requirements impose additional constraints on resource
allocation and network design [26].

Enabling Technologies: Advances in antenna and
transceiver technologies (multi-antenna MIMO arrays on
UAVs) allow serving multiple users via spatial multiplexing.
Complementary technologies like Reconfigurable Intelligent
Surfaces (RIS) are being studied to assist UAV
communications by intelligently reflecting signals to enhance
coverage or reduce blockage effects [20]. Active RIS mounted
on UAVs can even amplify signals, though they introduce
higher energy consumption, creating a trade-off in system
design [12]. UAV communications can benefit from such
technologies, but they also increase the complexity of the
system optimization (e.g., joint beamforming and RIS phase
control). Moreover, Mobile Edge Computing (MEC) may be
integrated with UAVs (where UAVs carry computing payloads
to process data from users), introducing new variables like
task offloading decisions and computing resource allocation
[8]. Each of these extensions (RIS, MEC, full-duplex, etc.)
introduces additional optimization dimensions that compound
the difficulty of network control.

Deep Reinforcement Learning (DRL): DRL combines
deep neural networks with reinforcement learning to enable
an agent to learn good policies in complex, high-dimensional
environments. In the context of UAV network control, DRL
can be used to learn resource allocation (power, channel
assignment), movement control (trajectory/path planning for
UAVs), and other decisions by interacting with a simulator or
real environment. Various DRL algorithms have been applied:
value-based methods like Deep Q-Network (DQN) for discrete
decision spaces, and policy-based or actor—critic methods like
Deep Deterministic Policy Gradient (DDPG) and Proximal
Policy Optimization (PPO) for continuous control [6], [7].
Multi-agent DRL (MADRL) extends these to multiple learners
(e.g., multiple UAVs each as an agent) and often uses cen-
tralized training with distributed execution to handle the joint
optimization while mitigating non-stationarity during learning
[10] [17]. In UAV networks, DRL offers the ability to adapt
policies on the fly to changing channel conditions and traffic
patterns, potentially achieving near real-time optimization that
classical solvers cannot [18] [19].

In summary, UAV-based networks bring flexibility and
broad coverage but suffer from interference and dynamic
changes. RSMA is introduced next as an advanced multiple
access strategy particularly well-suited to such interference-
limited, dynamic scenarios. DRL serves as a powerful tool to
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control and optimize RSMA-enabled UAV networks, as we
detail in the subsequent sections.

III. ROLE OF RSMA IN UAV-BASED NETWORKS

Rate-Splitting Multiple Access (RSMA) is a novel multiple
access paradigm that plays a crucial role in enhancing the
performance of UAV-based networks. By allowing each user’s
message to be split into common and private components,
RSMA provides an additional degree of freedom in interfer-
ence management compared to conventional OMA or even
NOMA. This flexibility is particularly beneficial in UAV
networks where interference is strong and channels can be
highly variable.

Interference Mitigation: In a typical UAV downlink sce-
nario (one or more UAV-BSs serving ground users), co-channel
interference between users can severely limit the sum-rate.
Traditional OMA orthogonalizes users at the cost of spectral
efficiency, while NOMA superposes users but forces succes-
sive decoding of complete messages, which is suboptimal if
channel conditions are not highly skewed. RSMA, on the other
hand, partially decodes interference: the transmitter sends a
common message (intended for all users) that encodes part
of each user’s data, and private messages for the remaining
data [1]. All receivers decode the common message first
(using SIC) then their own private message [1], [2]. In doing
so, RSMA can smooth out the rate disparity between users
and effectively manage interference by choosing how much
information to put in the common stream. This ability to treat
some interference as decoded signal and the rest as noise leads
to robust performance gains. Studies have shown that RSMA
yields higher spectral efficiency than NOMA in multi-antenna
systems, even when channel state information is imperfect
[4], [27]. In UAV networks, where acquiring perfect CSI is
challenging due to mobility, RSMA’s robustness to CSI errors
is a significant advantage [16].

Performance Benefits in UAV Networks: Early works
analyzing RSMA in UAV communications reported improved
throughput and capacity [21]. For instance, Jaafar et al. (2020)
examined a UAV-assisted downlink and found that RSMA
provides throughput gains over space-division multiple access
in various UAV deployment scenarios [14], [15]. Singh et
al. (2023) investigated an RSMA-enabled UAV communi-
cation system and optimized UAV placement, demonstrat-
ing increased ergodic capacity compared to OMA/NOMA
baselines [15]. Another study by Singh et al. considered
finite and infinite blocklength communications with RSMA
on a UAV link, highlighting performance improvements even
with imperfect SIC and CSI conditions [4], [16]. A recent
example quantified RSMA’s advantage: Huang et al. (2025)
showed in simulations that a UAV-assisted downlink using
RSMA achieved about 13.3% higher system throughput than
a comparable NOMA scheme [24]. Such improvements are
crucial for UAVs, which often serve many users within their
coverage and must maximize spectral efficiency due to limited
bandwidth.
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Integration with UAV Operations: RSMA’s flexibility aids
not just in link-level performance but also in network-level
decisions. For example, in multi-UAV networks, RSMA can
be used in both downlink and uplink to allow more aggressive
frequency reuse [22]. Ji et al. propose a network where
users have uplink—downlink decoupled (UDDe) association
and employ RSMA on the downlink to manage the interfer-
ence from multiple UAVs transmitting simultaneously [10].
RSMA becomes a key enabler for such complex association
policies by mitigating the resulting interference. Simulation
results confirmed that a decoupled association strategy with
RSMA outperforms conventional coupled association in sum-
rate [10]. Beyond conventional communications, RSMA has
found roles in advanced scenarios. For instance, in UAV-
enabled mobile edge computing (MEC) systems, a UAV may
serve multiple users offloading computation tasks. Truong et
al. (2022) introduced HAMEC-RSMA for an aerial computing
system, where RSMA improved the efficiency of task offload-
ing by managing uplink interference among users transmitting
data to the UAV [8]. Likewise, RSMA has been considered
in UAV networks supporting ultra-reliable low-latency com-
munications (URLLC). Alkanhel et al. (2025) formulated a
UAV-based RSMA system explicitly targeting URLLC QoS
and showed improved reliability in meeting latency and rate
constraints using RSMA compared to baseline multiple access
methods [26].

IV. REINFORCEMENT LEARNING APPROACHES IN UAV
NETWORKS WITH RSMA

Researchers have actively explored DRL-based solutions to
optimize UAV networks employing RSMA, especially in the
last few years (2022-2025). The problems addressed include
sum-rate maximization, energy efficiency improvement, secure
communications, latency and reliability (URLLC), and more.
Table 1 provides a comparative summary of representative re-
cent works in this domain, outlining their scenario, objectives,
DRL approach, and key results. We then discuss these works
in detail.

Discussion of Approaches: The above works illustrate a
range of DRL techniques applied to RSMA-UAV problems:

e Multi-Agent vs Single-Agent: When multiple UAVs or
multiple decision components are present, researchers
have used multi-agent DRL. For example, Ji et al. treated
each UAV as an agent learning user associations [10],
whereas Adam & Elhassan used multiple agents for
different UAVs (or different tasks like trajectory and
beamforming separately) [25]. Most multi-agent solutions
adopt a centralized training phase to handle couplings,
then decentralized execution (agents make decisions lo-
cally), aligning with CTDE principles. Some works (e.g.,
Ji et al.) explicitly address partial observability by mod-
eling as a POMDP and using decentralized policies [7],
[10]. In contrast, single-agent DRL is used when one
central controller can dictate all decisions, as in a single
UAV optimizing its own trajectory and resource allocation

(51, [11].



TABLE I
REPRESENTATIVE DRL-BASED RSMA APPROACHES FOR UAV NETWORKS (2022-2025)

Ref. Scenario & Objective Decision Variables

[10] Multi-UAV cellular; decoupled UL-DL association with RSMA; maximize sum-rate UL/DL association, precoding

[5] Single UAV downlink; sum-rate via 2D placement + RSMA UAV 2D position, power/precoder

[11] UAV downlink remote areas; 3D trajectory + RSMA UAV 3D path, power/precoder

[9] Energy-harvesting UAV; long-term sum-rate Power (battery-aware), precoder

[26] UAV downlink; URLLC (latency, reliability) Beamforming/rate, trajectory

[25] Multi-UAV with eavesdroppers; secrecy rate Beamforming, rate split, trajectories

[12] Active-RIS-assisted UAV; energy efficiency Beamforming, RIS config, 3D flight, common rate
[20] RIS-aided RSMA networks (aerial/terrestrial) RIS phases, power, splits

Choice of DRL Algorithms: Continuous control prob-
lems (like power levels, 2D/3D positions, beamforming
vectors) naturally lend themselves to actor—critic meth-
ods like DDPG and its variants. DDPG was popular
in early works (e.g., Hua et al. used DDPG for 2D
trajectory optimization), but can suffer from unstable
training and overestimation of Q-values [7]. To address
this, later works have employed TD3 (Twin-Delayed
DDPG), which adds clipped double Q-learning and other
improvements for stability [11]. Nguyen et al.’s TD3-
based framework explicitly outperformed DDPG in both
convergence speed and achieved sum-rate [11]. PPO,
a more stable policy gradient method, was adapted in
multi-agent form by Ji et al. with additional stabilization
heuristics [10]. For discrete decision components (like
offloading decisions or discrete rate selection), Deep Q-
Networks (DQN) can be used, but in RSMA literature
DQN is less common due to many continuous variables.

o Hybrid Model-Based + DRL Approaches: A notable trend

is combining deep learning with domain-specific opti-
mization techniques. For instance, in the URLLC study
by Alkanhel et al., deep unfolding was used to embed a
model-driven optimization (for beamforming and rate al-
location) into the learning loop [26]. This yields a hybrid
where part of the problem (e.g., designing beamform-
ers) is solved using a few iterations of an optimization
algorithm unrolled as a neural network, while the DRL
agent focuses on other parts (like trajectory). Similarly,
Seong et al. split the problem: a DRL agent handles power
control under energy harvesting constraints, and a solver
(SLSQP) handles precoder design for given power [9],
[20]. Such decompositions leverage the strength of both
worlds: fast convergence of known algorithms for sub-
problems and the adaptability of RL for global decision-

making. The “DUN-DRL” (Deep Unfolding + DRL) in
the secrecy context is a prime example, which showed
better performance than end-to-end DRL [25].

o Limitations: Despite successes, these works often empha-
size certain limitations. Many DRL solutions rely on a
training phase in a simulated environment; generalizing
to real-world or varying conditions can be an issue.
Some approaches don’t consider multi-agent coordination
during execution (each agent may converge to a selfish
policy if not carefully designed). As noted in recent
RSMA-UAV works, CTDE should be incorporated more
explicitly to stabilize learning in coupled environments
[2], [9]. Another noted gap is that energy-efficiency
optimization (rather than sum-rate) in RSMA networks
via DRL was relatively overlooked until very recently
(71, [12].

V. CHALLENGES AND FUTURE TRENDS

Sample Efficiency & Training Cost: DRL algorithms often
require a large number of interactions with the environment
to converge to good policies. Training a UAV+RSMA control
agent in high-dimensional state/action space can be time-
consuming. In practice, obtaining a high-fidelity environment
model or simulator that captures UAV dynamics, channel
variations, and network traffic is itself a challenge. Future
research may explore improved sample efficiency through
techniques like transfer learning (e.g., pre-training on a simpler
scenario and fine-tuning in the target scenario) or model-based
RL, where a learned or approximate model of the network
dynamics is used to reduce the need for direct interaction.

Multi-Agent Coordination: When multiple UAVs or multi-
ple agents (for different network functions) are involved, coor-
dination without centralized control is difficult. Many existing
works used simultaneous learning or independent learners,
which can lead to non-stationary behaviors from each agent’s
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perspective. Adopting a centralized training, distributed ex-
ecution (CTDE) paradigm is promising, as it can stabilize
training by giving agents access to global information (e.g., via
a centralized critic) while keeping execution decentralized. Fu-
ture work should integrate CTDE more explicitly into RSMA-
UAV DRL frameworks to enable scalability to larger fleets of
UAVs and more users. Techniques from multi-agent RL (like
MADDPG, QMIX, or mean-field RL) could be customized for
RSMA scenarios to ensure agents learn cooperative policies
(for interference management, for example).

Robustness, Safety, Sim-to-Real: UAV networks face un-
certainties like sudden channel outages, UAV hardware fail-
ures, or model mismatches (sim-to-real gap). DRL policies
can be brittle if conditions deviate from training. Ensuring
robustness is a key challenge. Robust or distributional RL
algorithms might be used to account for uncertainties during
training. Additionally, safety constraints (like avoiding colli-
sions or ensuring a minimum quality of service at all times)
are hard to guarantee with black-box policies. Future research
might incorporate safe RL or constrained RL approaches,
ensuring that the learning process respects critical constraints
(e.g., URLLC reliability or UAV flight regulations) at all times,
not just at convergence.

Incorporating Domain Knowledge: One trend seen in re-
cent works is combining DRL with domain-specific knowledge
(e.g., optimization solvers, deep unfolding of algorithms). This
hybrid approach often yields better performance and faster
convergence. Future systems can expand on this by, for ex-
ample, using expert demonstrations or imitation learning from
known good solutions (like convex optimization results for
simplified scenarios) to guide the DRL agent initially. Another
idea is to use meta-learning to allow the agent to quickly adapt
to new environments (e.g., when the number of users changes
or traffic patterns shift). We expect more work on adaptive
or online learning where the agent continues to learn during
deployment to handle environment non-stationarity.

Integration with other methods: Future UAV networks
will likely integrate RSMA with other technologies such as
Integrated Sensing and Communication (ISAC) and Reconfig-
urable Intelligent Surfaces (RIS). RSMA has already been in-
vestigated in an ISAC context. In UAV networks, a UAV might
perform sensing (for environment mapping or surveillance)
while communicating; DRL could then be used to manage
the dual use of resources similar to how beamforming was
managed in RSMA-ISAC via PPO. For RIS-assisted UAV
networks, while initial studies used conventional optimization,
DRL can be used to handle the real-time reconfiguration of
RIS elements along with RSMA precoding, as seen in the
AARIS meta-RL work [12]. We anticipate research on joint
RIS phase shift and RSMA control via DRL, enabling UAVs to
smartly reflect signals to users and maybe even self-optimize
their channels.

VI. CONCLUSION

RSMA equips UAV networks with a robust interference-
management lever via common/private splitting and SIC,

outperforming OMA/NOMA especially under imperfect CSI.
DRL provides the adaptive control substrate to optimize
RSMA’s many coupled degrees of freedom in dynamic envi-
ronments. Recent works (2022-2025) demonstrate consistent
gains in throughput, energy efficiency, URLLC, and secrecy
by combining actor—critic/MARL with hybrid model-based
tools and trajectory co-design. Key challenges remain in
sample efficiency, multi-agent coordination, safety/robustness,
and sim-to-real transfer. Future research should emphasize
CTDE MARL at scale, meta/transfer and safe RL, energy-
aware learning, and tight integration with RIS/ISAC/MEC
towards Al-native, autonomous UAV communications in 6G.
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