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Abstract—Cloud native architecture is about building and
running scalable microservice applications to take full advan-
tage of the cloud environments. Managed Kubernetes is the
powerhouse orchestrating cloud native applications with elastic
scaling. However, traditional Kubernetes autoscalers are reactive,
meaning the scaling controllers adjust resources only after they
detect demand within the cluster and do not incorporate any
predictive measures. This can lead to either over-provisioning and
increased costs or under-provisioning and performance degrada-
tion. We propose NimbusGuard, an open-source, Kubernetes-
based autoscaling system that leverages a deep reinforcement
learning agent to provide proactive autoscaling. The agent’s
perception is augmented by a Long Short-Term Memory model
that forecasts future workload patterns. The evaluations were
conducted by comparing NimbusGuard against the built-in
scaling controllers, such as Horizontal Pod Autoscaler, and the
event-driven autoscaler KEDA. The experimental results demon-
strate how NimbusGuard’s proactive framework translates into
superior performance and cost efficiency compared to existing
reactive methods.

Index Terms—Elasticity, Autoscaling, Microservices, Rein-
forcement Learning, Proactive Scaling

I. INTRODUCTION

Popularity in microservice and container-based approaches
brought the term cloud native to the light. Kratzke and Quint
[1] defined cloud native applications as distributed, elastic
systems designed to take full advantage of cloud environments.
These applications are composed of small, independent, and
deployable units known as microservices. The elasticity is
provided through dynamic resource allocation to microser-
vices through scaling them properly on demand [2]. Kuber-
netes [3] has become the de facto standard for microservice
(container) orchestration, which handles elasticity with many
of the previously mentioned properties [4]. Kubernetes has
built-in mechanisms for dynamically allocating resources to
constituent containers and scaling them on demand. However,
the current approaches are reactive, meaning they adjust
resources only after they detect demand within the cluster.
This has proven insufficient for dynamic production workloads
often leading to either under-provisioning or over-provisioning
of the resources [5], [6]. An under-provisioned microservice
deployment cannot handle workloads efficiently, whereas an
over-provisioned deployment incurs unnecessary cost. There-
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fore, dynamic resource allocation that is both efficient and
cost-effective remains a challenging task.

To address these limitations, this paper presents Nimbus-
Guard, a novel, multi-modal framework for proactive Ku-
bernetes autoscaling. It introduces predictive foresight and
contextual understanding necessary for efficient cloud-native
resource management. The proposed solution is threefold: the
Deep Q-Network (DQN) agent learns optimal scaling policies,
the Long Short-Term Memory (LSTM) network forecasts
future workloads to provide temporal awareness, and the Large
Language Model (LLM) cognitive agent is orchestrated as a
stateful reasoning workflow, validating and refining scaling
decisions. Implemented as a production-ready Kubernetes op-
erator, our framework uses a central Model Context Protocol
(MCP) server to facilitate real-time, message-driven commu-
nication between the distributed Al agents.

Key Contributions:

1) A threefold DQN-LSTM-LLM architecture for intelli-

gent, proactive autoscaling of cloud-native applications.

2) The first use of a LangGraph-orchestrated [7] LLM agent

to validate infrastructure-scaling decisions by enriching
them with real-time log and policy data.

This paper is structured as follows. Section II surveys the
related literature. Section III presents the proposed proactive
Kubernetes autoscaling framework. Section IV explains the
experimental setup, data collection, and load generation pro-
cedure. Section V analyses the results and discusses the main
insights. Section VI summarises the contributions and suggests
directions for future research.

II. RELATED WORK

Elasticity in cloud-native applications is achieved through
dynamic resource allocation. It accommodates end-user-driven
fluctuations by adjusting storage, compute, and networking
resources over time. An autoscaler usually decides how many
resources an application receives, increasing or decreasing
capacity in real time to match user demand [2]. Kubernetes-
orchestrated microservice environments have built-in autoscal-
ing at two different levels: At the inference level cluster
autoscaler (CA) manages the elasticity property in the Nodes.
At the application level, Horizontal Pod Autoscaler (HPA),
Vertical Pod Autoscaler (VPA), and Kubernetes Event-Driven
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Autoscaler (KEDA) [8] manage the elasticity property in the
Containers. HPA scales workloads horizontally by adding or
removing pod replicas in response to resource metrics, whereas
the VPA resizes individual pods by adjusting their CPU and
memory requests and limits. Unlike HPA and VPA, KEDA
is not part of the core Kubernetes distribution, it’s a Cloud
Native Computing Foundation (CNCF) graduated open-source
extension for Kubernetes native HPA, enabling event-driven
scale-out and scale-to-zero [9].

All Kubernetes built-in solutions are reactive, so autoscaling
decisions are made solely from the system’s current state
[10]. Researchers have highlighted key issues of this reactive
autoscaling [11]-[13]. Toka et al. [6] identified three main
drawbacks of the current process: (1) scaling is reactive and
purely observation-based, (2) scaling behavior is not adapting
to the current variability of the demand, and (3) defining
scaling behavior is cumbersome because it requires tuning
numerous parameters. The same study proposed a Machine
Learning (ML) based proactive scaling engine. Mondal et
al. [11] highlighted the same issue of reactive autoscaling
using CPU and memory as a metric, making HPA incapable
of foreseeing upcoming workload spikes leading to Quality
of Service (QoS) violations, long tail latency, and wasted
resources. The authors proposed a proactive Custom Pod
Autoscaler that uses a Gated Recurrent Unit (GRU) based load
prediction model and a stability window to scale pods ahead
of demand.

To address the aforementioned issues, researchers have
explored proactive autoscaling [6], [12], [14] or hybrid au-
toscaling [15], [16] methods based on time series algorithms.
In terms of proactive autoscaling, the literature reveals three
themes of implementation: (1) Short-term demand forecasting
based, (2) performance prediction based, and (3) Reinforce-
ment Learning (RL) based. Each implementation exhibits
inherent drawbacks. Predictive models, such as the GRU by
Mondal et al. [11] and the Bi-LSTM by Dang-Quang and
Yoo [12], improve upon HPA by forecasting workloads. How-
ever, they function as open-loop systems. They predict future
demand but lack a sophisticated, closed-loop mechanism to
learn from the real-world impact of their scaling decisions.
RL approaches from Khaleq et al. [13] and Gari et al. [17]
introduce adaptive decision-making but are often constrained.
For example, Khaleq et al. [13] focus on learning optimal
thresholds rather than selecting direct scaling actions, which
is an indirect and less agile control method. Furthermore, these
RL models, including the DQN-based scheduler from Jian et
al. [18], operate on a limited set of default metrics and act as
black boxes, lacking an engineered feature set and explicit rea-
soning capabilities. A significant gap in all reviewed literature
is the absence of a cognitive validation layer. Also, they lack
a mechanism to interpret unstructured data like real-time logs
or to apply stateful reasoning to validate a scaling decision
before execution. This exposes them to risks where a purely
quantitative model might scale inappropriately during complex
events like a canary deployment or a database migration [19].

III. METHODOLOGY
A. Overview

NimbusGuard framework ensures component integration be-
tween the DQN adapter, LSTM forecaster, native Kubernetes
API, and Prometheus monitoring stack. The architecture, as
depicted in Figure 1, summarizes the overall flow of our
proposed approach, and it can be divided into the following
decision pipeline. Data Collection — Feature Processing —
DQN Inference — LLM Validation — Scaling Execution.
This cycle operates in 15-second intervals with stabilization
periods.

Q) NimbusGuard Cluster

Delegates Instrucitons ~ Provide cluster state

Fig. 1: High-level Overview of the Framework

B. Algorithmic Framework

NimbusGuard implements a novel hybrid autoscaling algo-
rithm that combines Deep Q-Network (DQN), Long Short-
Term Memory (LSTM) forecasting, and an optional Large
Language Model (LLM) validation layer for intelligent Ku-
bernetes container scaling. The system operates on a 30-
second decision interval. At each interval, it constructs a 6-
dimensional state vector. The agent’s action space is a discrete
set of three actions: scale_down (-1), keep_same (0), and
scale_up (+1). Upon initialization, the system loads its core
components:

e DOQN Networks: A Dueling DQN architecture is used
for both the main and target networks to improve policy
evaluation.

o« LSTM Forecaster: A 2-layer LSTM with 32— 16 hidden
units is used for time-series prediction of Kubernetes
consumer pod memory usage. The model uses only 2
aggregated features total_memory_mb, pod_count with a
20-interval lookback window 5 minutes and achieves
8.7% MAPE accuracy for 15-second ahead predictions.

« Experience Replay Buffer: A buffer with a capacity of
10,000 experiences is used for training the DQN agent.
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o Persistent Storage: Pre-trained models and feature
scalers are loaded from a MinlO object store.

The main operational loop is orchestrated as a stateful graph
using LangGraph, ensuring a modular and traceable execution
of the six critical nodes at each 30-second interval.

C. Context-Aware Reward System

The context-aware reward function is designed to guide
the learning agent toward optimal resource management deci-
sions by dynamically balancing performance, efficiency, and
stability. The algorithm’s has the ability to adjust its reward
composition based on the prevailing system context, which
is determined by workload characteristics and forecast confi-
dence.

The reward calculation begins by evaluating three com-
ponents. The first is a performance score that quantifies the
quality of service (QoS) using metrics. The second is an
efficiency score that assesses resource utilization, rewarding
configurations that meet performance targets with fewer re-
sources. The third component is a stability penalty, introduced
to discourage volatile or excessively frequent scaling actions
and promote system stability.

The system’s current operational state is classified by its
workload level (e.g., low, nominal, or high load). This classi-
fication, along with the confidence of the workload forecast,
determines two critical weights: one for the current state and
one for the forecasted state. This allows the reward system
to prioritize different objectives under varying conditions.
For instance, during a high-load state with a high-confidence
forecast, more emphasis can be placed on the proactive,
forecast-based reward component.

1) Current State Utilization Reward (R yrrent): This eval-
vates the immediate system performance using Gaus-
sian reward curves centered on optimal resource utiliza-
tion targets. It combines CPU utilization reward (target:
70%) and memory utilization reward (target: 80%) with
deployment-specific normalization:

Reyrrent = Wepu * chu (Ucpu) + Wmem * Fmem (umem)

2) Forecast-based Proactive Reward (Rforecast): When
LSTM-based memory predictions are available, this en-
courages proactive scaling decisions by evaluating the
forecasted system state. The forecast reward is calculated
using the same utilization reward function but applied to
predicted metrics:

Riorecast = Rutilization (PrediCted_metriCS)

3) Combined Utilization Reward: The system weights
current and forecast rewards with emphasis on predictive
capabilities:

Rcombined = Wecurrent * Rcurrem + Wrorecast Rforecast

4) Stability and Cost Components: Additional components
include stability rewards for maintaining system health,
action-specific bonuses for appropriate scaling decisions,

and cost penalties for resource waste. The final reward
integrates all components:

Rtotal = Rcombined + Rstability + Raction_bonus - Rcost_penalty

The system includes action-specific bonuses for appropri-
ate scaling (+0.2 for scale-up, +0.15 for scale-down) and
penalties for unnecessary actions (—0.3 for unnecessary
scaling, —0.5 for thrashing behavior).

D. LangGraph Stateful Ochestration

Algorithm 1 presents an autonomous scaling workflow
implemented as a directed acyclic graph (DAG). The
ExecuteWorkflow function initializes system state S with
current replica count r. and processes it through six sequential
nodes:

1) CollectMetrics: Gathers real-time performance data

2) GenerateForecast: LSTM network predicts future
resource demands

3) DONDecision: DQN agent determines optimal scaling
action

4) ValidateDecision: MCP server enforces replica
limits, scaling velocity constraints, and mandatory cool-
down periods to prevent system thrashing

5) ExecuteScaling: Implements the validated scaling
decision

6) CalculateReward: Computes reward signal for DQN
policy refinement

The workflow ensures system stability through MCP vali-
dation checks while enabling continuous learning via reward
feedback. The function returns updated system state S, com-
pleting the adaptive scaling cycle.

Algorithm 1 LangGraph Workflow Execution

Require: Current replica count r,
Ensure: Updated system state S ExecuteWorkflowr,

1: S < InitializeState(r)
S + CollectMetrics(S) {Node 1: Metrics Collection}
S + GenerateForecast(S) {Node 2: LSTM Forecasting}
S + DQNDecision(S) {Node 3: DQN Decision Making}
S « ValidateDecision(S) {Node 4: Safety Validation}
S < ExecuteScaling(S) {Node 5: Scaling Execution}
S + CalculateReward(S) {Node 6: Reward & Learning}
return S =0

S N U i

E. Feature Engineering and Selection

To optimize the learning efficiency of the DQN agent, a
feature engineering process was undertaken to reduce the state
space dimensionality. The primary goal was to create a state
vector that is both computationally efficient and information-
rich, eliminating redundancy while retaining the most critical
signals for intelligent autoscaling. This resulted in a compact
4-dimensional state vector, which distills complex system
metrics into a focused representation of the deployment’s
current state and predicted resource needs.
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The final state vector, S, is defined as:
S - [Sla 52,53, 84]

The components are constructed dynamically using real-
time metrics and predictive modeling:

s1: Predicted Memory Ultilization (%). The forecasted
memory utilization percentage based on LSTM time-
series prediction, providing proactive insight into future
memory pressure. This is the primary predictive signal
for scaling decisions.

s9: Current CPU Utilization (%). The instantaneous CPU
utilization percentage relative to the deployment’s total
CPU limits, calculated as:

_ Total Current CPU Usage

_ 100
52 Total CPU Limit

s3: Current Memory Utilization (%). The instantaneous
memory utilization percentage relative to the deploy-
ment’s total memory limits, calculated as:

Total Current Memory Usage
Saq =
3 Total Memory Limit

x 100

s4: Current Replica Count. The absolute number of cur-
rently active replicas, providing direct awareness of the
current scaling state and serves as a baseline for scaling
actions.

This approach for feature engineering ensures that the agent
operates on the most essential signals while maintaining the
ability to make informed, proactive scaling decisions. The
focus on memory prediction as the primary forward-looking
signal reflects the critical importance of memory management
in containerized environments, where memory pressure can
lead to pod evictions and service degradation.

IV. EXPERIMENTAL SETUP

This section details the environment, application, and
methodologies used to conduct a comparative analysis of the
three autoscaling configurations.

A. Testbed Environment

All experiments were conducted on a MacBook Pro
equipped with an Apple M4 Pro processor and 24GB of
unified memory. The testbed utilized Docker Desktop for
Mac (v4.x), which provided the containerization runtime. The
Kubernetes environment was a KinD (Kubernetes-in-Docker)
cluster running Kubernetes v1.28, provisioned and managed by
Docker Desktop. A significant portion of the host machine’s
resources (specifically, 8 vCPU cores and 16GB of memory)
were allocated to the Docker Desktop virtual machine to
ensure the KinD cluster had sufficient and stable resources for
the experiment. The entire test was executed within a dedicated
Kubernetes namespace to ensure workload isolation.

B. Target Application

The workload consisted of a stateless, containerized appli-
cation developed in Python with the FastAPI framework. The
application was designed as a deterministic consumer, where
each incoming request triggers a predictable and consistent
amount of CPU and memory usage. This deterministic behav-
ior makes it an ideal testbed for evaluating and comparing the
responses of different autoscaling mechanisms. Each container
replica was configured with the following resource specifica-
tions:

o CPU Request: 600m (0.6 of a virtual core)

e CPU Limit: 1000m (one virtual core)

« Memory Request: 512Mi

e Memory Limit: 1Gi
This configuration ensures that CPU utilization is the primary
scaling signal, providing a clear metric for the autoscalers to
act upon.

C. Autoscaling Configurations
Three autoscaling configurations were evaluated, represent-
ing proactive, reactive, and event-driven paradigms:

TABLE I: Comparison of the three autoscaling configurations
evaluated.

Autoscaler

NimbusGuard

Paradigm Key Configuration Details

Uses a DQN agent with LSTM mem-
ory forecasting and a 4-dimensional
state vector.

Proactive

HPA Reactive A standard Kubernetes baseline trig-
gered by 70% CPU or 80% memory
usage, with a 30-second stabilization

window.

KEDA Event-driven  Configured to use Prometheus metrics
with a 30-second polling interval and

cooldown period to match HPA.

D. Load Generation and Procedure

We employed a fire-and-forget asynchronous load testing
methodology [20] to simulate realistic, unconstrained traffic.
This approach prevents the load generator from becoming a
bottleneck and allows the system’s true performance under
pressure to be observed.

A custom Python script utilizing ‘asyncio‘ [21] was used
to generate the load. To ensure deterministic and perfectly
reproducible traffic patterns for fair comparison across all three
autoscalers, the load generation process was initialized with a
fixed seed.

The experiment followed a phased procedure:

o Phase 1: Ramp-up: A gradual increase in load (4 concur-
rent users, 40 total requests) to test the initial responsive-
ness of each autoscaler.

o Phase 2: Sustained Load: A period of consistent, high
load (8 concurrent users, 60 total requests) to evaluate
steady-state behavior and stability.
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o Phase 3: Peak Load: A significant spike in traffic (15 con-
current users, 90 total requests) to challenge the system’s
maximum scaling capabilities and stress resilience.

o Phase 4: Cooldown: A cessation of traffic with a light load
(3 concurrent users, 30 total requests) to observe scale-
down behavior and resource de-allocation efficiency.

E. Data Collection and Metrics

System-wide metrics were collected using a Prometheus
monitoring instance deployed within the cluster, configured
with a scrape interval of 15 seconds for high-resolution data.
The primary metric analyzed for this study was the number of
active application replicas over the duration of the experiment.
This metric reflects the scaling decisions made by each con-
troller in response to the identical, reproducible load pattern.

V. RESULTS

A. Performance Metrics Comparison

The results obtained by subjecting each autoscaler to an
identical, phased load pattern (discussed in the load gener-
ation section) reveal a clear divergence between the differ-
ent systems. The DQN-based NimbusGuard demonstrated a
highly aggressive, performance-oriented strategy, while HPA
and KEDA exhibited a more conservative, resource-efficient
approach. This aggressive strategy is a direct consequence
of the hyperparameters chosen for the DQN agent, which
were tuned to prioritize future performance. By assigning a
heavy weight to forecasted metrics forecastweight = 0.7.
Specifically, a high discount factor gamma = 0.99 makes the
agent farsighted, encouraging it to scale up proactively now to
prevent future negative rewards associated with performance
degradation. This forward-looking behavior is coupled with
a setup designed for agility; a relatively high learning rate
lr = 0.001 and a small replay buffer buf fer = 10000 allow
the agent to adapt quickly to the most recent workload trends.
This combination results in a responsive agent that aggres-
sively provisions resources to optimize for future Quality of
Service, setting it apart from the more conservative, reactive
baselines.

As shown in Table II, NimbusGuard operated with the
highest average replica count (5.44), significantly more than
HPA (3.05) and KEDA (2.93). This led to it having the
largest resource integral (2,775 pod-seconds), indicating a
strategy that prioritizes Quality of Service and responsiveness
over minimizing cost. Furthermore, NimbusGuard was the
most agile and least stable system, executing 8 total scaling
events, double that of HPA and KEDA (4 events each). In
contrast, HPA and KEDA offered greater stability and resource
efficiency, making them more cost-effective but potentially less
responsive to sudden load spikes. These findings highlight
a fundamental trade-off: the proactive, performance-focused
scaling of NimbusGuard versus the reactive, cost-efficient
stability of traditional autoscalers.
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TABLE II: Experimental Performance Comparison

Performance Metric DQN HPA KEDA
Avg. Time to Scale (sec) ~ 60s=+5s ~ 300s=+5s ~ 90s=£5s
Avg. Replicas (pods) 5.44 3.05 2.93
Peak Replicas (pods) 7 4 4
Total Scaling Events 8 4 4

DON represents the proposed NimbusGuard system with Deep Q-Network
intelligence with an uncertainty of +5s

B. DQN-Specific Intelligence Analysis

A deeper analysis of the agent’s internal state provides
insight into its decision-making process. The efficacy of the
primary proactive scaling feature, predicted memory utilization
(s1), is fundamentally dependent on the accuracy of the
underlying forecasting model. An enhanced LSTM model was
developed to predict memory usage, a key component of the
state vector. The model was trained on historical data from the
target application and evaluated on a hold-out test set.
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Fig. 5 Analysis of the enhanced memory prediction model.
The time series plot (left) shows a close tracking between
actual and predicted values. The scatter plot (right) shows
data points clustering tightly around the ideal fit line, visually
confirming the high R? value.

Fig. 6 shows the immediate reward the agent received after
each decision. The signal is a composite score derived from
the multi-objective reward function, balancing performance,
cost, and stability. The fluctuations reflect the constant trade-
offs the agent must make. For example, a negative dip might
correspond to a moment of temporary pod unavailability
during a scale-up, which penalizes the agent and teaches it
to scale more carefully in the future.

Enhanced Memory Prediction Analysis
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Fig. 5: LSTM Feature Analysis shows the proactive forecasts
for load pressure and trend velocity.
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Fig. 6: Reward Analysis shows the evolution of the reward
signal, which guides the agent’s learning.

The LSTM forecasts (Fig. 5) provided the agent with proac-
tive signals about future load pressure, enabling it to prepare
for changes rather than just react to them. The divergence of
these lines shows the agent learning to prefer actions that it
predicts will lead to higher future rewards. The reward signal
(Fig. 6) itself, while fluctuating, demonstrates the feedback
loop that drives this learning process.

VI. DISCUSSION

The results confirm NimbusGuard’s algorithmic advantages;
its multi-objective reward function and proactive LSTM fore-
casting enable it to anticipate load changes, a capability
reactive systems like HPA and KEDA lack. However, the study
is limited by the sequential evaluation of the autoscalers.

Future work should focus on two key areas:
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Expanding the action space (e.g., +2/-2 replicas) to allow
for more aggressive responses to load spikes.
Integrating Vertical Pod Autoscaling (VPA) to create a
hybrid system that can choose between adding more pods
or increasing the resources of existing ones.
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