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Abstract—Remote Desktop Protocol (RDP) is a common vector
for lateral movement in enterprise breaches. While recent ma-
chine learning (ML) approaches report high detection accuracy
on historical logs, their resilience to adversarial manipulation
and their interpretability remain underexplored. This paper
evaluates two complementary detectors for RDP-based lateral
movement: a strong event-level classifier (LogitBoost) and a
sequence-aware LSTM with adversarial training. Using inte-
grated LANL RDP logs, we reproduce state-of-the-art accuracy
for LogitBoost on clean data and then probe robustness under
gradient-based evasion (FGSM/PGD) and light poisoning. We
find that small perturbations can significantly degrade the event-
level model, whereas the sequence model retains higher recall by
leveraging temporal dependencies. SHAP-based analyses reveal
which features and time patterns drive decisions, enabling action-
able hardening (feature diversification, adversarial training, and
heterogeneous ensembling). Overall, we provide a reproducible
evaluation of accuracy, explainability, and robustness for RDP
lateral-movement detection and outline practical defenses that
improve resilience without sacrificing interpretability.

Index Terms—Lateral movement, Remote Desktop Protocol
(RDP), adversarial robustness, explainable AI (XAI), LogitBoost,
LSTM.

I. INTRODUCTION

Lateral movement is a decisive stage in modern intrusions:
once an initial foothold is established, adversaries pivot across
endpoints, harvest credentials, escalate privileges, and position
for data theft or disruptive action. In Windows enterprise
ecosystems, Remote Desktop Protocol (RDP) is both ubiq-
uitous for administration and attractive for misuse, making
RDP telemetry a high-signal surface for early detection. This
environment presents defenders with a fundamental tension:
the same features that enable legitimate operations (remote
access, shared credentials, after-hours maintenance) also create
opportunities for stealthy propagation that blends into routine
activity.

Machine learning (ML) has shown considerable promise
for detecting RDP-based lateral movement in historical logs,
with reports of high accuracy when evaluated on standard
splits and benchmarks [1], [2]. Event-level classifiers trained
on authentication and session metadata can flag suspicious
connections by learning discriminative patterns such as un-
usual source–destination pairs, bursts of failed logons, and
atypical timing or duration characteristics. Sequence models

further integrate temporal context to capture unfolding tactics,
techniques, and procedures (TTPs) over windows of activity.
Yet despite encouraging aggregate metrics, two underexplored
questions persist: how robust are these detectors to deliberate
manipulation, and how interpretable are their decisions to an
analyst who must act under time pressure?

Practical deployments face three challenges that compli-
cate model reliability. First, operational drift and seasonal-
ity shift the distribution of legitimate activity, making static
patterns brittle. Second, adaptive adversaries can alter seem-
ingly innocuous attributes—spacing, order, and volume—to
degrade detection without sacrificing campaign objectives.
Third, scarce labels and class imbalance can bias models
toward superficial correlates. Combined, these factors raise
the risk of overconfident but fragile decisions that fail exactly
when adversaries adapt [3], [4]. Robustness and interpretability
are therefore not optional add-ons but co-requirements for
trustworthy security analytics.

This work examines RDP-based lateral movement detection
through a dual lens of adversarial robustness and explain-
ability. We study two complementary detectors: (i) a strong
event-level baseline (LogitBoost) that achieves state-of-the-
art accuracy on clean data, and (ii) a sequence-aware LSTM
that leverages temporal dependencies and adversarial training.
Using integrated LANL-style RDP logs, we evaluate both
models under evasion (gradient-based perturbations such as
FGSM and PGD) and light poisoning scenarios that reflect
realistic operational risks. Our threat model assumes a capable
adversary who can nudge certain observable features but does
not control ground-truth labels at scale or the defender’s full
pipeline.

Beyond accuracy, we analyze why models decide as they do.
Using SHAP-based explanations, we quantify global feature
importance and probe local attributions on individual detec-
tions [5]. This reveals fragile correlates that inflate confidence
(e.g., artifacts of logging cadence or routine maintenance win-
dows) and highlights temporal interactions that remain stable
under small perturbations. These insights guide concrete hard-
ening measures: feature diversification to reduce overreliance
on any single cue, adversarial training to smooth decision
boundaries, and heterogeneous ensembling to amortize model-
specific weaknesses.
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Our empirical results show that the high clean-data accuracy
of the event-level baseline does not guarantee resilience: small,
targeted perturbations can sharply reduce recall, and limited
poisoning can tilt decision thresholds. The sequence model,
in contrast, maintains higher recall under attack by exploiting
temporal structure, though it incurs additional computational
cost. We characterize these trade-offs and provide practi-
cal recommendations for deployment, including ablations on
feature sets, attack budgets, and defense configurations that
balance robustness and analyst interpretability.

The contributions of this paper are fourfold. First, we
reproduce a strong LogitBoost baseline for RDP lateral move-
ment on integrated logs and validate its clean-data perfor-
mance. Second, we design a sequence-aware LSTM with
adversarial training and demonstrate improved robustness un-
der FGSM/PGD-style evasion. Third, we conduct SHAP-
based explainability analyses that expose brittle correlates and
motivate targeted hardening via feature diversification and
heterogeneous ensembling. Fourth, we release a structured,
reproducible pipeline aligning preprocessing, training, attack
generation, and evaluation to facilitate future benchmarking
and extension by the community.

The remainder of the paper reviews prior work on RDP
detection, adversarial ML for security analytics, and explain-
able intrusion detection (Section II); details datasets, features,
model architectures, and attack/defense methods (Section III);
accuracy, robustness, and explainability results along with
limitations and future directions (Section IV); and concludes
(Section V).

II. RELATED WORK

Research on detecting lateral movement (LM) via the
Remote Desktop Protocol (RDP) has evolved along three
converging threads: (i) supervised, event-level machine learn-
ing (ML) on Windows host logs; (ii) sequence- or graph-
aware models that leverage temporal context; and (iii) systems
papers that report high accuracy yet under-analyze adversarial
robustness and model explainability. Our work sits at this
intersection by (a) benchmarking a strong event-level classifier
(LogitBoost), (b) evaluating a sequence-aware LSTM with
adversarial training, and (c) using SHAP-based attributions to
expose decision drivers and guide concrete hardening actions.

A seminal line by Bai et al. frames RDP as a primary tool
used during LM and shows that distinguishing benign adminis-
trative use from malicious sessions is inherently challenging.
Their journal article highlights limitations in publicly avail-
able LANL Windows event datasets and proposes combining
richer host/network views to mitigate scarcity and bias while
preserving realism; they then extract session-level features and
compare supervised classifiers, reporting performance gains
over prior baselines and discussing resilience to selected
adversarial attempts [6]. This body of work establishes a
rigorous event-level baseline and a practical data recipe that
later studies—including ours—build upon.

Their earlier conference paper focuses squarely on learning
from Windows RDP event logs and demonstrates that an

anomaly-detection-styled pipeline with supervised ML can
classify RDP sessions with high precision and recall on
LANL-style data [7]. It reiterates the APT kill-chain backdrop,
positions LM as a pivotal phase, and argues that Windows
logon events (e.g., 4624/4634) leave footprints suitable for
modeling session rarity and misuse. Together, the 2019 and
2021 papers anchor the host-log ML approach to RDP LM
detection and provide reproducible starting points for feature
engineering, sessionization, and evaluation [6], [7].

Complementing event-level classifiers, subsequent works
explore deep models and temporal representations. Aljadani
and Alsubhi apply CNN/RNN architectures to LANL event
logs and report very high accuracy for RDP-based LM de-
tection, arguing that deep sequence models can capture subtle
dependencies in authentication behaviors [8]. While promis-
ing, these results raise the need for explicit robustness checks
(e.g., gradient-based evasion, light poisoning) and transparent
description of sessionization and features to avoid overfitting
to dataset artifacts. Other portions of their work review broader
LM detection pipelines and note the utility of authentication
logs for uncovering traversal patterns—an observation that
supports leveraging temporal dependencies rather than isolated
events [8].

A parallel thread in systems-style APT detection positions
RDP LM as an exemplar within a larger defense pipeline.
Sakthivelu and Vinoth Kumar propose an APT detection-
and-mitigation stack in which they first classify RDP session
logs using a suite of ML models and report that AdaBoost
achieves near-perfect aggregate metrics; they then add a dy-
namic deception mechanism to mitigate attacks [9]. While this
expands beyond detection into response, the empirical em-
phasis remains on headline accuracy, with limited analysis of
adversarial stress-testing of the classifier and little discussion
of per-decision explanations that would translate findings into
precise, actionable controls [9].

Stepping back, the literature converges on several con-
sensus points. First, LM is pivotal in APT campaigns and
RDP is frequently involved, making it a naturally high-value
signal for defenders [6], [7]. Second, Windows event logs
provide sufficient structure to support supervised detection at
the session level, provided careful sessionization and feature
engineering [7]. Third, temporal context helps distinguish
legitimate administration from stealthy traversal, suggesting
that sequence-aware models can reduce false negatives relative
to purely event-local classifiers [8]. These points collectively
motivate our dual-model study that keeps event-level perfor-
mance while explicitly modeling temporal dependencies.

At the same time, three gaps persist—gaps our work di-
rectly targets. Adversarial robustness remains underexplored
in many LM studies that optimize for clean-data accuracy;
stress-tests against gradient-based evasion (e.g., FGSM/PGD-
style perturbations of session features) and light poisoning are
sparse, and defenses are seldom validated under strong attack
models. Explainability is often summarized as feature lists
rather than per-decision attributions that enable operational
hardening via precise rules and thresholds. Finally, the event-
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level versus sequence-level trade-off is rarely benchmarked
side-by-side under common adversarial budgets and identical
preprocessing, leaving unclear when heterogeneous ensem-
bling or adversarial training is warranted [6]–[9].

Against this backdrop, our contribution is a reproducible
evaluation of accuracy, explainability, and robustness for RDP
LM detection on integrated LANL RDP logs: we benchmark a
strong LogitBoost event-level model (reflecting the Bai et al.
tradition of session-level supervised ML) and a sequence-
aware LSTM with adversarial training (addressing the tem-
poral intuitions raised by deep models). We then conduct
gradient-based evasion and light poisoning experiments to
map failure modes systematically and use SHAP to identify
dominant features and time patterns that drive both models’
decisions. The SHAP insights allow us to articulate actionable
defenses—feature diversification, adversarial training, and het-
erogeneous ensembling—that raise robustness without sacri-
ficing interpretability, directly closing the methodological gap
left by prior accuracy-first treatments [6]–[9].

III. PROPOSED FRAMEWORK / METHODOLOGY

A. Problem Setting and Threat Model

We aim to detect RDP-based lateral movement (LM) from
Windows-enterprise telemetry by classifying RDP sessions as
benign or malicious. Following prior work that operationalizes
RDP telemetry for LM detection [6], [7], we assume standard
blue-team visibility into authentication/connectivity logs and
focus on features derivable from Windows logon events and
session metadata. The adversary can (i) perform inference-time
evasion by nudging observable features (timings, burstiness,
source–destination rarity) and (ii) conduct light poisoning by
introducing a small fraction of mislabeled or crafted samples
into training data. This aligns with common adversarial ML
models of evasion and poisoning attacks [3], [10]–[12] and
the intrusion kill-chain perspective [13].

B. Data and Sessionization

We integrate LANL-style Windows/RDP logs as in [6],
[7], applying sessionization to group correlated events (4624,
4634, and RDP connection records) into per-connection units
suitable for supervised learning. We remove corrupt/duplicate
records, normalize timestamps, and align host/user identifiers.
Following [6], we split by time to avoid leakage, reserving the
last portion as the test window. For class imbalance, we adopt
stratified splits and probability calibration.

C. Feature Engineering

We extract two complementary families of features:
• Event-level features (per-session): duration statistics

(e.g., SourceMeanDuration, MedianDuration),
counts (failed/total logons), temporal markers (hour-of-
day, day-of-week), principal and host rarity, and rolling
window aggregates inspired by [6], [7].

• Sequence features: n-session windows per principal or
per host capturing order, spacing (inter-arrival times),

TABLE I: Illustrative feature set (abbreviated).

Feature Type Description

SourceMeanDuration Numeric Mean duration of sessions
from a source

FailedLogonBurst Numeric Count in sliding window
(e.g., 15 min)

PrincipalHostRarity Numeric Rarity score of (user, host)
pair

HourOfDay Categorical Time-of-day bucket (0–
23)

InterArrivalP50 Numeric Median gap between ses-
sions (seq. window)

TransitionEntropy Numeric Diversity of next-hop
hosts (seq. window)

burstiness, and transitions (Markov-like) as suggested by
deep/sequential approaches [2], [8], [14].

D. Models

We investigate two complementary detectors:
a) Event-level LogitBoost: A strong supervised baseline

used in RDP LM work [6], [7], [9]. We tune number of
estimators, shrinkage, and tree depth by validation. This model
is efficient and accurate on clean data, but can over-rely on a
few salient features.

b) Sequence-aware LSTM: A recurrent model over per-
principal (or per-host) windows that consumes sequences of
session-level vectors [2], [8], [14]. We employ a 1–2 layer
LSTM with dropout and a sigmoid head. To improve re-
silience, we incorporate adversarial training (below).

E. Adversarial Training and Attacks

We consider standard first-order attacks: FGSM and multi-
step PGD [3], [10]. For the LSTM, we augment training
with a mixture of clean and adversarially perturbed sequences
(projected into valid feature ranges). For poisoning, we fol-
low [11], [12] by injecting a small budget of crafted points into
training to probe robustness. All perturbations respect feature
semantics (e.g., non-negativity, bounded time fields) and are
applied in a normalized feature space with inverse-transform
checks.

F. Explainability

We apply SHAP to both models to recover global and local
attributions [5]. For tree-based LogitBoost we use TreeSHAP;
for LSTM we use sampling-based KernelSHAP on sequence
summaries. We compare global ranks and visualize local
attributions for true positives, false positives, and adversarially
flipped cases, complementing security-oriented explanation
methods such as LEMNA [15].

G. System Overview and Artifacts

Fig. 1 shows the processing pipeline from raw logs to
sessionization, features, models, attacks/defenses, and explana-
tion outputs. We release configuration files for preprocessing,
train/val/test splits, attack budgets, and SHAP sampling set-
tings to ensure reproducibility (mirroring practices emphasized
in [6]).
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Fig. 1: End-to-end pipeline for RDP lateral-movement detection and robustness evaluation.

TABLE II: Clean-data performance (test window).

Model AUROC AUPRC Recall@FPR=10−2 ECE

LogitBoost 0.996 0.994 0.949 0.02
LSTM 1.000 1.000 0.988 0.01

Fig. 2: SHAP summary for LogitBoost on the test window
(top-k features).

IV. RESULTS AND DISCUSSION

Table II summarizes clean-data performance. Consistent
with prior event-level work on RDP LM [6], [7], LogitBoost
attains very high AUROC/AUPRC but can over-rely on a few
salient features. The sequence LSTM achieves superior clean-
data performance while providing substantially improved ro-
bustness under adversarial perturbations.

Fig. 2 shows a SHAP summary for LogitBoost, revealing
heavy reliance on duration/rarity features. This aligns with
security-focused explanation studies [5], [15] and motivates
feature diversification before deployment.

Under PGD, the event-level model exhibits steep recall
drops at fixed FPR, consistent with adversarial ML find-
ings [3], [4], [10]. Fig. 3 visualizes degradation versus ϵ.

The LSTM retains higher Recall@FPR under FGSM/PGD
(Figs. 4–5), echoing sequence-model resilience in log analyt-
ics [2], [8], [14]. Adversarial training smooths decision bound-
aries but may slightly reduce clean AUPRC—an instance of
the robustness–accuracy trade-off [16].

Fig. 3: PGD impact on LogitBoost at different budgets (ℓ∞).

Fig. 4: FGSM impact on the adversarially trained LSTM.

We verify that attacked feature distributions remain close
to operational ranges to avoid unrealistic perturbations. Fig. 7
shows a counterfactual realism check supporting the plausibil-
ity of adversarial examples; this follows best practices from
evasion studies and security pipelines [17], [18].

Fig. 6 demonstrates the temporal resilience of both mod-
els during sustained attack campaigns, clearly showing the
LSTM’s superior performance stability over extended attack
sequences.

Table III reports robust Recall@FPR and calibration under
attack. Temperature scaling helps stabilize LSTM probabili-
ties; isotonic calibration benefits LogitBoost.

We test heterogeneous ensembling (LogitBoost + LSTM).
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Fig. 5: PGD impact on the adversarially trained LSTM.

Fig. 6: Temporal performance comparison during sustained
attack sequences. The LSTM maintains higher detection prob-
ability across time steps, while LogitBoost shows significant
degradation during attack periods (marked with red stars).

TABLE III: Robust recall and calibration under attack (ϵ =
0.1).

Model FGSM Recall@FPR=10−2 PGD Recall@FPR=10−2 ECE

LogitBoost 0.00 0.02 0.08
LSTM (adv) 0.82 0.97 0.04

A simple probability average or logistic stacking improves
robustness at moderate attack budgets and reduces reliance on
any single feature family, echoing ensemble hardening themes
in security analytics [6], [8]. Report final ensemble gains in
Recall@FPR and AUPRC.

Fig. 7: Counterfactual realism check: attacked vs. clean feature
distributions.

V. CONCLUSION

This paper examined RDP-based lateral-movement detec-
tion through the joint lenses of accuracy, explainability, and
adversarial robustness. Building on prior host-log approaches,
we reproduced a strong event-level LogitBoost baseline and
introduced a sequence-aware LSTM with adversarial train-
ing. On clean data, LogitBoost achieved near–state-of-the-
art performance, but robustness experiments showed sensi-
tivity to small, targeted perturbations and light poisoning.
The LSTM retained higher Recall@FPR under FGSM/PGD
by leveraging temporal dependencies, highlighting a practical
robustness–accuracy trade-off. SHAP analyses clarified which
features and temporal motifs drive decisions, exposing brittle
duration-centric correlates and guiding concrete hardening
measures (feature diversification, adversarial training, and het-
erogeneous ensembling) without sacrificing interpretability.

Our study has scope limits: attacks target features available
to the adversary and respect semantic constraints; exploring
stronger, causally grounded manipulations of sessionization is
future work. Poisoning budgets are conservative relative to
worst-case theory [11], [12]. Results reflect a single integration
of LANL-style logs and may require adaptation for other
environments or richer, multi-source telemetry [18]. Promis-
ing next steps include cross-domain validation under varying
logging cadences; graph-temporal models on principal–host
interaction graphs; certified robustness techniques tailored
to tabular/sequence detectors; and operational coupling with
deception/response mechanisms [9]. Extending explanation
to multi-modal telemetry and adding causal regularization
can further anchor model decisions in security-relevant evi-
dence [15].
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