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Abstract—Implicit Neural Representations (INRs) model im-
ages as coordinate-based continuous functions, offering a com-
pact alternative to conventional pixel-grid representations. Dur-
ing training, these networks naturally progress from coarse-to-
fine reconstructions, a behavior attributed to spectral bias that
favors low-frequency components over high-frequency details.
Rather than treating this tendency as a limitation, we harness it to
design a structured learning framework. Inspired by progressive
transmission in communication systems, where coarse visual
content is delivered first and gradually refined with finer details,
we propose a two-stage Coarse-to-Fine training strategy for INRs,
referred to as C2F-INR, that explicitly governs this inherent
progression. In the first stage, the network learns from a blurred
target image to establish global structure, followed by a second
stage that refines high-frequency details under the original target.
Experiments on the KODAK dataset across two widely used
INR backbones (SIREN and FINER) demonstrate consistent
improvements in PSNR and SSIM, confirming the stability and
efficiency of our proposed method. Thus, C2F-INR transforms
the natural spectral bias into a controllable advantage, offering
a new direction for progressive image reconstruction.

Index Terms—Implicit neural representation, progressive
transmission, coarse-to-fine learning, image reconstruction

I. INTRODUCTION

Implicit Neural Representations (INRs) have recently
emerged as a powerful paradigm for modeling complex signals
in a continuous domain. Traditional representation methods
rely on discretizing data into pixel grids, voxels, or point
clouds, which limits their ability to capture the inherent
continuity of real-world phenomena [1]-[9]. In contrast, INRs
employ multilayer perceptrons (MLPs) to learn a mapping
between spatial coordinates and corresponding signal values,
effectively representing an image, a scene, or a shape as a con-
tinuous function rather than as a fixed-resolution array [10]-
[17]. This coordinate-based formulation provides a compact
and resolution-agnostic alternative to conventional formats,
allowing reconstruction at arbitrary scales without additional
memory overhead [18]-[20]. Besides, the continuous nature
of INRs enables smoother interpolation and higher-quality
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reconstructions compared to discrete sampling approaches [2].
As a result, INRs have gained substantial attention across
diverse domains, including image representation [21], [22], au-
dio representation [15], [23], and 3D geometry modeling [24],
[25]. Building upon this foundation, subsequent research has
explored various network architectures and activation mecha-
nisms to further enhance their representational capacity.

Recent developments in INRs largely focus on improv-
ing the fidelity of signal reconstruction through activation-
based and architectural modifications. Among the early works,
SIREN shows that using a sinusoidal activation enables
smooth gradient propagation and precise modeling of complex
structures [23]. Later, FINER extends this idea by allowing
the activation frequency to vary adaptively during training,
improving flexibility in representing different signal frequen-
cies [10]. More recently, Fourier-ReLU (FR-INR) employs
both sinusoidal and ReLU activations to maintain stability
while capturing fine details [26]. Beyond these activation-
focused studies, several works use positional encodings and
multi-head structures to broaden the expressive range of INR
frameworks [27], [28]. Despite their progress, these models
still exhibit a natural tendency to reconstruct coarse com-
ponents before finer ones, a behavior we reinterpret as a
useful property rather than a drawback. In this work, we
exploit this inherent progression to align with the principle
of progressive transmission, where global information appears
first and detailed content comes later.

Progressive transmission is a long-established concept in
communication systems, where visual content is delivered in
multiple stages, starting with a coarse preview that provides
an early, recognizable image, followed by incremental refine-
ments that improve perceptual quality. This step-wise delivery
allows users to perceive meaningful content even before trans-
mission is complete. Similarly, INRs exhibit a natural coarse-
to-fine reconstruction behavior due to the spectral bias of
neural networks. However, the early-stage outputs of standard
INR models are often blurred and insufficiently detailed for
practical use. To address this, we reinterpret this limitation as
an opportunity for progressive reconstruction. Specifically, our
two-stage Coarse-to-Fine INR (C2F-INR) framework biases
early optimization toward global structural consistency by
combining full-image supervision with coarse and edge guid-
ance terms that gradually decay during training. This design
produces perceptually coherent intermediate reconstructions at
early epochs and transitions smoothly to fine-detail refinement,
yielding stable and high-quality image reconstruction suitable
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for progressive-transmission applications. Overall, our contri-
butions are summarized as follows:

o« We propose a two-stage Coarse-to-Fine (C2F) training
framework that explicitly structures the natural coarse-to-
fine learning tendency of INRs into a guided optimiza-
tion process. Rather than counteracting spectral bias, the
framework turns it into an advantage through coarse and
edge guidance terms that gradually decay over the course
of training.

o The proposed C2F-INR produces perceptually coherent
intermediate reconstructions by stabilizing global struc-
ture in the early epochs and gradually refining intricate
details as training progresses. This property makes the
model particularly suitable for progressive transmission,
as it provides visually meaningful results even at inter-
mediate epochs.

o Experimental results on the KODAK dataset [29] demon-
strate consistent improvements in PSNR and SSIM
over baseline INR models such as SIREN [23] and
FINER [10], especially at early epochs (e.g., 100-300),
confirming the efficiency, stability, and generality of the
proposed framework.

The rest of the paper is organized as follows: Section II
provides a review of the INR background, baseline models,
and evaluation metrics. In Section III, we discuss our proposed
methodology. Section IV presents the experimental results,
demonstrating the effectiveness of our approach. Finally, Sec-
tion V concludes the paper with a summary of our findings.

II. PRELIMINARY

A. Background for Image INR

INRs provide a coordinate-based framework for represent-
ing images as continuous functions rather than discrete pixel
grids. Instead of storing pixel values directly, INRs learn a
mapping between pixel coordinates and their corresponding
intensity or color values through a neural network. Formally,
given a pixel coordinate p = (x,y) and its associated color
vector I(p) € [0,1]3, an INR models this mapping as:

I(p) = fo(p), )]

where fy denotes a neural network parameterized by 6. The
goal is to approximate the underlying continuous image signal
by minimizing the reconstruction error between the predicted
and target pixel values.

Typically, fy(-) is implemented as a Multi-Layer Perceptron
(MLP) that transforms input coordinates into pixel values
through a series of linear and non-linear operations. For an
L-layer MLP, the forward propagation of activations can be
expressed as:

hi 1 =oc(Wih; +by), 2

where W, and b; represent the weights and biases of the (-
th layer, and o(-) is a non-linear activation function such as
ReLU or Sine. The input to the network is the pixel coordinate
hy = p, and the final output hy, corresponds to the predicted

pixel value I(p). The optimization objective of image INR
can be formulated as:

0" = argmeinﬁ(fg(p),l(p)), 3)

where L represents a reconstruction loss, typically the mean
squared error (MSE) between the predicted and ground-truth
pixel intensities. The parameters 6 are updated iteratively
through gradient descent as:

0 0 —nVel(0), ©))

where 7 denotes the learning rate. Through this process, the
network gradually learns to represent the image as a continu-
ous signal that can be queried at arbitrary spatial coordinates,
enabling smooth interpolation and high-fidelity reconstruction.

B. Backbone Architectures

We employ SIREN [23] and FINER [10] as our backbone
architectures to evaluate the effectiveness of the proposed
framework. Both architectures are widely adopted in INR
studies for their capability to model continuous signals and
capture diverse frequency components.

SIREN. SIREN [23] models a continuous image function
as:

f@ : (l‘,y) - (’I",g,b)7 (5)

where fy denotes a multilayer perceptron (MLP) equipped
with sinusoidal activation functions defined as:

@(z) = sin(wpz), (6)

with wy representing a frequency scaling factor that controls
the periodicity of the sine function. The network learns to
approximate the ground-truth image Iy by mapping sampled
2D coordinates to their corresponding RGB values. For each
pixel (4, j), the normalized spatial coordinate (x;,y;) is used
as input to the network. The network then predicts the corre-
sponding pixel intensity as:

Ipred(iyj) = f9(xi7yj)- (7)

This formulation enables smooth gradient propagation and
facilitates accurate modeling of complex image structures.

FINER. FINER [10] extends the SIREN framework by in-
troducing a frequency-adaptive activation function that evolves
during training. Unlike SIREN, which employs a fixed fre-
quency parameter, FINER dynamically adjusts the activation
frequency, formulated as:

¢(2) = sin(w2), ®)

where the frequency term w varies throughout the optimization
process. This adaptive mechanism allows the network to flexi-
bly represent both low- and high-frequency signal components,
thereby improving reconstruction fidelity and training stability
across different frequency regions.
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Fig. 1. Overview of the proposed two-stage Coarse-to-Fine INR (C2F-INR) framework. Stage 1 (1-200 epochs) jointly applies all three losses Lcoarse, Ledges
and Lygy for stable global and structural learning. Stage 2 (201-400 epochs) retains Lgy and Legge, While the final fine-tuning phase (401-500 epochs)

optimizes only Lg, to maximize high-frequency detail and overall PSNR.

C. Evaluation Metrics

To quantitatively assess the reconstruction quality, we em-
ploy two widely used metrics: peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) [30].
PSNR measures pixel-level fidelity between the reconstructed
and reference images, while SSIM evaluates their perceptual
similarity in terms of luminance, contrast, and structure.

The PSNR is defined as:

~ L2
PSNR(I, 1) = 10logo [ ——— | , 9
(I, 1) Ogm(MSE(I,I)) )

where L denotes the dynamic range of pixel values (e.g.,
L=1 for normalized images or L=255 for 8-bit images), and
MSE(I I ) is the mean squared error between the reference
image I and the reconstructed image I, defined as:

MSE(I, ) = ﬁz S0y - 1)”.

Here, H and W represent the image height and width,
respectively. A higher PSNR corresponds to a lower pixel-
wise error and better reconstruction fidelity.

To evaluate perceptual similarity, we further compute SSIM
between local patches u and v as:

(2pupry + C1)(20uy + C2)
(12 + p2 + C1) (02 + 02 + Co)’

where g, and p, denote local means, o2 and o2 are lo-
cal variances, and oy, is their covariance. The constants
C1=(K1L)? and Cy=(K,L)? stabilize the division, with
typical values K1=0.01 and K5=0.03. SSIM ranges from
0 to 1, where higher values indicate stronger structural and
perceptual similarity to the reference image.

(10)

SSIM(u,v) =

(1)

III. METHODOLOGY

INRs often require extensive iterations before the recon-
structed images reach visual fidelity. In general, INRs tend to

capture only the dominant features in the early stages of train-
ing, which gradually become sharper as training progresses. To
better structure the learning process, we draw inspiration from
progressive transmission in communication systems, where
coarse information is delivered first, and finer details are
transmitted later. Following this intuition, we propose a two-
stage Coarse-to-Fine (C2F) training framework that enables
the model to first learn a stable coarse representation of the
image and then recover fine details during the later stages of
training. An overview of the proposed framework is shown in
Fig. 1.

A. Constructing Coarse Targets and Edge Cues

Given an image I € [0, 1]7*WX*C we derive two auxiliary
signals that guide the learning process without changing the
final target: a coarse target that captures the overall appearance
and an edge cue that highlights boundary transitions.

Coarse target. Given an image I € [0, 1]7*W ¢ we form
a coarse target by applying a Gaussian blur to suppress fine
details while preserving the global layout:

Icoarse = go’ * L

where G, denotes a Gaussian kernel and * is convolution.

Edge cue. In parallel, we extract an edge cue that helps
the model preserve structural sharpness. Let Vg(-) denote the
Sobel gradient operator and || - ||2 the per-pixel magnitude. For
each channel of the image, the gradient response is computed,
and the results are aggregated by averaging across all channels
as follows:

o = 1.2, radius = 3, (12)

E(I) = mean(||Vs(L.,..c)ll2) (13)

where mean,(-) denotes averaging over the channel dimen-
sion. This produces a single-channel map emphasizing promi-
nent boundaries and intensity transitions. The resulting map
acts as a lightweight regularization term, encouraging the
network to maintain edge consistency during learning without
changing the reconstruction target.
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TABLE I
QUANTITATIVE RESULTS ON THE kodim14 IMAGE FROM THE KODAK DATASET AT 100, 300, AND 500 EPOCHS. BEST RESULTS ARE HIGHLIGHTED IN
BOLD. THE C2F VARIANTS GENERALLY OUTPERFORM THEIR BASELINE MODELS, SHOWING HIGHER PSNR AND SSIM IN MOST CASES. ALTHOUGH
C2F-FINER SHOWS A SLIGHT DIP IN PSNR AT 100 EPOCHS, ITS SSIM STILL IMPROVES, AND BOTH PSNR AND SSIM SURPASS THE BASELINE AT 300
AND 500 EPOCHS. NOTABLY, THE GAINS AT EARLY STAGES FOR BOTH C2F-SIREN AND C2F-FINER (100 AND 300 EPOCHS) INDICATE FASTER AND
MORE STABLE CONVERGENCE, WHILE THE FINAL RESULTS AT 500 EPOCHS CONFIRM SUSTAINED RECONSTRUCTION QUALITY.

Model Epoch 100 Epoch 300 Epoch 500
PSNR1T SSIM 1 | PSNRT SSIM1 | PSNR T SSIM 1
SIREN 21.80 0.4401 24.60 0.6119 26.41 0.7153
C2F-SIREN 22.11 0.4625 24.79 0.6560 27.25 0.7618
FINER 23.40 0.5478 26.67 0.7409 29.00 0.8263
C2F-FINER 23.39 0.5638 26.98 0.7682 29.88 0.8566

Algorithm 1 Two-Stage Coarse-to-Fine Training Framework

Input: Image I; INR fp; Gaussian (¢ = 1.2, radius = 3);
total epochs T'; decay parameters oy = 0.5, T1 = 200,
Ystart = 0.10, Tpsnr = 400.

Output: Trained parameters 6.

L: ComPUte: Leoarse < ga’ 1, E(I) — meanc(HVS (I:,:,c) ”2)
2: fort=0to T—1 do

3: T f5()

4: Compute L, Leoarses Ledge as defined in Section II1.
5 a(t) < ap-5 (1 + cos(r min(t, T1) /1))

6 if t < T then

7 r < min(¢t/Ty, 1)

8 Y(&) (1 —7)-0.05 + rYstart

9: else

10: Y(t)«+0

11: end if

12: Ly L + O‘(t)['coarse + 'Y(t)ﬁedge

13: 0«6 — T]Vgﬁt

14: end for

Role in training. The pair (Icoarse, E(I )) provides com-
plementary guidance throughout the learning process. The
coarse target stabilizes early training by focusing on global
structure, while the edge cue reinforces local boundaries and
transitions. Their relative influence is adjusted dynamically
during training, as detailed in the following subsection.

B. Two-Stage Training

The training process is divided into two stages. In the
first stage, the model is guided by both the coarse and
edge components. This phase helps the network form a broad
understanding of the global appearance while preserving key
boundary information. By supervising the network with a
coarse target, the optimization becomes less sensitive to pixel-
wise noise and converges toward a smooth low-frequency
structure.

Once the model has formed a stable representation, the
second stage focuses on fine-detail reconstruction by dis-
carding the coarse guidance and progressively reducing the
edge weight, while continuing optimization with the original
image target. This gradual transition helps the model retain

structural sharpness from the first stage and refine high-
frequency textures in the second stage.
Formally, the overall loss at epoch ¢ is expressed as:

L= B Ly + Oé(t) Leoarse + ’Y(t) Eedge~

Here, Ly denotes the standard mean squared error between
the prediction I and the original image I. It is defined as:

1 AL ..
Ly = @ Z ||I(l>3) - I(%J)H%v
(

,J)€Q

(14)

15)

where ) denotes the set of pixel coordinates in the image
domain, and Leoarse and Legge correspond to the auxiliary terms
derived from the blurred target and the edge cue, respectively.
The coefficients «(t) and 7(t) control the weights of these
terms over time. The coarse weight a(t) follows a cosine
decay schedule that gradually reduces to zero after 77 epochs
and is defined as:

a(t) = ap3 (1 + cos(m min(¢, T1)/T1)) . (16)

The edge weight ~(¢), on the other hand, starts with a
small value to stabilize early optimization, gradually increases
to enhance structural learning, and is finally reduced to zero
in the fine-tuning phase for PSNR improvement. In practice,
Stage 1 corresponds to «(t) > 0 and ~(¢) > 0, while Stage 2
begins with «(¢) = 0 and progressively reduces ~(¢) to zero,
leading to the final reconstruction driven solely by L. The
complete procedure of the two-stage Coarse-to-Fine (C2F)
training framework is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed C2F-INR
framework, we conduct experiments on the KODAK dataset,
where all images are resized to a resolution of 512 x 512. Each
model is trained for 500 epochs using the Adam optimizer with
a learning rate of 1 x 10~%. The first 200 epochs emphasize
coarse and edge-guided learning. The next 200 epochs focus
on boundary refinement with edge consistency, and the final
100 epochs perform pure MSE-based fine-tuning for PSNR
optimization. As mentioned earlier, SIREN and FINER are
employed as the backbone architectures, and PSNR and SSIM
are used as evaluation metrics. The proposed loss function
integrates full MSE (L), blurred-target MSE (L oarse )» and
Sobel-based edge consistency (Leqge) With cosine-decayed
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Fig. 2. Qualitative comparison between vanilla INR models and their C2F counterparts during a 500-epoch training. Results at 100 and 300 epochs demonstrate
that the C2F variants achieve superior reconstruction quality with sharper edges and finer textures, indicating faster convergence in the early stages of training.
By 500 epochs, the C2F variants maintain this visual superiority, highlighting the effectiveness of the proposed two-stage Coarse-to-Fine training framework.

PSNR Comparison betugen SIREN and C2F-SIREN

55IM Comparison between SIREN and C2F-SIREN
w2 ® L

K24 K

PSNR Comparison betugen FINER and C2F-FINER

S51M Comparison between FINER and C2F-FINER
K24 ® L3

K24 K

Fig. 3. Radar chart comparison of PSNR and SSIM across all 24 KODAK images for both SIREN and FINER, with and without the proposed C2F framework.

weighting, ensuring stable optimization and consistent con-
vergence for both SIREN and FINER. All experiments are
conducted on a single NVIDIA RTX A5000 GPU using the
PyTorch 1.11.0 framework. To ensure a fair comparison, each

TABLE 11
AVERAGE PSNR AND SSIM ON THE KODAK DATASET. BEST RESULTS
ARE HIGHLIGHTED IN BOLD.

. . . oS Model | PSNR T SSIM 1

INR model is configured with three hidden layers containing
256 neurons per layer. All other parameters follow the default SIREN ~ 28.63 0.7913
configurations of their respective backbone implementations. CARSINEN 28.82 0.8029
The quantitative results on the kodiml4 image from the FINER 30.86 0.8608
C2F-FINER 31.17 0.8725

KODAK dataset are presented in Table I. Across all epochs,
the C2F variants show noticeable performance gains over their
baseline counterparts. C2F-SIREN records consistent improve-
ments of approximately +0.31 dB, +0.19 dB, and +0.84 dB in
PSNR, and +0.0224, +0.0441, and +0.0465 in SSIM at 100,
300, and 500 epochs, respectively. C2F-FINER, on the other
hand, shows a slight dip in PSNR at 100 epochs (-0.01 dB),
although SSIM still improves by +0.016. Besides, at 300 and
500 epochs, it delivers clear gains of +0.31 dB and +0.88 dB in
PSNR and +0.0273 and +0.0303 in SSIM, respectively. These
results clearly indicate that our coarse-to-fine strategy enables
faster convergence and better reconstruction at both early and
later stages of learning. Notably, at 100 epochs, an early learn-
ing phase, the gains are more substantial, demonstrating that
the coarse-to-fine learning scheme accelerates convergence by
stabilizing gradient propagation and improving fidelity in both

global and local structures. Even at 500 epochs, where models
typically saturate, C2F-INR still produces higher PSNR and
SSIM, validating the long-term consistency and efficiency of
the coarse-to-fine learning strategy. Fig. 2 further confirms
this trend, showing better reconstructions by the C2F variants
compared to the baselines. Additionally, Fig. 3 provides a per-
image radar chart comparison of PSNR and SSIM across all 24
KODAK images for both SIREN and FINER, with and without
the proposed C2F framework. This visualization highlights the
consistent improvements across most images.

We also present the average quantitative results on the
entire KODAK dataset in Table II. Consistent with the earlier
findings, both C2F-SIREN and C2F-FINER outperform their
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baseline counterparts in terms of PSNR and SSIM. C2F-
SIREN achieves a PSNR gain of +0.19 dB and an SSIM
improvement of +0.0116 over the standard SIREN, while
C2F-FINER shows an even larger improvement of +0.31 dB
PSNR and +0.0117 SSIM compared to FINER. These results
further confirm the generalizability of the proposed coarse-
to-fine strategy, demonstrating that the structured training not
only accelerates convergence at early epochs but also yields
superior overall reconstruction quality.

V. CONCLUSION

In this work, we propose C2F-INR, a two-stage Coarse-
to-Fine training framework designed to leverage the natural
spectral bias of implicit neural representations. Rather than
treating the bias as a limitation, our approach instead turns
it into an advantage by explicitly guiding the model from
coarse structural learning to fine-detail refinement. Through
a progressive training schedule and hybrid loss formulation,
C2F-INR achieves faster convergence and produces superior
reconstruction quality at both early and later stages of training.
Experimental results on the KODAK dataset, using SIREN and
FINER as backbones, demonstrate consistent improvements
in PSNR and SSIM, validating the robustness and generality
of the proposed C2F framework. In the future, we plan to
extend this work to large-scale and dynamic signals, further
exploring coarse-to-fine principles for real-time progressive
reconstruction tasks.

REFERENCES

[1]1 S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its
applications,” Computer Science Review, vol. 40, p. 100379, 2021.

[2] S. Chen, R. Varma, A. Singh, and J. Kovacevi¢, “Signal representations
on graphs: Tools and applications,” arXiv preprint arXiv:1512.05406,
2015.

[3] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE transactions on pattern
analysis and machine intelligence, vol. 43, no. 12, pp. 4338-4364, 2020.

[4] Q. Dai, H. Chopp, E. Pouyet, O. Cossairt, M. Walton, and A. K.

Katsaggelos, “Adaptive image sampling using deep learning and its

application on x-ray fluorescence image reconstruction,” IEEE Trans-

actions on Multimedia, vol. 22, no. 10, pp. 2564-2578, 2019.

Y. Sun, X. Tao, Y. Li, L. Dong, and J. Lu, “Hems: Hierarchical exemplar-

based matching-synthesis for object-aware image reconstruction,” /[EEE

Transactions on Multimedia, vol. 18, no. 2, pp. 171-181, 2015.

[6] T. Ogawa and M. Haseyama, “Missing image data reconstruction based

on adaptive inverse projection via sparse representation,” IEEE Trans-

actions on Multimedia, vol. 13, no. 5, pp. 974-992, 2011.

H. Wang and J. Zhang, “A survey of deep learning-based mesh process-

ing,” Communications in Mathematics and Statistics, vol. 10, no. 1, pp.

163-194, 2022.

[8] Y. Zang, B. Chen, Y. Xia, H. Guo, Y. Yang, W. Liu, C. Wang, and
J. Li, “Lce-net: Contour extraction for large-scale 3d point clouds,” /[EEE
Transactions on Geoscience and Remote Sensing, 2023.

[9] P. An, Y. Duan, Y. Huang, J. Ma, Y. Chen, L. Wang, Y. Yang, and

Q. Liu, “Sp-det: Leveraging saliency prediction for voxel-based 3d ob-

ject detection in sparse point cloud,” IEEE Transactions on Multimedia,

2023.

Z. Liu, H. Zhu, Q. Zhang, J. Fu, W. Deng, Z. Ma, Y. Guo, and X. Cao,

“Finer: Flexible spectral-bias tuning in implicit neural representation by

variable-periodic activation functions,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2024, pp.

2713-2722.

S. Xie, H. Zhu, Z. Liu, Q. Zhang, Y. Zhou, X. Cao, and Z. Ma, “Diner:

Disorder-invariant implicit neural representation,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2023, pp. 6143-6152.

[5

—

[7

—

[10]

[11]

798

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

V. Saragadam, J. Tan, G. Balakrishnan, R. G. Baraniuk, and A. Veer-
araghavan, “Miner: Multiscale implicit neural representation,” in Euro-
pean Conference on Computer Vision. Springer, 2022, pp. 318-333.
L. Shen, J. Pauly, and L. Xing, “Nerp: implicit neural representation
learning with prior embedding for sparsely sampled image reconstruc-
tion,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 35, no. 1, pp. 770-782, 2022.

E. Dupont, A. Goliniski, M. Alizadeh, Y. W. Teh, and A. Doucet,
“Coin: Compression with implicit neural representations,” arXiv preprint
arXiv:2103.03123, 2021.

K. Su, M. Chen, and E. Shlizerman, “Inras: Implicit neural represen-
tation for audio scenes,” Advances in Neural Information Processing
Systems, vol. 35, pp. 8144-8158, 2022.

C. Xu, J. Yan, Y. Yang, and C. Deng, “Implicit compositional generative
network for length-variable co-speech gesture synthesis,” IEEE Trans-
actions on Multimedia, 2023.

M. K. Suh, S. K. Dam, S. T. Kim, E.-N. Huh, and C. S. Hong,
“Semantic-guided regularization to mitigate spectral bias in implicit
neural representations,” in 2025 25th Asia-Pacific Network Operations
and Management Symposium (APNOMS). 1EEE, 2025, pp. 1-4.

W. Fang, Y. Tang, H. Guo, M. Yuan, T. C. Mok, K. Yan, J. Yao, X. Chen,
Z. Liu, L. Lu et al., “Cycleinr: Cycle implicit neural representation
for arbitrary-scale volumetric super-resolution of medical data,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 11631-11641.

M. Shao, C. Xia, D. Duan, and X. Wang, “Polarimetric inverse rendering
for transparent shapes reconstruction,” IEEE Transactions on Multime-
dia, 2024.

D. Jayasundara, S. Rajagopalan, Y. Ranasinghe, T. D. Tran, and V. M.
Patel, “Sinr: Sparsity driven compressed implicit neural representations,”
in Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, 2025, pp. 3061-3070.

Y. Chen, S. Liu, and X. Wang, “Learning continuous image representa-
tion with local implicit image function,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 8628—
8638.

S. Zheng, C. Zhang, D. Han, F. D. Puspitasari, X. Hao, Y. Yang,
and H. T. Shen, “Exploring kernel transformations for implicit neural
representations,” IEEE Transactions on Multimedia, 2025.

V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein,
“Implicit neural representations with periodic activation functions,”
Advances in neural information processing systems, vol. 33, pp. 7462—
7473, 2020.

Z. Chen and H. Zhang, “Learning implicit fields for generative shape
modeling,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 5939-5948.

J. Hu, K.-H. Hui, Z. Liu, R. Li, and C.-W. Fu, “Neural wavelet-domain
diffusion for 3d shape generation, inversion, and manipulation,” ACM
transactions on graphics, vol. 43, no. 2, pp. 1-18, 2024.

K. Shi, X. Zhou, and S. Gu, “Improved implicit neural representation
with fourier reparameterized training,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024, pp.
25985-25994.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99-106,
2021.

A. Aftab, A. Morsali, and S. Ghaemmaghami, “Multi-head relu im-
plicit neural representation networks,” in ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2022, pp. 2510-2514.

“Kodak lossless true color image suite,” http://rOk.us/graphics/kodak/,
accessed: 2025-10-30.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” /EEE
transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.



