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Abstract—The widespread use of the Internet of Things (IoT)
ecosystem has introduced new vectors for sophisticated cyber-
attacks. The Mirai botnet remains one of the most disruptive
IoT threats, rapidly propagating across heterogeneous devices
and launching high-volume Distributed Denial-of-Service (DDoS)
attacks. Existing machine learning (ML) based intrusion detec-
tion systems (IDS) rely on public datasets such as IoT-23, CI-
CIoT2023, and MedBIoT, but each captures only partial phases
of Mirai’s lifecycle (reconnaissance, exploitation, command-and-
control (C&C) or DDoS). As a result, most detectors are tuned
to identify late-stage DDoS traffic while offering limited visibility
into early-stage activity, where intervention is most effective. This
work constructs an enriched, stage-aligned dataset unifying IoT-
23, CICIoT2023, and MedBIoT, mapping traffic flows to four
Mirai phases: reconnaissance, exploitation, C&C communication,
and attack execution. Using this dataset, We develop a stage-
wise IDS based on Random Forest and XGBoost. Evaluated
on a balanced dataset, the framework achieves 92% and 91%
accuracy, respectively, across all stages. We further apply SHAP-
based explainability to expose feature-level decision rationale for
enabling actionable responses at the initial stage of an attack. Our
results show that lifecycle-aware, interpretable detection enables
proactive Mirai mitigation in real IoT environments.

Index Terms—Internet of Things, Mirai, Distributed Denial-
of-Service, Malware, Botnet Detection.

I. INTRODUCTION

The Internet of Things (IoT) has transformed sectors such
as healthcare, industrial automation, and smart homes by
enabling seamless connectivity. However, this proliferation
of resource-constrained devices has expanded the cyber-
attack surface, exposing IoT networks to large-scale compro-
mises [1]. Among these threats, the Mirai botnet [2] remains
one of the most persistent and damaging, exploiting weak
authentication to orchestrate massive Distributed Denial-of-
Service (DDoS) campaigns, such as the 2016 Dyn attack [3]
that disrupted major online services. These incidents under-
score the need for proactive, interpretable, and scalable IoT
defense mechanisms.

Existing Mirai detection research [4]-[7] relies primarily
on public datasets like IoT-23 [8], CICIoT2023 [9], and Med-
BIoT [10]. Yet, these datasets capture only isolated portions of
the attack lifecycle, limiting comprehensive detection. [oT-23,
confined to three residential devices, lacks exploitation data;
CICIoT2023 focuses on flooding attacks but omits Command-
and-Control (C&C) communication; and MedBIoT includes
propagation and C&C traffic but excludes reconnaissance and
DDoS execution. Consequently, most IDS models identify
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Mirai only at its final stages, providing limited opportunity
for early intervention.

Mirai progresses through five phases [11]: reconnaissance,
exploitation, C&C communication, persistence, and attack
execution (DDoS). Since the persistence stage leaves minimal
network traces, it is excluded from this analysis. Detecting
the earlier phases reconnaissance, exploitation, and C&C is
critical for preempting large-scale attacks. However, most
existing ML-based IDS lack such stage awareness and operate
as opaque “black boxes”, limiting trust and explainability.
Recent advances in Explainable AI (XAI) [12] address this
by revealing feature-level reasoning, enabling human analysts
to interpret model outputs and act accordingly.

To bridge these gaps, this work introduces a stage-wise,
XAl-enabled Mirai detection framework built on an unified
dataset that consolidates IoT-23, CICIoT2023, and MedBIoT.
The unified dataset provides balanced coverage across four
key lifecycle stages reconnaissance, exploitation, C&C and
attack execution. Using this dataset, we train lightweight
Random Forest (RF) and XGBoost models optimized for
IoT environments, integrating SHAP-based explanations to
identify influential traffic features. This study therefore aims
to build a transparent, lifecycle-aware detection model that en-
ables early identification of Mirai’s evolving behaviors across
heterogeneous IoT environments.

A. Main Contributions

This paper makes the following contributions:

o Comprehensive Lifecycle Dataset: We construct an en-
riched dataset combining [oT-23, CICIoT2023, and Med-
BIoT, covering all major Mirai stages reconnaissance,
exploitation, C&C, and attack execution thus eliminating
stage coverage bias in existing datasets.

« Explainable Stage-wise Detection: We propose a Ran-
dom Forest and XGBoost-based framework augmented
with SHAP interpretability, providing transparent, action-
able classification across all stages of the Mirai lifecycle.

o Extensive Evaluation: On a balanced dataset, our frame-
work achieves 92% (RF) and 91% (XGBoost) accuracy,
with SHAP analysis highlighting key flow features per
stage for forensic insight and early mitigation.

Overall, this study establishes a lifecycle-aware, inter-
pretable, and resource-efficient paradigm for IoT botnet de-
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tection, advancing the state of IoT security from reactive to
proactive defense.

Organization: Section II reviews related work on IoT
botnet detection, Section III details the enriched dataset and
framework, Section IV presents experimental evaluation, and
Section V concludes with future directions.

II. RELATED WORK

The emergence of the Mirai botnet has motivated exten-
sive research on intrusion detection mechanisms designed
to mitigate IoT-based malware threats. Existing studies can
be broadly classified into four categories: signature-based,
anomaly-based, machine learning (ML)-based, and hybrid or
reinforcement learning-based approaches.

Signature-Based Detection: These techniques [13] identify
malicious activity by matching traffic patterns against known
attack signatures. While these methods are effective for rec-
ognizing established Mirai variants, they fail to detect novel
or obfuscated mutations, limiting adaptability in dynamic IoT
environments.

Anomaly-Based Detection: Anomaly detection mod-
els [14] monitor deviations from normal system behavior to
uncover unknown threats. Statistical approaches and biologi-
cally inspired models [15] have been explored, modeling traffic
baselines to identify outliers. However, their high sensitivity to
legitimate traffic variations results in excessive false positives,
limiting scalability for large IoT deployments.

Machine Learning and Deep Learning Approaches:
Recent advances employ data-driven methods to automate IoT
threat identification. Li et al. [16] used CPU power fingerprint-
ing and lightweight neural networks to detect Mirai variants
with 99.10% accuracy, while Li et al. [17] utilized fine-grained
side-channel features to identify zero-day malware, achieving
95.88% accuracy. Pham et al. [18] leveraged electromagnetic
signals to detect obfuscated malware with 99.82% precision,
highlighting the role of device-level signals in detection.

Traditional ML-based IDS models have also shown ef-
fectiveness in specific datasets. Studies using the IoT-POT
dataset [S], [6] reported Random Forest (RF) and K-Nearest
Neighbors (KNN) achieving near-perfect classification accu-
racy (up to 99.99%). Hybrid deep models further enhance
temporal analysis capabilities: Alshehri er al. [19] proposed
SkipGateNet, a CNN-LSTM model with learnable skip con-
nections, reaching 99.91% accuracy and 8 ms inference
time on the N-BaloT dataset. Similarly, Kumar et al. [20]
demonstrated LSTM’s advantage in capturing sequential traffic
dependencies for Mirai and Bashlite detection.

Reinforcement Learning and Hybrid Frameworks:
Emerging techniques integrate reinforcement learning to adap-
tively enhance detection. Al-Fawa’reh et al. [4] introduced
MalBoT-DRL, applying an attention-based reward function
to improve feature selection, achieving 99.80% accuracy on
MedBIoT and N-BaloT. Gao et al. [21] proposed MACAE, a
memory-assisted convolutional autoencoder that transformed
traffic flows into spatial representations, achieving a low false
alarm rate (FAR = 0.0511). Other hybrid studies combined

temporal and spatial modeling: Kumari et al. [7] fused RNN
and KNN for sequence-aware detection, while Palla et al. [22]
compared ANN and RF classifiers, with ANN yielding 92.80%
precision and an Fl-score of 0.99.

Research Gaps and Motivation: While these studies
demonstrate substantial progress in IoT malware detection
through ML, DL, and DRL paradigms, several limitations
persist. Most frameworks rely on isolated datasets such as IoT-
23, MedBIoT, or CICIoT2023 [23], [24], each representing
only partial stages of the Mirai attack lifecycle. Consequently,
existing IDS models predominantly detect the later DDoS
phase while overlooking early indicators such as reconnais-
sance, exploitation, and C&C communication. Furthermore,
the black-box nature of deep models restricts interpretability
and operational trust, particularly in safety-critical IoT envi-
ronments.

To overcome these challenges, our work introduces a
lifecycle-aware and explainable detection framework that uni-
fies [0T-23, CICIoT2023, and MedBIoT into a comprehen-
sive dataset representing all observable Mirai stages. Existing
works overlook lifecycle completeness and model explain-
ability, motivating the proposed stage-aware and XAl-enabled
Mirai detection framework

III. DESIGN AND METHODOLOGY

Accurate Mirai detection requires datasets that comprehen-
sively represent all stages of the attack lifecycle reconnais-
sance, exploitation, Command & Control (C&C) communi-
cation, and attack execution. Existing datasets such as IoT-
23, CICIoT2023, and MedBIoT provide valuable insights but
exhibit fragmented lifecycle coverage and limited diversity.
To overcome these deficiencies, this study constructs a unified
dataset that integrates samples across multiple stages, enabling
holistic lifecycle representation and improved model general-
ization.

As illustrated in Fig. 1, the proposed framework comprises
two primary stages. Stage 1 focuses on dataset integration and
enrichment, combining I0T-23, CICIoT2023, and MedBIoT
to ensure end-to-end lifecycle coverage, including reconnais-
sance, exploitation, C&C, and DoS phases. Stage 2 performs
stage-wise model training using Random Forest and XGBoost
classifiers. A SHAP-based explainability module interprets
model predictions, enhancing transparency, trust, and opera-
tional applicability in real-world IoT defense.

TABLE I: Mirai Lifecycle Phase Coverage in Popular IoT
Datasets

Dataset Scanning | Exploitation | C&C | DoS
T0T-23 [8] v X v v
CICIoT2023 [9] v X X v
MedBIoT [10] X X v v
N-BaloT [25] X 4 X v

A. Dataset Integration for Comprehensive Lifecycle Coverage

Table I summarizes the primary IoT datasets utilized in
this study. Each dataset captures distinct segments of Mirai’s
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Fig. 1: Proposed two-stage framework for lifecycle-aware Mirai detection in IoT environments.

behavioral chain, contributing complementary insights across
lifecycle phases. To achieve unified coverage, we merged
and aligned relevant samples from I0T-23, CICIoT2023, and
MedBIoT. Using the Zeek network analysis tool [26], [27], we
extracted connection-level logs (conn. 1og) from packet cap-
tures to generate a consistent feature schema across datasets.
This facilitated accurate labeling and mapping of samples to
specific Mirai lifecycle stages.
Data Mapping to Lifecycle Stages:

o Reconnaissance: Derived from IoT-23 horizontal scan
traces, capturing high-frequency connection attempts and
IP probing activities.

« Exploitation: Brute-force authentication attempts from
CICIoT2023, representing credential-based access com-
promise.

e C&C Communication: Incorporated from MedBIoT and
I0T-23, including HeartBeat packets, command transmis-
sions, and binary fetch operations.

o Attack: DDoS flows such as GREIP, GRETH, UDP, and
TCP SYN floods from CICIoT2023 and IoT-23.

o Benign: Normal traffic from all three datasets, ensuring
reliable model training and balanced evaluation.

B. Enhanced Lifecycle Representation and Generalization

The resulting unified dataset offers a balanced and compre-
hensive depiction of Mirai’s network behavior across heteroge-
neous loT environments. By merging datasets with varied de-
vice profiles and communication protocols, it mitigates dataset
bias and strengthens cross-domain generalization. This con-
solidated dataset establishes a robust foundation for lifecycle-
aware intrusion detection, capable of identifying early-stage
threats before large-scale DDoS execution.

C. Framework for Multi-Stage Mirai Detection

With the dataset labeled according to Mirai’s lifecycle stages
Benign, Reconnaissance, Exploitation, C&C Communication,
and DDoS. We developed a machine learning framework for
stage-wise intrusion detection. RF and XGBoost were selected
for their proven balance between accuracy, interpretability, and
computational efficiency in IoT environments.

The framework follows three sequential steps:

Data Preprocessing: The merged dataset was cleaned,
normalized, and feature-aligned to ensure uniformity across
all data sources.

Model Training: RF and XGBoost classifiers were trained
separately on stage-labeled samples to learn discriminative
patterns corresponding to each phase of the Mirai lifecycle.

Evaluation: Models were assessed using accuracy, preci-
sion, recall, F1-score, and confusion matrices to evaluate both
overall performance and stage-specific detection capability.

Leveraging lifecycle data and SHAP explainability, the
framework achieves early, interpretable, and scalable Mirai
detection in IoT networks.

IV. RESULTS AND DISCUSSION

The proposed stage-wise detection framework was evaluated
on the unified Mirai dataset described in Section III. The
dataset was balanced to ensure equitable representation of
all five categories Benign, Reconnaissance, Exploitation, C&C
Communication, and Attack each containing 100,000 samples.
This balance, yielding a total of 500,000 records, minimizes
class bias and enables a fair comparison of model performance.
The dataset was partitioned in an 80:20 ratio for training and
testing, respectively.

A. Classification Performance

We evaluated the Random Forest (RF) and XGBoost clas-
sifiers using standard performance metrics: precision, recall,
F1-score, accuracy, and Area Under the ROC Curve (AUC).
The results in Tables II and III show that both models
effectively distinguish Mirai lifecycle stages. RF achieved a
slightly higher overall accuracy (92%) than XGBoost (91%)
and better recall for C&C communication, suggesting im-
proved sensitivity to subtle coordination patterns. Figures 2
and 3 illustrate that both models maintained AUC values
near | across critical classes such as Attack and Exploitation,
demonstrating excellent discriminatory power.

B. Confusion Matrix Analysis

Figures 4 and 5 present the confusion matrices for RF
and XGBoost. Both models demonstrated strong performance
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TABLE II: Classification Metrics for Random Forest

Class Precision | Recall | Fl-score
Attack 1.00 1.00 1.00
Benign 0.75 0.94 0.84
C&C Communication 0.92 0.68 0.78
Exploitation 0.99 1.00 1.00
Reconnaissance 0.99 0.99 0.99
Accuracy 0.92%
TABLE III: Classification Metrics for XGBoost
Class Precision | Recall | Fl-score
Attack 1.00 1.00 1.00
Benign 0.74 0.91 0.81
C&C Communication 0.87 0.66 0.75
Exploitation 0.99 1.00 0.99
Reconnaissance 0.98 0.98 0.98
Accuracy 0.91%

across all classes, though minor confusion occurred between
Benign and C&C traffic due to overlapping temporal and
packet-size characteristics. RF misclassified 6,163 benign sam-
ples as C&C, whereas XGBoost misclassified 6,331. This
emphasizes the importance of interpretable models capable
of highlighting overlapping traffic characteristics for deeper
inspection. Overall, the models’ consistent recognition of Ex-
ploitation and Reconnaissance stages confirms their suitability
for early detection.

Receiver Operating Characteristic (ROC) Curves

True Positive Rate:

— ROC curve (Attack) (area = 1.00)
— ROC curve (Benig 0.97)

00 02 04 06
False Positive Rate

. 2: ROC Curve for Random Forest.

Receiver Operating Characteristic (ROC) Curves - XGBoost

True Positive Rate:

02 e
I P — ROC curve (Attack) (area = 1.00)
ROC curve ( )
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Fig. 3: ROC Curve for XGBoost.
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Fig. 4: Confusion Matrix for Random Forest.
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Fig. 5: Confusion Matrix for XGBoost.

C. Comparison with State-of-the-Art Methods

Table IV compares the proposed stage-wise framework
with representative state-of-the-art (SOTA) Mirai detection
approaches. While several deep learning models report higher
accuracy on specific datasets, they typically concentrate on
the final DDoS or C&C phases, neglecting early-stage behav-
iors essential for proactive mitigation. Most also function as
opaque, non-interpretable systems.

As shown in Table IV, most prior works achieve superior
accuracy by overfitting to narrow datasets or by focusing on
high-volume attack traffic (DDoS). However, these models
lack lifecycle diversity and interpretability. In contrast, our
framework covers the entire Mirai progression from recon-
naissance to attack enabling early detection and root-cause
traceability. Although the achieved accuracy (91-92%) is
marginally lower, the inclusion of multi-source data and XAI-
driven explainability provides greater robustness, transparency,
and operational relevance for real-world IoT defense. This
balance between performance and interpretability marks a
substantial improvement over traditional black-box IDS archi-
tectures.

D. Explainability and Feature Insights

Explainability is critical in operational security, where
decisions must be interpretable and actionable. We em-
ployed SHAP values to interpret RF and XGBoost pre-
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TABLE IV: Comparison of State-of-the-Art Mirai Detection Approaches with the Proposed Stage-wise Framework

No. Works Dataset(s) Methodology Lifecycle Coverage Explainability Accuracy Key Limitation
(%)
1 Alshehri et al. [19] N-BaloT CNN-LSTM Attack only X 99.91 Focused on final DDoS
(SkipGateNet) stage; no early-stage
insight
2 Kumar et al. [20] IoT-POT LSTM / RF / SVM Attack only X 99.80 Sequential analysis
only; ignores
reconnaissance and
C&C
3 Al-Fawa’reh et al. [4] MedBIoT, N-BaloT DRL with attention re- C&C, Attack X 99.80 Partial lifecycle cover-
ward age; black-box model
4 Gao et al. [21] MedBIoT CNN-Autoencoder C&C, Attack X 97.06 Limited dataset; no
(MACAE) feature interpretability
5 Li et al. [16] Device-specific Lightweight NN Device anomaly X 99.10 Device-level only; not
traces scalable
6 Proposed Work 10T-23 + RF, XGBoost + SHAP Recon, Exploit, C&C, v (SHAP) 92 -RF/91 Slightly lower accu-
CICIoT2023 + | (Stage-wise) Attack - XGBoost racy but full lifecycle
MedBIoT and explainable detec-
tion

dictions across all Mirai lifecycle stages. Figures 6a—6e
display the top contributing features per class. For the
Attack phase, conn_state_RSTOSO (SHAP = 0.103)
and history (0.072) were most indicative of anoma-
lous sessions. In the Benign class, duration (0.073) and
source_ip_bytes (0.064) dominated, reflecting stable
communication patterns. C&C traffic exhibited persistence
in duration and source_ip_bytes, while Exploita-
tion was characterized by local_source (0.128) and
conn_state_S0. Reconnaissance displayed long interac-
tion durations (duration=0.126) and frequent probe at-
tempts.

Comparative  SHAP analysis reveals that RF provided
clearer interpretability and higher recall for C&C traffic,
whereas XGBoost captured subtler inter-feature correlations.
Integrating SHAP thus enhanced transparency, enabling ana-
lysts to trace specific traffic attributes influencing classifica-
tion. This interpretability not only strengthens model trust-
worthiness but also supports forensic analysis and real-time
mitigation.

E. Discussion

While SOTA studies report accuracies nearing 99%, they
primarily emphasize reactive detection of DDoS traffic. Our
framework, though slightly lower in numerical accuracy, de-
livers a broader operational advantage: multi-dataset general-
ization, complete lifecycle visibility, and human-interpretable
reasoning. These qualities make it better suited for deployment
in heterogeneous IoT environments where explainability and
early response outweigh marginal accuracy gains. Conse-
quently, this stage-wise XAl-enabled model represents a shift
from purely predictive IDS to interpretable, context-aware
defense systems for 10T networks.

V. CONCLUSION

This study advances IoT security by addressing major gaps
in Mirai botnet detection, especially the limited representation
of early lifecycle stages. We introduced an enriched dataset,
integrating IoT-23, CICIoT2023, and MedBIoT, providing

comprehensive coverage from reconnaissance to attack exe-
cution. The proposed stage-wise framework, built on Random
Forest and XGBoost classifiers, achieved high accuracy (92%
and 91%) while providing SHAP-based interpretability that
highlights the most influential features across each lifecycle
stage. This explainability empowers proactive threat mitigation
and bridges automated detection with human expertise. Future
work will focus on integrating federated learning for privacy-
preserving, distributed detection and on developing lightweight
XAI modules optimized for resource-constrained IoT de-
vices. Overall, this lifecycle-aware, interpretable framework
transitions IoT intrusion detection from reactive response to
proactive defense.
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