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Abstract—This paper presents a deep learning-based 
integrated 2D–3D video analysis system for hazardous behavior 
recognition in surveillance applications. A multimodal RGB–
Depth dataset was constructed across urban buildings, 
industrial sites, and construction sites, covering 15 
representative hazardous behaviors frequently observed in real-
world surveillance scenarios. An R(2+1)D convolutional neural 
network was trained and optimized using this dataset to 
effectively learn spatio-temporal patterns from synchronized 
RGB and depth inputs. Experimental results show that the 
proposed system can accurately detect various hazardous 
behaviors in real time by jointly analyzing 2D and 3D visual 
information, demonstrating its potential for intelligent 
surveillance and rapid risk response applications. 
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I. INTRODUCTION 
With the rapid expansion of urban infrastructure and 

industrial facilities, real-time hazard recognition systems have 
become critical for ensuring safety and security. 
Environments such as urban buildings, construction sites, and 
industrial sites are vulnerable to various dangerous behaviors 
including intrusion, theft, abandonment, falldown, falling, 
loitering, fire, weapon detection, and safety violations. 
Conventional CCTV surveillance systems rely primarily on 
2D RGB video. However, they often perform poorly in 
environments with low illumination, occlusions, or complex 
spatial layouts. To address these limitations, recent research 
has actively explored multimodal RGB–Depth video analysis 
to improve the robustness and accuracy of action recognition 
[1–3]. For example, Rahmaniboldaji et al. proposed a depth-
enhanced action recognition framework to improve 
recognition accuracy under challenging visual conditions [1]. 
Kini et al. investigated egocentric RGB–Depth action 
recognition in industry-like environments, showing that 
multimodal approaches can improve action recognition 
performance for workplace monitoring and safety [2]. 
Furthermore, Zhang and Wang [3] presented a comprehensive 
survey on RGB–D action recognition methods, highlighting 
the importance of temporal modeling and multimodal feature 
fusion for reliable surveillance systems. Based on these 
advancements, this paper proposes a deep learning-based 
integrated 2D–3D video analysis system that utilizes 
synchronized RGB and depth data to detect hazardous 
behaviors across multiple surveillance domains. A 
multimodal dataset was constructed containing 15 hazard 
categories, and an R(2+1)D CNN was optimized to learn 
spatio-temporal features for accurate, real-time hazard 
recognition [4,5,6].  

The remainder of this paper is organized as follows. 
Section 2 describes the multimodal dataset construction and 
the proposed R(2+1)D-based system architecture. Section 3 
presents the training strategy and experimental evaluation. 
Section 4 concludes the paper and discusses future research 
directions. 

II. INTEGRATED 2D-3D VIDEO ANALYSIS SYSTEM 

A. Multimodal Dataset Construction 
To build a robust hazard recognition system, a 

synchronized RGB–Depth dataset was collected in three 
representative physical security environments: urban 
buildings, industrial sites, and construction sites. These 
domains were selected to reflect real-world surveillance 
scenarios involving diverse spatial structures, activities, and 
lighting conditions. Fig. 1 shows the overall data collection 
configuration. RGB and depth sensors were installed at 
multiple viewpoints to simultaneously capture 
complementary 2D and 3D information. Each recording 
session included various scenarios such as day and night 
lighting, background complexity, and the presence of multiple 
actors to enhance the diversity of the collected data. Both RGB 
and depth streams were temporally synchronized to enable 
effective multimodal learning. 

 

 
Fig. 1. Example of data acquisition setup and collected RGB–Depth 
samples in different domains 

 

The dataset defines 15 hazardous behavior classes across 
the three domains, reflecting security-relevant activities 
frequently encountered in real surveillance environments. 
These classes include behaviors such as intrusion, theft, 
demage, loitering, abandonment and falldown, among others. 
Table 1 lists the defined hazardous behaviors categorized by 
domain. In total, the dataset consists of approximately 850 
RGB–Depth video clips. For each hazardous behavior class, 
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multiple clips were recorded to ensure variation in camera 
viewpoints, lighting, and human actions, which enhances the 
model’s generalization capability. 

All sequences were manually annotated with temporal 
action boundaries and class labels to enable supervised 
learning. The dataset was divided into training, validation, and 
testing sets using a 7:2:1 ratio, where 70% of the clips were 
used for training, 20% for validation, and 10% for testing. This 
split ensures sufficient data for model training while 
preserving separate validation and testing subsets for unbiased 
evaluation. The dataset provides a balanced distribution across 
domains and behavior classes, enabling the model to learn 
both domain-invariant features and class-specific patterns. 
The synchronized RGB–Depth data were stored as paired, 
frame-indexed sequences to facilitate efficient multimodal 
loading and fusion during training.  

 

TABLE I.  DEFINITION OF 15 HAZARDOUS BEHAVIOR CLASSES 
CATEGORIZED BY DOMAIN 

Number Hazardous behavior classes Domain 
1 Intrusion 

Urban buildings 
2 Theft 
3 Occupant Verification Check 
4 Weapon Detection 
5 Violence 
6 Damage 

Construction sites 
7 Loitering 
8 Danger Exposure 
9 No Helmet 

10 Falling 
11 Abandonment 

Industrial sites 
12 Falldown 
13 Fire Detection 
14 Toxic Exposure Detection 
15 Compression Injury 

 

B. System Architecture  
The core of the proposed hazardous behavior recognition 

system is a Residual (2+1)D Convolutional Neural Network 
(R(2+1)D CNN) [6] as shown in Fig. 2, which has 
demonstrated state-of-the-art performance in spatio-temporal 
video understanding tasks. Unlike conventional 3D CNNs that 
apply a single 3D convolution to learn spatial and temporal 
patterns simultaneously, the R(2+1)D architecture factorizes 
this operation into separate spatial and temporal convolutions.  

 

 
Fig. 2. Structure of the R(2+1)D convolution block. A 3D convolution is 
factorized into a 2D spatial convolution, a ReLU activation, and a 1D 
temporal convolution, followed by a residual connection 

 

A 2D spatial convolution first extracts appearance features 
from individual frames, and a 1D temporal convolution then 
models motion across consecutive frames. The structure of an 
R(2+1)D convolution block, in which a standard 3D 
convolution is decomposed into spatial and temporal 

components with an intermediate non-linearity. This 
factorization improves training stability, reduces parameters, 
and enhances spatio-temporal feature representation 
compared to conventional 3D convolutions [6]. 

This factorization provides several advantages. It reduces 
the number of parameters compared to standard 3D 
convolutions, making the network more computationally 
efficient. It also introduces an additional non-linearity 
between the spatial and temporal operations, which improves 
optimization stability and enables the network to learn richer 
spatio-temporal representations. Furthermore, separating 
spatial and temporal processing simplifies training, allowing 
the model to converge faster while maintaining or improving 
recognition accuracy. The network adopts a ResNet-style 
residual structure, where factorized spatio-temporal 
convolutions are embedded within skip connections. These 
residual connections facilitate stable gradient flow and enable 
the training of deeper architectures without degradation. The 
overall structure consists of multiple stacked spatio-temporal 
blocks followed by temporal pooling and fully connected 
layers for classification. For this study, the R(2+1)D backbone 
was initialized with weights pre-trained on the Kinetics-400 
dataset, following the approach in [6]. During fine-tuning, key 
hyperparameters such as learning rate, batch size, temporal 
window length, and network depth were optimized to 
maximize performance. This architecture is particularly 
suitable for hazardous behavior recognition because it 
efficiently captures both detailed spatial information (e.g., 
human posture, objects) and temporal dynamics (e.g., falling, 
intrusion), while maintaining high computational efficiency 
and strong generalization in complex surveillance 
environments.  

III. TRAINING AND EVALUATION 
To train the proposed system, the constructed RGB–Depth 

dataset was divided into training, validation, and testing sets 
as described in Section II. The R(2+1)D model was fine-tuned 
on the training set using synchronized RGB and depth streams 
as inputs and hazardous behavior labels as outputs. Supervised 
training was performed with optimized hyperparameters to 
ensure stable convergence and reliable recognition 
performance. For evaluation, the trained system was tested on 
unseen video sequences to verify its effectiveness in realistic 
surveillance scenarios.  

Fig. 3 shows the experimental results of the proposed 
system on four hazardous behavior categories: violence, theft, 
falldown, and compression injury. In the violence case (Fig. 
3(a)), the system demonstrates stable recognition performance 
even under low-illumination conditions, as depth-based 
analysis compensates for the lack of visual clarity in RGB 
frames. This enables more accurate detection of aggressive 
motions compared to using RGB data alone. In the theft 
scenario (Fig. 3(b)), the model effectively identifies 
suspicious human behaviors through multimodal fusion, 
capturing subtle motion cues that distinguish theft from 
normal activities. For the falldown and compression injury 
cases (Fig. 3(c) and (d)), the system successfully detects 
sudden postural changes and human–object interactions in 
industrial environments, showing strong temporal motion 
understanding and spatial reasoning capability. Overall, these 
experimental results confirm that the integrated 2D–3D video 
analysis approach robustly recognizes various hazardous 
behaviors across complex environments, achieving improved 
accuracy and reliability compared to single-modality systems. 
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IV. CONCLUSION 
This study presented a deep learning-based hazard 

recognition system that integrates 2D RGB and 3D depth 
video analysis for surveillance applications. A multimodal 
dataset containing approximately 850 clips was constructed 
across three representative physical security domains—urban 
buildings, industrial sites, and construction sites—covering 15 
hazardous behavior classes. To effectively learn spatio-
temporal patterns from these multimodal inputs, an R(2+1)D 
convolutional neural network was employed, leveraging 
factorized 3D convolutions to improve computational 
efficiency and representation learning. The proposed system 
demonstrated robust performance in recognizing a wide range 
of hazardous behaviors, including intrusion, falling, and fire, 
under various environmental conditions. By combining RGB 
and depth information, the model achieved improved 
detection accuracy and reliability compared to RGB-only 
baselines, particularly in challenging scenes with occlusions 
or low illumination. The main contributions of this work are 
threefold: (1) the construction of a domain-specific RGB–
Depth dataset for physical security applications, (2) the 
application and adaptation of an R(2+1)D architecture for 
multimodal hazard recognition, and (3) the demonstration of 
real-time surveillance event detection using RGB–Depth 
video streams.  

Future research will focus on extending the dataset to 
cover more diverse environments and behaviors, optimizing 
the model for deployment on edge devices to enable real-time 
field applications, and integrating additional modalities such 

as audio and environmental sensors for enhanced multimodal 
analysis. 
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(a) Violence behavior recognition in urban buildings                                                (b) Theft behavior recognition in urban buildings 

  
(c) Falldown behavior recognition in industrial sites                                      (d) Compression injury behavior recognition in industrial sites 

Fig. 3. Experimental results of hazardous behavior recognition for four representative cases: (a) Violence in urban buildings, (b) Theft in urban buildings, 
(c) Falldown in industrial sites, and (d) Compression injury in industrial sites.  
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