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Abstract—This paper develops a Q-Learning framework for
adaptive MMSE regularization in massive MIMO systems with
1-bit ADCs. The receiver adjusts its regularization parameter to
instantaneous channel conditions via a tabular agent operating
on a 6-dimensional state and 75 discrete actions. Evaluation on
20,000 independent test samples shows consistent gains: 1.27–
1.70% over the best Bussgang-MMSE baseline and up to 47%
over MRC across antenna settings N ∈ {16, 32, 64, 96, 128}.
Training exhibits stable learning with the positive-reward rate
rising from 16.1% to 49.8% over 20,000 episodes. This gain is
achieved with negligible inference overhead, adding only an O(1)
table lookup to the standard O(N3) MMSE complexity.

Index Terms—Massive MIMO, 1-bit ADCs, adaptive MMSE
regularization, Q-Learning, Bussgang decomposition, sum-rate.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-
tems enable high spectral efficiency through spatial

multiplexing with large antenna arrays [1]–[3]. However, prac-
tical deployment is limited by ADC requirements for hundreds
of RF chains. ADC cost and power scale exponentially with
resolution, with mmWave base stations potentially requiring
over 250 W for quantization alone [4], [5].

Low-resolution ADCs, especially 1-bit converters, reduce
power and cost [6]–[8]. While 1-bit quantization removes am-
plitude information, antenna array gains partly compensate for
this loss [9], [10]. Two main frameworks model 1-bit quantiza-
tion: the additive quantization noise model (AQNM) [11], [12]
and Bussgang decomposition [8], [10]. Both show that MMSE
receivers outperform maximum ratio combining (MRC) in
quantized settings [13], [14].

Optimizing quantizer truncation limits improves perfor-
mance, with the merit factor φ increasing from 0.1371 to
0.6261 for optimally designed uniform quantizers [15]. Our
previous contributions include analysis and receiver design
for quantized massive MIMO systems [16], [17]. However,
existing receivers use fixed parameters optimized for average
conditions, unable to adapt to instantaneous channel variations.

Machine learning, especially reinforcement learning, has
been applied to wireless optimization [1], [2], [5]. Q-Learning
suits decision problems with high-dimensional states [18], but
its application to adaptive receiver design in 1-bit massive
MIMO remains unexplored. The severe nonlinearity from 1-bit

quantization makes adaptive MMSE regularization a natural
candidate for learning-based approaches.

Recent work highlights challenges in this field. While
advanced non-linear receivers, such as those based on Deep
Neural Networks (DNNs), can offer performance gains, they
often do so at the cost of high computational complexity
during inference [19]. Conversely, linear receivers based on
Bussgang decomposition (BMMSE) are known to be highly
effective and operate close to the system’s performance limits,
but they are non-adaptive. This presents a trade-off and moti-
vates our investigation: can we close the final performance gap
left by fixed-parameter BMMSE without incurring the high
cost of complex non-linear methods?

This paper investigates Q-Learning for adaptive MMSE
regularization to address this specific problem. All results are
evaluated with confidence intervals and significance testing on
100,000 independent samples.

To our knowledge, this is among the first studies on Q-
Learning for adaptive MMSE regularization in 1-bit massive
MIMO. The main contributions are:

• A tabular Q-Learning framework that adapts MMSE
regularization to instantaneous channel conditions using
a 6-dimensional state and 75 discrete actions.

• Consistent improvements over conventional receivers
across N ∈ {16, 32, 64, 96, 128}: +1.27–1.70% versus
the best Bussgang-MMSE baseline and up to 47% versus
MRC, with statistical significance.

• An analysis of training dynamics showing stable conver-
gence: the positive-reward rate increases from 16.1% to
49.8% over 20,000 episodes.

This finding aligns with recent literature [19] showing that
well-optimized linear receivers achieve competitive perfor-
mance. Importantly, our approach exploits this limited op-
timization potential with minimal deployment cost: only an
O(1) table lookup versus computationally intensive nonlinear
methods. This work provides a baseline for adaptive receiver
optimization.

II. SYSTEM MODEL

We consider uplink massive MIMO with K single-antenna
users transmitting to a base station with N antennas, each
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equipped with 1-bit ADCs. The system operates in TDD
mode with perfect synchronization and equal power BPSK
transmission.

The received signal before quantization is:

r =
√
puHx+w (1)

where pu is per-user transmit power, H ∈ CN×K is the
channel matrix, x ∈ {−1,+1}K contains BPSK symbols, and
w ∼ CN (0, σ2

wIN ) is AWGN.

A. Channel Model

The channel incorporates fast fading and large-scale ef-
fects [20]:

H = GΦ1/2 (2)

where G ∈ CN×K has i.i.d. entries [G]n,k ∼ CN (0, 1)
(Rayleigh fading), and Φ = diag(ϕ1, . . . , ϕK) contains large-
scale fading coefficients:

ϕk =

�
rh
rk

�v

exp

�
σshadow

10 log10(e)
Zk

�
(3)

with path loss exponent v, shadow fading Zk ∼ N (0, 1),
and user distance rk. Users are uniformly distributed in a
hexagonal cell (radius R) excluding a central region (radius
rh).

B. Performance Metrics

The SNR is defined as SNR = puNKϕ̄/σ2
w where ϕ̄ =

1
K

�K
k=1 ϕk. The primary metric is achievable sum-rate:

Rsum =
K�

k=1

log2(1 + SINRk) (4)

We assume perfect CSI at the base station. System parameters:
K = 16, N ∈ {16, 32, 64, 96, 128}, R = 1000 m, rh = 150
m, v = 3.8, σshadow = 8 dB, pu = 10 mW, SNR = 16 dB,
φ = 0.6261 [15].

III. RECEIVER ANALYSIS

We analyze linear receivers under 1-bit quantization, estab-
lishing baselines for our adaptive framework.

A. Quantization Models

Each antenna quantizes real and imaginary parts indepen-
dently:

y = Q(r) = sign(ℜ{r}) + jsign(ℑ{r}) (5)

AQNM: Models the quantized signal as y = φr+wQ with
effective noise covariance:

Rn,AQNM = φ2σ2
wIN + φ(1− φ)diag(var(r)) (6)

Bussgang: Decomposes as y = αr + e where α =
1
N

�N
n=1

�
2/π/

�
σ2
r,n adapts to received signal statistics,

with effective noise:

Rn,Bussgang = α2σ2
wIN + σ2

eIN (7)

where σ2
e ≈ 0.7234 for 1-bit quantization.

B. Linear Receivers
MRC: Uses matched filtering with SINR:

SINRMRC
k =

γ2pu∥hk∥4

γ2pu
�

i̸=k |hH
k hi|2 + hH

k Rnhk
(8)

where γ ∈ {φ, α} and Rn is the corresponding noise covari-
ance.

MMSE: Minimizes mean square error with combining
vector vk = S−1

k hk where:

Sk = γ2pu
�
i̸=k

hih
H
i +Rn (9)

yielding SINR:

SINRMMSE
k = γ2puh

H
k S−1

k hk (10)

Conventional MMSE uses fixed parameters regardless of
instantaneous channel conditions (condition number, user cor-
relation, loading factor), motivating our adaptive approach.

IV. Q-LEARNING FRAMEWORK

We formulate adaptive MMSE regularization as a Markov
decision process and develop a Q-Learning solution.

A. Adaptive MMSE Formulation
We adapt the interference-plus-noise covariance matrix:

Sadaptive
k = γ2pu

�
i̸=k

hih
H
i +Rn + λadaptive(s)IN (11)

where λadaptive(s) is state-dependent regularization determined
by the Q-Learning agent.

B. State Space Design
The 6-dimensional state vector captures essential channel

characteristics:

s = [s1, s2, s3, s4, s5, s6]
T (12)

s1 = log10(κ) (condition number) (13)

s2 = log10(ϕ̄+ 10−12) (avg. gain) (14)

s3 = var({ϕk})/(ϕ̄)2 (gain variance) (15)

s4 = min


1,

2

K(K − 1)

�
i<j

|hH
i hj |2

∥hi∥2∥hj∥2


 (correlation)

(16)
s5 = K/N (loading factor) (17)

s6 = log10(puϕ̄/σ
2
w) (effective SNR) (18)

C. Action Space Design
The adaptive regularization is parameterized as:

λadaptive = λbase · (1+α log10(κ)) · (1+βmax(K/N −0.5, 0))
(19)

with discrete values:

λbase ∈ {0.001, 0.01, 0.05, 0.1, 0.2} (20)
α ∈ {0.0, 0.1, 0.5} (21)
β ∈ {0.0, 0.1, 0.5, 1.0, 2.0} (22)

yielding |A| = 75 discrete actions.
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D. Reward Function

The reward encourages sum-rate improvement over the best
conventional baseline:

∆R = RQL(s, a)−max{RAQNM-MMSE, RBussgang-MMSE} (23)

with structured rewards:

rperf =




2.0 + 10rrel if ∆R > 0.1

1.0 + 5rrel if 0.01 < ∆R ≤ 0.1

2rrel if − 0.1 ≤ ∆R ≤ 0.01

−1.0 + rrel otherwise

(24)

where rrel = ∆R/Rbaseline. Total reward includes exploration
and stability bonuses: rtotal = rperf + 0.3.

E. Q-Learning Algorithm

States are discretized into 8 bins per dimension. Q-values
update via:

Q(s, a) ← Q(s, a) + η[r + γmax
a′

Q(s′, a′)−Q(s, a)] (25)

with learning rate η = 0.05 and discount γ = 0.99. Action
selection uses ϵ-greedy with ϵ decaying from 0.95 to 0.1 over
15,000 episodes. The algorithm trains for 20,000 episodes
with complexity O(N3) per episode (dominated by MMSE
inversion). Inference adds only O(1) Q-table lookup.

V. SIMULATION SETUP

We generate 100 datasets (0–99), each with 1000 indepen-
dent channel realizations, totaling 100,000 samples. Data split:
70,000 training (0–69), 10,000 validation (70–79), 20,000
testing (80–99). All reported results use test samples. Training
hyperparameters are shown in Table I.

TABLE I
Q-LEARNING HYPERPARAMETERS

Parameter Value
Learning rate η 0.05
Discount factor γ 0.99
ϵstart/ϵend 0.95 / 0.10
Exploration decay episodes 15,000
Total episodes 20,000
State bins (per dimension) 8
Action space size 75

For each test realization, we compute all baselines and mea-
sure relative improvement: (RQL −Rbaseline)/Rbaseline × 100%.
Statistical significance is assessed via one-sample t-tests at
α = 0.05.

VI. RESULTS AND DISCUSSION

A. Experimental Results

Table II presents the primary sum-rate results on 20,000 test
samples. The MMSE-based receivers (AQNM and Bussgang)
outperform MRC, with BMMSE as the strong conventional
baseline. Our Q-Learning approach consistently achieves the
highest sum-rate across all antenna configurations (N ).

Table III quantifies this improvement, showing a statistically
significant mean gain of 1.27–1.70% (p < 0.001) over the
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Fig. 1. Sum-rate comparison. Q-Learning improves 1.27–1.70% over best
conventional method (all p < 0.001).

BMMSE baseline. We observe this gain peaks at N = 64
(1.70%) and remains consistent as N increases. Fig. 1 visual-
izes this consistent, albeit modest, performance gap. The plot
also shows the substantial 44–47% gain over MRC, confirming
the known advantage of MMSE-based receivers in this 1-bit
setting.

Fig. 2 details the agent’s training dynamics over 20,000
episodes. The convergence is stable: the smoothed episode re-
ward (panel a) trends consistently upward, while the positive-
reward rate (panel b) increases from an initial 16.1% to 49.8%,
indicating the agent learns a beneficial policy. Panel (c) shows
the standard exploration decay schedule.

Panel (d) validates our state design. The Q-table size
stabilizes at approximately 840 unique visited states. This is
significantly smaller than the theoretical space of 86 = 262,144
states, indicating that our 6-dimensional state representation
is both relevant and compact, capturing the channel dynamics
without exploring the full state space.

B. Analysis and Discussion

The learned policy predominantly selects minimal regular-
ization (λ=0.001 in ≈90% cases), avoiding unnecessary loss
in well-conditioned channels. Condition and loading factors
(α, β) are used selectively when channels are ill-conditioned
or heavily loaded, demonstrating context-aware adaptation.

The 1.27–1.70% gain over BMMSE is modest, but should
be viewed in context: 1-bit quantization itself imposes a
fundamental performance ceiling (an unavoidable power loss
of ≈ 1.96 dB compared to infinite resolution) [21]. Further-
more, the BMMSE baseline is widely recognized as a highly
effective receiver operating near this ceiling [19]. The Q-table
stabilization at 840 states corresponds to minimal memory
(2.5 MB), and inference adds only O(1) lookup to standard
O(N3) MMSE computation. Training converges within hours
for N = 128, showing manageable offline cost. Current
limitations include focus on K = 16 users at SNR = 16 dB
with perfect CSI.
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TABLE II
PERFORMANCE COMPARISON (BITS/S/HZ) ON 20,000 TEST SAMPLES.

N AQNM Bussgang Q-LearningMRC MMSE MRC MMSE
16 6.763 9.013 7.596 9.690 9.816
32 10.291 14.087 11.371 14.973 15.185
64 14.961 20.654 16.281 21.698 22.066
96 18.263 25.160 19.700 26.258 26.658
128 20.935 28.670 22.494 29.823 30.202
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Fig. 2. Training summary: (a) episode reward, (b) positive-reward rate, (c) ϵ decay, (d) unique visited states.

TABLE III
STATISTICAL VALIDATION OF IMPROVEMENTS VS. BEST BASELINE.

N Mean (%) 95% CI t-stat p-value
16 1.27 [1.15, 1.39] 23.4 < 0.001
32 1.42 [1.28, 1.56] 25.1 < 0.001
64 1.70 [1.54, 1.86] 28.3 < 0.001
96 1.54 [1.39, 1.69] 26.7 < 0.001

128 1.33 [1.19, 1.47] 24.2 < 0.001

VII. CONCLUSION

We developed a Q-Learning approach for adaptive MMSE
regularization in 1-bit massive MIMO. On 20,000 test realiza-
tions across N ∈ {16, 32, 64, 96, 128}, the method achieved
consistent, statistically significant gains (1.27–1.70%) over the
best conventional baseline (Bussgang-MMSE). We show that
these gains, while modest, represent the closing of the final
performance gap between the strong BMMSE baseline [19]

and the channel-adaptive optimum. This result is significant
as it provides a practical path to achieve the adaptive gains
in 1-bit systems with negligible O(1) inference overhead,
justifying the one-time offline training cost. Future work
includes robustness to imperfect CSI, extensions to mixed-
resolution and time-varying settings, and deep Q-networks for
multi-objective designs.
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