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Abstract—3D Panoptic Scene Completion (PSC) has recently
emerged as a promising research direction in 3D computer vision,
particularly for autonomous driving and robotic systems. Unlike
conventional scene completion, which focuses solely on recovering
the geometric structure of incomplete 3D environments, PSC
not only reconstructs the full scene but also provides rich
semantic and instance-level understanding. This enables a more
comprehensive perception of the surrounding environment, which
is critical for safe navigation and high-level decision-making.
However, PSC remains an extremely challenging task due to
the inherent sparsity and occlusion of real-world 3D data, as
well as the need to effectively model both local geometric details
and global context for accurate scene completion and object
distinction. Inspired by that, we introduce a novel framework,
named SparseFusion-Net, an encoder–decoder architecture over
sparse voxels for large-scale 3D PSC. At the core of our model is
Sparse Context Fusion block (SCF Block), which integrates in-
formation across multiple scales to aggregate global background
context and local detailed information. This joint modeling not
only enhances geometric completion but also improves semantic
consistency and instance separation, leading to more accurate
PSC. Experiments on the SemanticKITTI benchmark demon-
strate that our framework outperforms state-of-the-art methods
by a significant margin using only LiDAR input.

Index Terms—3D panoptic scene completion, multi-scale fu-
sion, autonomous driving

I. INTRODUCTION

LiDAR scene completion plays a vital role in autonomous
driving systems, aiming to reconstruct the full 3D geometry
of real-world environments from sparse and occluded LiDAR
point clouds. Due to the inherent incompleteness of LiDAR
data, this task requires reasoning about missing structures
while maintaining semantic consistency. Recently, PSC [1] has
gained attention as it extends conventional scene completion
by jointly predicting voxel-level semantics and instance-aware
object masks, enabling the system to differentiate dynamic
objects (e.g., vehicles, pedestrians) from static structures (e.g.,
roads, buildings) in the reconstructed scene.

In the field of PSC, the current state-of-the-art method,
PaSCo [1], utilizes a 3D generative U-Net architecture en-
hanced with a panoptic-aware decoder. U-Net is built upon an
encoder–decoder structures: the encoder progressively down-
samples the input to extract hierarchical and multi-scale fea-
tures, while the decoder upsamples these features to recover
fine-grained spatial details and reconstruct the final scene
output. However, standard skip connections in U-Net directly

transfer low-level geometric details from encoder layers to
decoder layers of the same spatial resolution without resolving
the receptive field mismatch and semantic abstraction levels
between them. This inconsistency gives rise to a semantic
gap, referring to the difference in information representation
between encoder and decoder features. Specifically, encoder
features mainly encode local geometric cues, such as surface
edges and object boundaries, while decoder features at the
corresponding level represent high-level semantic and global
contextual understanding derived from deeper layers, including
object identity and spatial relationships within the scene. When
these geometry-rich yet context-limited encoder features are
directly fused into the decoder, the model receives informa-
tion that is spatially precise but semantically shallow. This
imbalance causes the decoder to overemphasize local details
while losing global coherence, leading to incomplete recon-
struction and inaccurate instance boundaries. For instance,
when reconstructing two vehicles parked side by side, the
model may blur or merge their contact boundaries, resulting
in an inaccurate instance separation. At the same time, the
overlapping body region is often reconstructed as a fragmented
or incomplete shape, revealing the model’s inability to recover
coherent geometry under insufficient global context.

We observe that adjacent encoder layers in a U-Net architec-
ture capture complementary aspects of the scene. The previous
encoder layer focuses on local geometric structures and fine
details, such as object boundaries and surface edges, due to
its smaller receptive field. In contrast, the next encoder layer
aggregates broader contextual and semantic information that
describes the overall scene layout and object relationships.
Leveraging both local and global cues is therefore essential
to bridge the semantic gap, reconstruct missing regions, and
maintain structural coherence in complex 3D environments.

To mitigate the limitation, we propose SparseFusion-Net,
an efficient sparse 3D network for PSC task. To effectively
process such sparse and irregular 3D data, our approach
builds upon a sparse 3D generative U-Net backbone and
incorporates a novel component called the Sparse Context
Fusion (SCF) block, which explicitly fuses features from both
previous (detail-preserving) and next (context-rich) encoder
layers. This cross-scale interaction helps refine fine structures,
strengthen semantic consistency, and improve overall panoptic
completion performance.
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Fig. 1. Overall architecture of SparseFusion-Net Architecture. Best view in colors with zoom-in.

II. METHODOLOGY

A. Network Architecture

As illustrated in Fig. 1, SparseFusion-Net follows a sparse
U-Net structure with four encoder stages and three decoder
stages. The encoder extracts hierarchical geometric and se-
mantic representations from the sparse input point cloud
X ∈ RN×3, where N denotes the number of points.

To achieve this, the encoder begins by voxelizing the input
point cloud into a sparse voxel grid, allowing efficient process-
ing of large-scale 3D data without unnecessary computations
on empty spaces. Each subsequent encoder stage applies
sparse convolutions to downsample the features, progressively
increasing the receptive field and capturing higher-level ab-
stractions while preserving sparsity.

Each encoder layer is connected to an SCF block, which
fuses the current-layer features with those from both the pre-
vious (detail-preserving, local detailed information) and next
(context-rich, overall spatial layout of the entire scene) encoder
layers. This design allows for richer cross-scale representation
learning and enhances both reconstruction completeness and
instance-level separation.

In the decoding stage, sparse generative transpose convo-
lutions (SGTC) progressively recover spatial resolution, while
sparse residual blocks (SRB) refine feature quality. Finally,
the transformer-based decoder refines instance queries and
produces a dense voxel representation Y = (mi, ci)

K
i=1, where

each mask mi corresponds to an instance or stuff region
associated with a semantic label ci ∈ {1, 2, . . . , C}.

B. Sparse Context Fusion (SCF) block

The traditional Sparse U-Net structure [1], [3] directly fuses
features between encoder and decoder layers of the same
spatial resolution through skip connections. However, due
to differences in the receptive fields across layers, this can
cause semantic gaps in the fused features. To address this, we
propose a novel Sparse Context Fusion block (SCF block)
illustrated in Fig. 2, which incorporates multi-scale global
context information to refine geometry and semantics, aiding
in occlusion recovery and better object instance separation.

Fig. 2. Architecture of SCF Block. Best view in colors with zoom-in.

Before skip connection operation, we aggregate the feature
from the current layer of the encoder denoted as Fc with the
feature from the previous and next layer of the encoder denoted
as Fp and Fn. Specifically, Fp is downsampled by Sparse
Convolution (SC) layer with kernel size 2×2, followed by
BatchNorm and LeakyReLU activations, formulated as F ′

p =
Down(Fp), where Down() represents a Downsample block.
Fn is upsampled by Sparse Generative Transpose Convolution
(SGTC) layer with kernel size 2×2, followed by BatchNorm
and LeakyReLu activations, formulated as F ′

n = Up(Fn),
where Up() represents an Upsample block. Both F ′

p and F ′
n

are refined using a squeeze re-weighting (SR) [7] for sparse
tensor, designed to re-weight important voxel-wise features
by modeling channel-wise dependencies in sparse voxels. The
outputs are fused with the current layer feature Fc through
summation:

Ffused = Fc + SR(F ′
p) + SR(F ′

n)
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Finally, Ffused is processed via a 1×1 Sparse Convolution
followed by BatchNorm and LeakyReLU activations to gen-
erate the output of the SCF block.

III. EXPERIMENT AND RESULTS

In this section, we present the experimental setup of the
proposed SparseFusion-Net and compare it with state-of-the-
art methods on the PSC benchmark derived from the Se-
manticKITTI dataset [4], following the evaluation introduced
in PaSCo [1]. Although SemanticKITTI does not provide PSC
labels by default, this benchmark extends its semantic labels
with instance-level information for comprehensive panoptic
evaluation.

A. Dataset

SemanticKITTI dataset has 11 sequences (sequences 00-07
and 09-10 for training, 08 for validation) with 19 semantic
categories (8 thing classes and 11 stuff classes). To adapt
the SemanticKITTI for the PSC task, we use DBSCAN [5],
[6] for clustering object instances from ad-hoc classes with a
distance threshold of ϵ = 1 and a minimum points parameter
MinPts = 8, extracting PSC labels following PaSCO [1].

B. Implementation details

We train SparseFusion-Net for 30 epochs on SemanticKITTI
by a NVIDIA RTX-3090 GPU, using AdamW [2] optimizer,
the learning rate is 10−4, and batch size of 1. Also, for
augmentation, we apply random rotations in [-30◦, 30◦] on
SemanticKITTI dataset, random cropping to reduce the scene
size to 80% along both the x and y axes, and random
translations of ±0.6m on the x/y axes and ±0.4m on z axis.

For training loss, we use voxel-query semantic loss (Lvoxel),
semantic loss (Lsem), and masks matching loss (Lmatched) from
PaSCo [1].

Ltotal = Lvoxel + Lsem + Lmatched (1)

C. Results

We compared the performance of SparseFusion-Net with
the existing method PaSCo on the SemanticKITTI validation
set, as summarized in Table I. SparseFusion-Net consistently
achieves superior results in all major panoptic metrics, includ-
ing PQ†, PQ, SQ, and RQ. In particular, it improves upon
the previous state-of-the-art [1] by +3.12/+1.6 on All-PQ†/PQ,
together with a +3.41 gain in SQ, indicating more accurate
segmentation, and a +2.36 increase in RQ, reflecting enhanced
recognition quality. Furthermore, SparseFusion-Net attains a
+1.27 gain on the auxiliary mIoU metric, indicating that it
not only maintains semantic completeness but also achieves
finer voxel-level discrimination. These results demonstrate that
SparseFusion-Net enhances both geometric reconstruction and
semantic consistency, resulting in more accurate and coherent
3D panoptic scene understanding.
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TABLE I
PERFORMANCE METRIC FOR PSC ON SEMANTICKITTI VALIDATION SET.

Model PQ† PQ SQ RQ mIoU

PaSCo* 23.08 12.12 49.8 19.29 26.47

SparseFusion-Net 26.20 13.72 53.21 21.65 27.74

* denotes our own re-implementation of PaSCo for a fair comparison
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