
VeriStat: Verifiable QoS Compliance with Statistical
Guarantees in Programmable Data Planes

Pankaj Aswal
Dept. of Computer Science & Engg

Visvesvaraya National Institute of Technology
Nagpur, India

pankajaswal789@gmail.com

Prashanth PVN
Dept. of Computer Science & Engg

Visvesvaraya National Institute of Technology
Nagpur, India

prashanthpvn@gmail.com

Abstract—The growing reliance on mission-critical network
services demands a shift from traditional, empirical monitoring
toward verifiable Quality of Service (QoS) compliance. Existing
telemetry and measurement solutions provide useful statistical
summaries of network behavior but lack formal, auditable
accuracy guarantees essential for enforcing stringent Service
Level Agreements (SLAs). To address this gap, we propose Veri-
Stat, Verifiable QoS compliance with Statistical Guarantees in
programmable data planes. VeriStat employs a source-controlled
sampling mechanism implemented on a P4-programmable edge
device, enabling scalable and low-overhead data collection. Sam-
pled QoS outcomes are modeled as Bernoulli random variables,
and Hoeffding’s inequality serves as the statistical core to com-
pute the minimum sample size required to bound measurement
uncertainty within a specified accuracy and confidence level. A
prototype implementation on P4 BMv2 validates the framework
under varied network conditions and sampling configurations.
Results demonstrate that VeriStat can deliver continuous, sample-
efficient, and mathematically verifiable QoS compliance reports
with negligible performance overhead.

Index Terms—Verifiable QoS, Statistics, Programmable Data
Plane, P4

I. INTRODUCTION

The increasing demand for reliable and predictable net-
work performance, driven by applications in high-frequency
trading, industrial IoT, and telemedicine, has elevated Quality
of Service (QoS) compliance from a desirable feature to a
stringent, auditable requirement. Guaranteeing that network
metrics like latency and packet loss adhere to rigid Service
Level Agreements (SLAs) is non-negotiable, as even marginal
degradation can lead to significant operational or financial con-
sequences. However, achieving robust verifiable QoS remains
a fundamental challenge. The dynamic nature and massive
scale of modern networks makes it computationally infeasible
to monitor every packet, forcing operators to trade accuracy
for scalability when designing practical verification systems.

Traditional QoS monitoring systems, such as perfSONAR
[1], use active probes to estimate delay and loss; however,
probe traffic often diverges from real user traffic. Flow-based
export mechanisms such as NetFlow, sFlow, and IPFIX [3], [4]
aggregate statistics over intervals but sacrifice accuracy at finer
timescales, offering limited suitability for SLA verification. P4
(Programming Protocol Independent Packet Processors) based
In-band Network Telemetry (INT) [5] such as DLINT, PINT

[7], enhances network visibility by embedding metadata within
real time packets but require coordination across devices in the
network. Further, these works inherently prioritize minimizing
network overhead by collecting only a statistical representation
of the network state. Other P4-based frameworks such as
P4DM [9], P4-perfSONAR [10] and Lean [11] extend these
capabilities for specific monitoring tasks, however, they still
rely on empirically driven counters. While the existing works
provide valuable statistical insights into network health, they
are fundamentally incapable of providing the verifiable guar-
antees necessary for verifiable QoS compliance.

This paper presents VeriStat: Verifiable QoS Compliance
with Statistical Guarantees in Programmable Data Planes,
a framework that enables mathematical verification of QoS
without extensive per-flow monitoring. The approach shifts
sampling responsibility from intermediate switches to ingress,
where packets are deterministically selected and tagged for
monitoring. Instead of maintaining per-flow state, traffic
is grouped by service class such as application type al-
lowing scalable verification with minimal data-plane over-
head. Downstream P4-programmed switches simply recognize
tagged packets and export compact telemetry digests, enabling
lightweight but accurate QoS visibility across the network.

VeriStat employs Hoeffding’s inequality and Bernoulli-
based modeling as the statistical foundation for QoS com-
pliance verification. By precisely modeling sampled outcomes
as Bernoulli random variables, the system derives a provable
limit on the deviation between the measured empirical estimate
and the true QoS value. This integration allows operators to
compute the precise minimum sample size required to achieve
the desired accuracy with guaranteed confidence, fundamen-
tally transforming raw flow data into verifiable and auditable
compliance statements. The complete proposed system is
implemented and validated using P4 enabled BMv2 software
switches emulated using Mininet, demonstrating continuous
QoS verification under both compliant and non-compliant
network conditions with minimal performance overhead.

II. RELATED WORK

A. Traditional QoS Monitoring and Measurement

Early efforts in network performance monitoring predomi-
nantly relied on active measurement systems, including perf-
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SONAR [1] and Two-Way Active Measurement Protocol
(TWAMP) [2], which inject synthetic probes to estimate delay
and loss along end-to-end paths. While suitable for long-term
trend analysis, probe-based techniques often deviate from the
real experience of user traffic and introduce additional control
overhead. Passive export mechanisms such as NetFlow, sFlow,
and IPFIX [3] aggregate per-flow statistics from routers and
switches, enabling efficient traffic characterization but offering
limited temporal granularity and accuracy. More recent stream-
ing telemetry systems [4] enhance freshness but remain device-
centric and lack statistically verifiable accuracy. Collectively,
these approaches provide valuable operational observability
but are insufficient for auditable QoS verification.

B. Data-Plane Telemetry and Network Health Monitoring

The advent of P4-based programmable data planes revo-
lutionized network telemetry by enabling In-band Network
Telemetry (INT) [5], where switches can directly embed
performance data into packets as they traverse the network.
INT has become foundational tool for fine-grained visibility
within the data plane. By embedding hop-by-hop metadata into
live packets, INT allows operators to measure queueing delay,
path variation, and device state directly within the forwarding
pipeline. Existing in-band telemetry schemes such as DLINT,
PLINT, and PINT have primarily targeted operator-centric
network visibility. DLINT [7] provides fine-grained per-packet
monitoring but incurs significant per-switch overhead. PLINT
and PINT [8] reduce this cost through probabilistic or periodic
sampling, yet still require each switch to independently per-
form sampling decisions, which complicates coordination and
scalability in large networks. More recently, INT-Source [13]
shifts some decision-making to the source by selecting which
flows or packets should carry INT headers, thereby reducing
redundant instrumentation. However, INT-Source continues to
focus on maximizing network coverage rather than verifying
compliance with specific performance objectives.

C. Programmable Data-Plane QoS Monitoring

The programmability of P4 switches has inspired numerous
performance-monitoring systems with high-speed and low-
latency capabilities. P4DM [9] employs data-plane timestamp-
ing to measure link delay; Lean [11] and NetVision [12] use
compact sketches to detect high-loss or high-latency flows;
and P4-perfSONAR [10] integrates programmable switches
into existing measurement infrastructures for real-time QoS
tracking. While these frameworks demonstrate the expres-
sive power of P4 for in-network measurements, they remain
fundamentally network-driven focused on data collection and
visibility rather than formally bounded verification accuracy.
Their results are typically validated through empirical exper-
iments, lacking statistical guarantees that relate sample size,
error bounds, and confidence levels.

In Summary, active probing, telemetry-based visibility, and
programmable data-plane monitoring, the dominant goal has
been network observability, not verifiable assurance. Existing

methods either rely on synthetic probes, maintaining exhaus-
tive per-flow state, or lack formal mechanisms that quantify
estimation confidence. The challenge of achieving statisti-
cally provable QoS verification where operators can configure
and validate accuracy with guaranteed error bounds—remains
largely unaddressed. This work addresses that gap by intro-
ducing a source controlled, class-based sampling framework
that integrates Hoeffding-based concentration bounds within a
programmable data plane. By shifting the sampling logic to
the ingress and applying non-asymptotic statistical analysis,
the proposed approach bridges the gap between theoretical
assurance and practical, scalable verification.

III. THE STATISTICAL FOUNDATION: HOEFFDING’S
INEQUALITY FOR VERIFIABLE QOS

Hoeffding’s inequality is a powerful concentration inequal-
ity in probability theory. It provides a non-asymptotic upper
bound on the probability (δ) that the average (µ̂) of a set
of bounded, independent random variables deviates from its
true expected value (µ) by more than an error margin (ϵ).
The proposed approach leverages this inequality to achieve
provable statistical guarantees for QoS compliance. The in-
equality requires that the random variables are bounded and
independent. For independent random variables X1, . . . , Xn

bounded in the range [ai, bi], the general expression is:

P (|µ̂− µ| > ϵ) ≤ 2 exp

(
− 2ε2n2

∑n
i=1(bi − ai)2

)
(1)

A. Modeling Sampled Packet Outcomes as Bernoulli Random
Variables.

In order to apply Hoeffding’s inequality for QoS verifica-
tion, we model the outcome of monitoring a single sampled
packet as a Bernoulli Random Variable (Xi), that has only two
possible, mutually exclusive outcomes: 1 and 0 corresponding
to the labels success and failure. The probability of success is
given by P (X = 1) = p, while the probability of the failure
is 1− p, i.e., P (X = 0) = 1− p.

For example, when measuring packet loss: X = 1 (Success)
is assigned to the event that the packet is lost. X = 0
(Failure) is assigned to the event that the packet is not lost. The
parameter p is the true, unknown probability of packet loss.
This modeling particularly for metrics like packet loss rate,
satisfies the bounding requirement for Hoeffding’s inequality,
as the variable can only take values in the fixed interval [0, 1].
Further, by employing per-class Pseudorandom Number Gen-
eration (PRNG) for sampling, the individual packet outcomes
(X1, X2, . . . , Xn) are treated as a set of independent variables.

B. The True Mean and Measured Mean

Hoeffding’s inequality bounds the difference between the
actual and observed metric:

1) The True Mean (µ): This represents the unknown, real
QoS metric for the entire traffic class (e.g., the true

762



packet loss rate). It is the expected value of a single
packet outcome given by,

µ = E[Xi] = P (Packet Lost) (2)

2) The Measured Mean (µ̂): This is the calculated QoS
metric derived from the collected sample of size n. It is
the sample average, given by,

µ̂ =
1

n

n∑
i=1

Xi (3)

C. Deriving the sample size for Provable Guarantee

For Bernoulli random variables where ai = 0 and bi = 1,
the term

∑n
i=1(bi−ai)

2 simplifies to
∑n

i=1(1−0)2 = n. The
inequality becomes:

P (|µ̂− µ| > ϵ) ≤ 2 · exp(−2nϵ2) (4)

The inequality is inverted to determine the minimum re-
quired sample size (nreq) needed to guarantee a desired
confidence level (1− δ) with a target error margin (ϵ).

1) Set the upper bound equal to the desired failure proba-
bility (δ):

2 · exp(−2nreqϵ
2) = δ (5)

2) Solve for the minimum required sample size nreq:

nreq =
1

2ϵ2
ln

(
2

δ

)
(6)

By collecting at least nreq samples, the system achieves the
provable statistical guarantee that the true QoS metric (µ) is
within ±ϵ of the measured metric (µ̂), with a probability of
at least 1− δ.

IV. SYSTEM DESIGN

The VeriStat framework illustrated in Fig. 1, enables mathe-
matically verifiable (QoS) compliance monitoring by combin-
ing programmable telemetry with statistical guarantees derived
from Hoeffding’s inequality. The design consists of three
cooperative components: the (CPE), the Provider Network
Telemetry Plane, and the Central Collector. Each compo-
nent fulfills a distinct function: source-controlled sampling,
conditional in-network telemetry, and statistical verification
grounded in the theoretical model developed in Section III.

In conventional telemetry systems, performance metrics
such as delay or packet loss are inferred solely from pack-
ets successfully received by the collector. Packet drops or
reordering introduce ambiguity regarding the actual number
of packets sampled at the source, creating uncertainty in the
effective sample size. To eliminate this ambiguity, VeriStat
introduces a source-maintained counter that certifies each
initiated sampling trial, enabling the collector to accurately
determine when the analytically derived requirement nreq has
been satisfied and preserving the validity of the statistical
verification process.

A. Source-Controlled Sampling and Tagging

The Customer Premise Equipment (CPE), implemented on
a P4-programmable device, initiates the measurement process
by performing source-controlled sampling and tagging. This
design confines telemetry initiation to the network edge, en-
suring scalability and minimizing per-flow state in the provider
network.

1) Traffic Classification and Pseudo-Random Sampling:
Each incoming packet is classified into a traffic class (e.g.,
voice, video, best-effort), which determines its associated
sampling probability and verification profile. Sampling is im-
plemented using a pseudo-random number generator (PRNG).
For every packet, the P4 pipeline computes a hash value; if
it falls below the current sampling threshold Tp, the packet is
selected for telemetry participation. The Sampling Threshold
Tp is dynamically set based on the current experimental or
operational requirements. This sampling logic can be achieved
using standard P4 primitives which enable pseudo-random
packet selection and dynamic threshold adjustment for proba-
bilistic telemetry [13]. The continuous sampling process runs
independently of the collector’s state, feeding the data stream
until the required quantity (nreq) is accumulated.

2) VeriStat Sample Counter and Tag Generation: To main-
tain verifiable sampling progress under packet loss or re-
ordering, the CPE maintains a class-specific VeriStat Sample
Counter (VSC). Each time a packet is selected, the counter
increments, and its value is encoded as the VeriStat Sample ID
within the packet’s metadata. This identifier certifies the total
number of independent Bernoulli trials initiated at the source
and decouples the statistical stopping condition from the actual
delivery outcome. The selected packets are marked with a
lightweight VeriStat Tag and forwarded into the provider
domain for telemetry processing.

B. Provider Network: Conditional Telemetry Insertion

Packets carrying the VeriStat Tag traverse the provider’s
programmable switches configured for conditional telemetry
insertion. Each switch detects the tag and selectively performs
(INT) operations, appending key QoS metadata such as switch
identifier, ingress and egress timestamps, and queue occu-
pancy. Non-tagged packets bypass the telemetry pipeline and
follow standard forwarding paths. This conditional approach
ensures that telemetry processing and memory overhead are
proportional only to the sampled subset of packets, maintain-
ing scalability even under high traffic volumes. The telemetry-
enriched packets are exported to the Central Collector for
aggregation and analysis.

C. QoS Verification and Compliance Reporting

The Central Collector acts as VeriStat’s statistical veri-
fication engine. It continuously aggregates telemetry data,
evaluates compliance against QoS guarantees, and produces
verifiable compliance reports with defined confidence and
accuracy bounds. Algorithm 1 describes the verifiable QoS
process. In lossy network environments, direct reliance on
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Fig. 1. Overview of the VeriStat framework and its main components.

received packets can distort the true sample size, undermining
the guarantees established by Hoeffding’s inequality, which
assumes that the number of independent trials equals the
analytically required sample size (nreq).

VeriStat solves this issue through a cooperative counting
mechanism between the CPE and the Collector. The Collector
interprets the VeriStat Sample ID, embedded by the CPE in
each sampled packet, as the authoritative indicator of sampling
progress. This decouples the verification process from the
number of packets actually received, ensuring that packet loss
or reordering does not affect the correctness of the statistical
inference. The Collector continuously aggregates the QoS
metrics (e.g., packet loss, delay) of the incoming VeriStat-
tagged packets and monitors the highest Sample ID observed.
When this value meets or exceeds the analytically derived
requirement nreq, the verification trigger is activated. At that
point, the Collector proceeds to compute the empirical estimate
of the QoS parameter, constructs its confidence interval, and
evaluates compliance against the predefined SLA threshold.
This cooperative mechanism guarantees that verification de-
cisions are based on the true number of initiated trials,
preserving the rigor of the statistical confidence bound even
in the presence of network imperfections.

1) Formal Verification and Compliance Reporting: Once
the verification trigger is activated, the Collector computes
the empirical estimate µ̂ of the QoS metric, such as loss rate
or delay compliance. Using Hoeffding’s bound, the Collector
constructs a confidence interval around µ̂ and compares it
against the SLA requirements. If the interval lies within the
predefined accuracy ε at the confidence level (1 − δ), the
network is deemed compliant; otherwise, a QoS violation is
reported. Each compliance report is timestamped, stored, and
optionally signed for auditability. After report generation, the
monitoring cycle resets automatically, enabling continuous,
low-overhead QoS verification with provable statistical guar-
antees.

V. EXPERIMENTAL SETUP AND RESULTS

Experiments were conducted using the Mininet network
emulator with BMv2 P4 software switches, emulating a single-
operator domain. The topology (shown in Fig. 2) consists
of two P4 switches (S1, S2) and two hosts (h1, h2), where
h1 acts as the ingress sampler and traffic source (CPE),
while h2 serves as the collector and QoS verifier. The python
script written in the host (h 1) generates continuous stream of

Algorithm 1 Verifiable QoS with Statistical Guarantees
Require: QoS target µ, error margin ε, confidence 1− δ
Ensure: Statistical verification of compliance within (ε, δ)

bounds
1: Compute required sample size: n ← 1

2ε2 ln
(
2
δ

)
2: while system active do
3: Receive incoming packets at ingress
4: for each packet p do
5: if H(p.5tuple ∥ p.seq) < Tp then
6: Tag p with (sample id)
7: end if
8: end for
9: Forward packets through network

10: P4 switches extract telemetry for tagged packets
11: Collector aggregates digests {Xi}ni=1

12: if n ≥ nreq then
13: Compute empirical mean |µ̂ = 1

n

∑
Xi

14: if |µ̂− µ| ≤ ε then
15: QoS compliance verified with confidence 1−δ
16: else
17: Generate Non Compliance report.
18: end if
19: end if
20: end while

packets and randomly tag the packets with varying sampling
rates. Sampled packets are tagged at the ingress using the IPv4
DSCP field (DSCP = 46, Expedited Forwarding), encoded
in the IPv4 TOS/DSCP field. Each switch is programmed to
identify tagged packets, extract telemetry fields (timestamps,
port identifiers, and sequence numbers), and export digests to
the collector. Programmable switches match this DSCP value
and insert telemetry via a custom header. The collector module
on h2 aggregates digests, computes packet loss, and applies
the Hoeffding-based statistical verification model in real time.

Fig. 2. PoC Implementation: Mininet topology for QoS verification

The objective of the experiments is to evaluate VeriStat’s
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TABLE I
EXPERIMENTAL RESULTS — COMPLIANCE SCENARIO (HOEFFDING SAMPLING: n = 18,445, SAMPLE RATE = 10%).

Round Sampled Received Sampled Lost Sampled Loss (%) 95% Confidence Interval Compliance Status

1 18,269 176 0.954% [−0.046%, 1.954%] Compliant
2 18,284 161 0.873% [−0.127%, 1.873%] Compliant
3 18,262 183 0.992% [−0.008%, 1.992%] Compliant
4 18,257 188 1.019% [0.019%, 2.019%] Compliant
5 18,256 189 1.025% [0.025%, 2.025%] Compliant
6 18,254 191 1.035% [0.035%, 2.035%] Compliant
7 18,262 183 0.992% [−0.008%, 1.992%] Compliant
8 18,247 198 1.073% [0.073%, 2.073%] Compliant
9 18,267 178 0.965% [−0.035%, 1.965%] Compliant

10 18,267 178 0.965% [−0.035%, 1.965%] Compliant

TABLE II
EXPERIMENTAL RESULTS — NON-COMPLIANCE SCENARIO (UNDER-SAMPLED: n = 10,000, SAMPLE RATE = 10%).

Round Sampled Received Sampled Lost Sampled Loss (%) 95% Confidence Interval Compliance Status

1 9,895 105 1.050% [0.050%, 2.050%] Compliant
2 9,891 109 1.090% [0.090%, 2.090%] Compliant
3 9,920 80 0.800% [−0.200%, 1.800%] Compliant
4 9,759 241 2.410% [1.410%, 3.410%] Non-compliant
5 9,907 93 0.930% [−0.070%, 1.930%] Compliant
6 9,733 267 2.670% [1.670%, 3.670%] Non-compliant
7 9,901 99 0.990% [−0.010%, 1.990%] Compliant
8 9,912 88 0.880% [−0.120%, 1.880%] Compliant
9 9,896 104 1.040% [0.040%, 2.040%] Compliant

10 9,758 242 2.420% [1.420%, 3.420%] Non-compliant

capability to verify packet loss with provable confidence and
minimal overhead. For all experiments, the link between S1

and S2 was configured with a 1.00% drop rate. Mininet
leverages the Linux kernel’s NetEm module, which supports
precise, probabilistic packet loss; therefore, introducing a
1.00% drop rate in Mininet mimics the real network behavior
With target accuracy ε = 0.01 and confidence 1 − δ = 0.95,
the required sample size is derived via Hoeffding’s inequality:

A. Calculating the Required Sample Size
To illustrate the efficiency of the VeriStat framework, con-

sider a representative scenario where the objective is to verify
packet loss with an accuracy of ±1% at a 95% confidence
level. In this case, the permissible error margin is set to ε =
0.01, and the corresponding failure probability is δ = 0.05.
Substituting these parameters into the Hoeffding-based sample
size formula yields:

Substituting these values into the nreq formula:

nreq =
1

2(0.01)2
ln

(
2

0.05

)

nreq =
1

0.0002
ln(40)

nreq ≈ 5000× 3.6888 ≈ 18, 445 samples

Thus, a total of approximately 18,445 samples are sufficient
to ensure, with 95% confidence, that the empirically measured
loss rate µ̂ deviates from the true loss rate µ by no more than
±1%. Importantly, this required number of samples is inde-
pendent of the total traffic volume or flow duration, depending
solely on the desired accuracy and confidence parameters.

B. QoS Compliance Verification

Table 1 presents the results of ten independent trials where
the collector was programmed to aggregate samples until the
required statistical minimum of nreq = 18, 445 was met.
The objective was to validate the sufficiency of the calculated
sample size. Across all ten runs, the measured sample loss
rate (µ̂) consistently clustered tightly around the ground truth
of 1.00%. In every trial, the observed loss fell within the
expected range of [0.00%, 2.00%]. Crucially, the resulting
95% confidence interval, defined as [µ̂ − 1.0%, µ̂ + 1.0%],
successfully included the true loss rate of 1.00% This validates
that the combination of P4-based PRNG sampling and the
Hoeffding calculation effectively provides a reliable, auditable
compliance report with the guaranteed 95% confidence. Note
that since packet loss is a non-negative metric, any negative
lower bounds in the computed confidence intervals can be
treated as zero, since the loss values cannot be less than 0%.

C. Non Compliance QoS Verification

Table 2 presents 10 trials conducted under identical network
conditions, but utilizing an insufficient sample size of n =
10, 000 (approximately 54% of nreq). The samples exhibited
high statistical volatility, leading to a breakdown of the confi-
dence guarantee. The runs that resulted in non-compliance are
Rounds 4, 6, and 10. These results perfectly demonstrate the
necessity of nreq . The three out of the ten runs (30%) resulted
in measured sampled loss rates that were outside the ex-
pected range of [0.0%, 2.0%] (e.g., 2.410%, 2.670%, 2.420%).
For these non-compliant runs, the calculated 95% confidence
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TABLE III
ANALYSIS OF MEASURED LOSS AT DIFFERENT SAMPLING RATES

Sample Rate(%) Total Packets Sent Avg. Packets Dropped Avg. Loss (%)

5% 368,900 182.33 0.989%
10% 184,450 186.00 1.009%
15% 122,966 176.33 0.956%
20% 92,225 193.00 1.046%

interval completely excluded the true loss rate of 1.00%.
The observed failure rate of 30% significantly exceeds the
acceptable failure probability of δ = 5%. This confirms
that n = 10, 000 provides unreliable data and proves that
the explicit determination of the sample size via Hoeffding’s
inequality is a crucial feature that distinguishes this verifiable
method from conventional probabilistic telemetry.

D. Effect of Varying Sampling Rates

The experimental analysis of varying sampling rates vali-
dates the scalability of the VeriStat framework. For a fixed
statistical requirement (nreq = 18,445, ε = 1%, δ = 0.05), the
sampling rate (p) influences only the telemetry overhead and
time-to-report, not the accuracy of compliance verification.

Experiments conducted with p ∈ {5%, 10%, 15%, 20%}
as shown in Table III, confirmed that all measured average
loss values (µ̂) remained statistically consistent with the true
loss rate of 1.0%, demonstrating that accuracy depends solely
on the achieved sample size. Higher sampling rates reduced
the reporting delay but increased resource consumption, while
lower rates offered minimal overhead at the cost of slower
verification. This highlights VeriStat’s ability to balance op-
erational efficiency and verification latency without compro-
mising its formal statistical guarantees. This flexibility allows
network operators to choose the lowest feasible sampling rate
to maximize infrastructure scalability without compromising
the ϵ and δ statistical guarantee.

VI. DISCUSSION

The experimental results definitively validated the necessity
and sufficiency of the sample size (nreq) derived from Hoeffd-
ing’s inequality. The n < nreq trials confirmed the statistical
risk of under-sampling, observing a 30% failure rate in com-
pliance compared to the guaranteed δ ≤ 5%. Conversely, the
n = nreq trials demonstrated that the 95% confidence bound
reliably contains the true loss rate (µactual), thereby validating
the method’s rigor. However, Hoeffding’s inequality provides
a universally applicable, but often conservative, bound because
it ignores the variance (σ2) of the random variables. For high-
quality network services, such as enterprise VoIP true packet
loss (µ) is very small (µ ≪ 1%), Hoeffding’s conservative
nature leads to a higher nreq than is strictly necessary.

To achieve operational efficiency in near-zero-loss networks,
we plan to apply Bernstein’s inequality to compute nreq , which
incorporates variance and yields a tighter bound. Bernstein’s
inequality refines the bound by incorporating the low variance
(σ2 = µ(1 − µ)) characteristic of small loss probabilities.

This results in a tighter, less conservative sample size. By
introducing a reliable a priori estimate of µ (e.g., historical
average or SLA target) into the nreq calculation, Bernstein’s
inequality enables the system to maintain the same ϵ and
δ guarantee with significantly reduced telemetry overhead,
transforming the solution into an operationally optimized tool
for highly scalable P4 environments.

VII. CONCLUSION

This paper presented a novel framework for Verifiable QoS
with Provable Statistical Guarantees implemented within a
P4-programmable data plane. By integrating Pseudorandom
Number Generation sampling with the non-asymptotic con-
centration bounds of Hoeffding’s inequality, we move network
monitoring toward auditable, mathematically provable SLA
compliance verification. The experimental results confirmed
the method’s robustness by validating the sufficiency and
necessity of the sample size boundary, and demonstrated
the scalability gains achieved by decoupling accuracy from
sampling rate. Future work will focus on implementing Bern-
stein’s inequality to optimize the number of required samples
based on low-variance traffic characteristics, further minimiz-
ing telemetry costs for critical QoS applications. We also plan
to validate the framework on larger, multi-hop topologies and
extend verification to continuous metrics, including latency
and jitter, to ensure comprehensive SLA compliance.
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