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Abstract—Tiny object detection has always been a crucial topic
in computer vision. The aim for high detection ability on small
targeting objects while remaining low in complexity is considered
the ultimate challenge, as traditional techniques are struggling
with computation cost and real-time capability. Therefore, this
study is conducted, testing a proposed lightweight object detector,
built from several innovations, on a public tiny shrimp dataset.
Regarding the methods, firstly, the object detector adopts the
unique feature extraction and aggregation block, the RepGCLI,
which is the combination of reparameterization convolution and
the Global Context and Local Interaction (GCLI) module. While
the reparameterization convolution allows the model to have
the flexibility to expand learning complex contexts and optimize
inference speed during training and inference, the GCLI module
assists the model in focusing on important characteristics by
establishing the interaction of global and local features via 1D
convolution to prevent information loss, subsequently reducing
the noisy particles under complex environments. Lastly, the deep-
scale detection framework is applied in the proposed detector,
enabling the extraction and fusion of more abstract information
to provide better feature visualizations of tiny targeting objects
under sophisticated conditions. As a result, the proposed detector,
named Reparameterized Deep-Scale Global-Local Interaction
Network (ReDS-GLINet), has outperformed most of the current
SOTA one-stage detectors in shrimp larvae detection while main-
taining significant computational efficiency and parameter con-
sumption. The mAP50 metric of this proposed detector reaches
up to 90.4%, the required parameters are only 8.66 million,
and FLOPS is 9.51G, which is half compared to the small-scale
YOLOVS. The proposed detector indicates the potential of high-
accuracy real-time application without sacrificing computation
cost in tiny object detection.

Index Terms—YOLOQO, Attention Module, Shrimp Larvae De-
tection.

I. INTRODUCTION

Shrimp larvae are normally extremely small in size. Fur-
thermore, they tend to appear in dense with translucent bod-
ies, burdening the detection head of several advanced deep
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learning models in tiny object detection. Because traditional
methods are labor-intensive, time-consuming, and prone to
human error, leading to the failed insights of the actual
shrimp population, recent development of deep learning has
been proposed, mainly aimed at automatic counting of tiny
shrimp approaches [1], [2]. However, existing models face
many challenges, such as low contrast between larvae and
water, various lighting conditions, and different background
environments due to debris or other marine particles [3].
Furthermore, it is noticeable that the shrimp larvae counting
process conventionally is combined with other IoT systems [4],
[5]. Hence, the deep learning models are expected to not only
have high performance in counting shrimp larvae, but they
are also required to function ordinarily on resource-restrained
devices.

In order to address the aforementioned problems, this
study proposes the novel architecture of a one-stage detector,
combining several innovations. Firstly, it is obvious that the
differences between the targeting objects and background
environments are crucial characteristics for recognizing the
tiny targeting objects.Therefore, the unique feature extraction
and aggregation blocks are proposed mainly utilizing the
combination of the reparameterization convolution [6] and the
global context and local interaction (GCLI) module [7]. While
the reparameterization convolution can expand its convolution
operations during training and merge them back to the original
form during inference, allowing the adaptation of the training
phase and inference phase for expanding learning ability or
optimizing speed, the GCLI module ensures the interaction
between global and local features, suppressing the noisy
background environments and producing suitable attention
weights that can lead the model to focus on potential targeting
patterns of the tiny targeting objects under complex conditions.
Secondly, to provide more information, the deeper scales of
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the architecture are introduced, consisting of P x 16, P x 32,
and P x 64 rather than P x8, P x 16, and P x 32. These deeper
scales are capable of extracting more abstract information,
which is important to handle the complex cases of detecting
shrimp larvae, such as overlapping and dense appearance. As a
result, the proposed model can effortlessly outperform most of
the SOTA one-stage detectors in the large-scale YOLO family,
reaching up to 90.4% mAPS50 in the shrimp larvae dataset,
while this model consumes nearly half the parameters and
FLOPS compared to YOLOVS [8].

The rest of the study is organized as follows: the related
works are mentioned in section 2, while section 3 should
provide the primary methodologies, section 4 should provide
the experiment results, section 5 mentions the limitations and
future works of the proposed model, and section 6 should
provide a conclusion. Eventually, section 7 is for acknowledg-
ment.

II. RELATED WORKS

Several noticeable works were proposed in the past in order
to address numerous problems in complex environments of
tiny object detection, especially in shrimp larvae detection.
For instance, Duan et al. [9] introduced the improved YOLOv5
[10] by using the C2f block for feature extraction and Convo-
lutional Block Attention Module (CBAM) [11]. Furthermore,
the authors also proposed the region segmentation technique so
that the receptive fields can be shrunk, highlighting the charac-
teristics of targeting objects. Another work of Awalludin et al.
[12] indicated the potential of image pre-processing techniques
in tiny object detection by proposing the Canny Edge and
Blob Processing for capturing the highlight features of shrimp
larvae under complex environments. As traditional anchor-
box approaches tend to be limited by the exceptional sizes of
targeting objects that do not appear in the training set, Zhang
et al. [13] introduced the unique anchor-free detector CAGNet
in their works. This unique model employed the Coordinate
Attention (CA) [14] in its backbone while having the spatial
feature fusion module in the neck network. As the attention
mechanisms assist the model to further focus on potential
patterns of targeting objects under complex environments, the
anchor-free heads allow the model to adaptively adjust the size
of bounding boxes for the small or extremely small shrimp
larvae. Acknowledging the appearance of various sizes of
shrimp larvae, Dang et al. [1] employed the multiscale feature
fusion network, allowing the deep learning model to learn the
pattern of targeting shrimp larvae at different scales, providing
higher detection ability in practical applications. Zhou et al.
[15] stated the labor-intensive nature of both traditional ap-
proaches and annotation workloads for deep learning methods
in counting shrimp larvae, so they introduced contrastive
learning to reduce the dependence on large training datasets
by extracting the information that contrasts the positive and
negative of each pair. Although the proposed methodologies
indicated promising results, there were still several problems
remaining, including the low contrast in environments and the
resource consumption of the proposed methods.

III. METHODOLOGIES

A. The Reparametizetion Glocal Context and Local Interac-
tion Block (RepGCLI)

Conv2d (1x1)

Convld (k)
SiLU

Global Max Pool
Convld (7x7)

Global Avg Pool

Fig. 1. Structure of the GCLI module.

The reparameterization convolution was first introduced in
the work of [6]. This unique convolution allows it to extend the
learning capability by expanding another convolution with a
kernel size of 1x 1 during training, having more gradients flow
to each convolution operation, while the extended convolution
can then be merged back to the original form to save speed
during inference. The merged convolution can still retain its
essential weights but have its extended flow cut off, resulting in
less gradient flow and increased inference speed. Apparently,
as the requirement of low computation cost and parameter
consumption, the reparameterization convolution is the crucial
part of the architecture that can assist the model to adapt to
low-platform devices. The GCLI module is, on the other hand,
this unique attention module that was originally introduced
to address the noisy labels in medical imaging [7]. However,
considering the complex patterns in tiny object detection, the
capability of the GCLI module can still have its vital role in the
task. This unique module captures long-range dependencies
and integrates 1D convolution to establish the relationship
between global and local features without any dimensionality
reduction, which may reduce the risk of information loss. The
GCLI module further has the partial feature learning ability,
which only allows a half number of features to be learnable,
which can be beneficial to suppress the weighted redundancies
caused by the attention mechanism. The structure of GCLI is
illustrated in Figure 1. By combining the reparameterization
convolution and GCLI module, the study proposed the RepG-
CLI block for feature extraction and aggregation. The Figure 2
below indicates the structure of RepGCLI.

This unique structure inherits the partial feature sharing in
CSPNet [16] to maintain the feature diversity and reduce the
burden of computation cost as the number of features is split
in half. While the first number of features is used for repa-
rameterization convolution, the rest of the features are passed
through an identity branch. This unique mechanism is widely
adopted in several advanced one-stage detectors [8], [17], [18]
due to its high reliability and fewer parameter requirements.
After the extraction phase, the output of reparameterization
convolution and the identity branch are then aggregated and
fed to the GCLI module to highlight the important features
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Fig. 2. Structure of the C2f block and the proposed RepGCLI block.

through suitable attention weights and suppress the irrelevant
feature effect. At the end of this block, the weighted features
are then passed through the final convolution for refining the
fine-grained outputs before using them in the next stage.

B. The Deep-scale Detection Framework

The multi-scale detection framework is the primary compo-
nent of many advanced one-stage object detectors that allow
the deep learning models to detect and recognize the targeting
objects regardless of different scales. While the popular scales
for recent detectors are P x 8, P x 16, and P x 32, the
special sizes of shrimp larvae, which are extremely small, can
reduce the capability and reliability of these scales. Hence,
in order to detect the shrimp larvae effectively, it requires
the unique deeper scales, providing more abstract information
of complex patterns that can visualize more advantageous
features of targeting objects. As a result, the P x 64 scale is
introduced, while the P x 8 is suppressed for saving parameter
and computation costs, this new modified version of multi-
scale detection framework is called Deep-scale Detection
Framework (DDF). The proposed DDF is proposed in Figure 3
below.

P/64
P/32 P/32
P/16 P/16
P/8 P/8
P/4 P/4

Original multi-scale detection framework Deep-scale detection framework

Fig. 3. Structure of the proposed DDF.

As illustrated in the mentioned figure, the backbone network
is then extended to have a P x 64 scale to expand the model
extraction ability of different complex scenarios of shrimp
larvae. This information is used for feature aggregation in the
neck network and has its interaction with other shallow scales
to provide advantageous feature visualization. At the end of
the neck network, the final scales that are chosen for detection
consist of P x 16, P x 32, and P x 64. In order to prevent
unnecessary computation cost and suppress extra parameters,
the P x 8, which is the shallowest scale, is suppressed. This
deep-scale detection framework is proposed to provide more
abstract extracted patterns that are useful for detecting tiny
objects under different complex scenarios, where the shrimp
larvae can overlap on each other or have low contrast.

C. The Proposed Reparameterized Deep-Scale Global-Local
Interaction Network

Reparameterized Deep-Scale Global-Local Interaction Net-
work (ReDS-GLINet) is the proposed one-stage detector for
tiny object detection, which has its backbone and neck network
integrated with the RepGCLI block for feature extraction and
aggregation, while the deep-stage detection framework serves
as the primary multi-scale object detection architecture of the
model. The Figure 4 below indicates the overall ReDS-GLINet
architecture.

The unique architecture is mainly inherited from the
YOLOVS [8] with a small scale in model parameters. All the
C2f blocks, which are the original blocks in the YOLOv8 base-
line model, are replaced with the RepGCLI block throughout
the entire architecture. Unlike the traditional C2f block, which
has its bottleneck serving as the main convolution operation,
the RepGCLI blocks use the reparameterization convolution
to extract features from the targeting objects, allowing the
flexibility of the operation during training and inference in
order to optimize the learning capacity and execution speed.
Furthermore, the P x 64 scale is adopted in the backbone
network to enhance the feature extraction ability. During the
neck network, P x 16, P x 32, and P x 64 are the three
main detection scales for feature aggregation to provide feature
visualization for the final prediction heads. By having the
RepGCLI with the proposed deep-scale detection framework,
the ReDS-GLINet shall provide higher performance in tiny
object detection while having the parameter consumption and
computation cost reduced because of the bottleneck structure
replacement. In addition, the involvement of the flexible con-
volution operation in reparameterization allows the model to
then expand its learning capability and shrink for higher speed
without affecting performance adaptively.

IV. EXPERIMENTS

In order to provide the meaningful experiment results of
different components in ReDS-GLINet, the ablation study is
carried out to learn the effect of each part in the ReDS-GLINet
compared to the original baseline YOLOvS8. Furthermore, to
evaluate the ability of the GCLI module, other SOTA attention
modules, which include ECA [19], CBAM [11], SE [20], GCB
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Fig. 4. Structure of the proposed ReDS-GLINet.

[21], simAM [22], and CA [14], are added and suggested to
replace the position of the GCLI module in the RepGCLI.
The proposed ReDS-GLINet are then evaluated with other
one-stage detectors, including YOLOvVS [10], YOLOv6 [23],
YOLOv7 [17], YOLOVS [8], YOLOv9 [18], YOLOv10 [24],
YOLOvI11 [25], and YOLOV12 [26]. The models are evalu-
ated in performance using precision, recall, mAP50, mAP50-
95, and the number of parameters and FLOPS in resource
consumption and computation cost.

A. Experimental dataset

The dataset used in the experiment is public access on the
Roboflow platform [27], [28] with about 860 images in total.
The shrimp larvae in the dataset are small to very small and
appear dense with different lighting conditions and a complex
background caused by irrelevant particles that are similar to
the shrimp larvae. The author of the dataset conducts the top-
down position of the camera angle at different heights with
1280 pixels resolution. Furthermore, the backgrounds of the
containing boxes for shrimp larvae are various in color, making
the detection become challenging. This study further re-splits
the training, validation, and test sets as follows: 232 images for
training, 205 images for validation, and 423 images for testing.
By providing a higher number of data for testing, the final

result of the model can be more general for various cases in
practical detection. Several images of the dataset are illustrated
in Figure 5.

Fig. 5. Several samples of the shrimp larvae dataset.

B. Environment and Hyperparameters Setups

All the models are trained and evaluated on a single machine
using an Intel Core i7 12700K with 32GB RAM and a GPU
GeForce RTX 3090 24GB VRAM, PyTorch version 2.4.0 with
CUDA version 11.8, and Ubuntu 23.0 OS. All the experimental
models are trained from scratch without using any pretrained
model with the hyperparameter setups indicated in Table 1.

TABLE I
THE SETTING OF HYPERPARAMETERS FOR TRAINING AND TESTING
PHASE.
Hyperparameter Value
Learning rate 0.01
Input size 1280 x 1280
Batch size 2
Epoch 200
Weight decay 0.0005
Momemtum 0.937

C. Ablation Experimental Results

This ablation study is carried out to gain insight about the
effect of each component in ReDS-GLINet. Table II illustrates
the performance of the model with each component attached.

As indicated in the table, the YOLOvVSs is the small-scale
baseline of YOLOVS originally achieves a precision of 80.2%
and a recall of 83.76%. Although it can achieve the mAP50
up to 86.04%, the computation cost and number of parameters
are remarkably high, reaching up to 28.60 GFLOPS and 11.13
params. By introducing the DDF, the performance of the
model is significantly enhanced, improving the precision to
86.66%, while the mAP50 is achieved up to 90.3%. In spite
of the noticeable ability in detection capability of the model,
the params are increased remarkably from 11.3 to 15.40.
However, as the deeper scale requires fewer computation costs
because of the smaller size of feature maps, the GFLOPS
is decreased incredibly from 28.60 to 16.99. These results
indicate that the deeper scales are exceptionally crucial to
provide sustainable information for tiny object detection while
being beneficial in resource consumption. Additionally, in the
final configuration, the RepGCLI is introduced to replace all
the C2f blocks in the baseline small-scale YOLOvVS. This
configuration successfully maintains the overall performance
of the model, which the mAPS50 is slightly increased to 90.4%,
while it witnesses a small decline in mAP50-95. However,
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THE PERFORMANCE OF DIFFERENT COMPONENTS IN REDS-GLINET ON THE EXPERIMENTAL TEST SET.

TABLE I

Model Precision (%) | Recall (%) | mAP50 (%) | mAP50-95 (%) | Params (Million) | FLOPS (G)
YOLOVS8s 80.28 83.76 86.04 58.14 11.13 28.60
YOLOvV8s + DDF 86.66 84.15 90.3 58.98 15.40 16.99
YOLOVSs + DDF + RepGCLI 86.80 84.15 90.4 58.81 8.66 9.51

its efficiency is significantly improved, as the number of
parameters drops from 15.40 to 8.66 million, and the GFLOPS
is nearly halved from 16.99 to 9.51, making it much more
lightweight and computationally efficient. This configuration
is the final form of ReDS-GLINet. In summary, while the DDF
improves performance at the cost of computational efficiency,
the introduction of RepGCLI astonishingly reduced the com-
plexity without negatively affecting the overall performance,
making it well-suited for real-world applications, particularly
in resource-constrained environments.

D. Model Experimental Results

This section is carried out to evaluate the performance of
the proposed detector with other SOTA one-stage detectors,
mainly focusing on the YOLO family to test the real-time
capability. Table III illustrates the overall performance of each
detector on the experimental shrimp larvae test set.

The table indicates that the proposed ReDS-GLINet demon-
strates the highest performance among other one-stage de-
tectors, with the model boosting the precision to 86.80%
and recall to 84.15%, while mAP50 is 90.4% and mAP50-
95 is 58.81%. The results illustrate the significant detection
capability compared to other current detectors. In comparison,
the YOLOV7 indicates the competitive mAP50 as it reaches
up to 85.91%, while the mAP50-95 is achieved at 58.56%.
However, this model has the highest computation cost with
significant params. Similarly, the YOLOvS, while this model
reaches slightly higher than the YOLOv7 in mAPS50 metrics,
still suffers from a noticeable computational burden. Although
the latest models, YOLOv11 and YOLOv12, have remarkably
low parameters and computation costs, their performances
are much lower than others, especially YOLOv12, whose
mAP50 is the lowest among the category. As YOLOvI1
and YOLOvI12 are mainly powered with the self-attention
mechanism, these results indicate that such a mechanism is
not suitable in the case of tiny-object datasets. On the other
hand, the earlier version, such as YOLOvS5, which is the
most lightweight detector as it only consumes 2.50 million
parameters and 7.2 GFLOPS, still achieves the remarkable
performance of mAP50 and mAP50-95. The YOLOV6 is about
double in computation cost or params, but it offers slightly
lower performance compared to YOLOvS. Overall, the ReDS-
GLINet is the most suitable detector under various complex
scenarios of the experimental dataset. This unique detector
offers a notable performance in detection while maintaining
computational efficiency. Its unique feature extraction block
and deep-scale detection framework allow it to outperform
other one-stage detectors in both high accuracy and efficiency.

Several detection samples of the ReDS-GLINet are presented
in Figure 6 below.

Fig. 6. Several detection samples of ReDS-GLINet in the test set.

V. LIMITATIONS AND FUTURE WORKS

In spite of the significant performance of the ReDS-GLINet,
the extra parameters and high computation cost are still consid-
erable problems compared to other current one-stage detectors.
The YOLOvVS small scale uses only 2.5 million parameters,
compared to the ReDS-GLINet’s 8.66 million parameters.
The proposed model also failed to find the targeting objects
in a number of very complicated situations, such as when
there were a lot of them overlapping or when particles that
weren’t related to the targeting objects showed up. Figure 7
indicates several failed detection cases for the proposed model.
Therefore, there is still room for further experimentation
by proposing several data augmentation techniques or image
processing to filter the irrelevances. In addition, it is noticeable
to conduct work with a more advanced deep learning model
in order to improve the overall detection performance to
further reduce unnecessary computation costs and resource
consumption.

Fig. 7. Several failures cases of ReDS-GLINet.

VI. CONCLUSION

In conclusion, the ReDS-GLINet has outperformed most of
the current SOTA one-stage detectors in tiny object detection,
with its highest mAP50 reaching up to 90.4%. In addition,
the proposed detector can achieve significant performance
while maintaining remarkable computational efficiency. The
ReDS-GLINet only requires 9.51 GFLOPS and 8.66 params
in order to function normally, making it a suitable option for
detecting tiny objects such as shrimp larvae on low-platform
devices. Furthermore, this study also illustrates the potential of
using deeper scales in deep learning architectures to construct
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THE PERFORMANCE OF DIFFERENT ONE-STAGE DETECTOR ON THE EXPERIMENTAL TEST SET.

TABLE III

Model Precision (%) | Recall (%) | mAP50 (%) | mAP50-95 (%) | Parameters (Million) | FLOPS (G)
YOLOVS5 78.86 83.04 84.60 56.23 2.50 7.2
YOLOv6 78.85 81.07 83.40 54.66 4.23 11.9
YOLOV7 79.79 84.09 85.91 58.56 11.41 34.8
YOLOVS 79.82 84.46 86.38 59.28 11.13 28.6
YOLOV9 79.57 84.74 86.34 59.30 7.28 27.4
YOLOVIO 78.29 81.93 83.88 56.81 8.06 24.8
YOLOvI1 78.45 82.27 84.07 56.55 9.41 21.3
YOLOvI2 77.38 79.91 81.85 53.99 9.23 21.21

ReDS-GLINet (our) 86.80 84.15 90.4 58.81 8.66 9.51

robust feature visualizations for the final detection heads for
recognizing tiny targeting objects, while the GCLI module
shows its ability to suppress noise of complex patterns in
under sophisticated environments making it an ideal choice
for a combination of other convolution operations in small-
scale deep learning models.
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