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Abstract—The dual challenges of energy constraints and
multi-layered cyber threats must be addressed in order to
secure Internet of Things (IoT) environments. To overcome the
above problems, we propose a secure and energy-aware cross-
layer framework for IoT networks. Our framework is based
on the combined role-based access control, machine learning-
based anomaly detection, and lightweight encryption. We explore
context-aware defenses that can remain scalable and energy-
efficient while dynamically adapting to changing attack vectors.
The performance of the proposed framework is evaluated using
real hardware (Z1 and EXP430F5438 motes) after being validated
by simulations on the Cooja and NS-3 platforms. The results
demonstrate up to 30% energy savings over AES while preserving
high detection performance for both active and passive threat
models and over 95% packet delivery. These results highlight
the necessity of adaptive, multi-layer strategies for contemporary
IoT deployments and show that a secure, scalable, and energy-
conscious IoT design is feasible.

Index Terms—Cross-layer framework, energy-aware, IoT net-
work, lightweight encryption, machine learning.

I. INTRODUCTION

The Internet of Things (IoT) continues to expand into
domains where devices must operate with minimal power
yet support dependable and secure communication. Traditional
cryptographic approaches offer strong guarantees but typically
exceed the processing and energy budgets of low-cost sensor
nodes. Conversely, reduced-overhead mechanisms can lower
protection if applied uniformly without regard to operational
context.

These constraints motivate an approach in which secu-
rity mechanisms at different layers are coordinated rather
than treated independently. In this paper, we examine how
lightweight encryption, anomaly-aware processing, and struc-
tured access control can together support practical, resource-
conscious protection for IoT deployments. The technical de-
sign is presented in Section III, and its behaviour across
simulation and hardware experiments is analysed in Section V.
IoT devices that run on batteries are not a good fit for
traditional encryption methods like AES, despite their strong
cryptography. Conversely, if used without context awareness,
lightweight ciphers like Present and Speck can expose net-
works to new attack possibilities while using less energy.
Various attacks can also appear at different layers, such as
sensor, network, and application, which calls for a thorough,
multi-layer defence approach. In this study, an adaptive frame-
work that combines granular access controls, machine learning
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(ML) powered anomaly detection, and adaptive encryption
techniques. Without sacrificing energy efficiency, the proposed
framework aims to maintain strong defense postures by dy-
namically adjusting security measures in response to current
network conditions and threat levels. The hardware testbeds
and simulation environments both confirm the approach’s
scalability and viability.

A cross-layer security design that adapts dynamically to
changing circumstances is incorporated into our system to
overcome these constraints. The framework’s primary compo-
nents are adaptive lightweight encryption, ML-based anomaly
detection, and role-based access control (RBAC). The sensor
layer uses Speck encryption for secure real-time sensing; the
network layer uses temporal machine learning models (e.g.,
LSTM) for packet-level threat detection; and the application
layer uses decision tree classifiers and RBAC policies to
control access and identify anomalous activity. Both software-
based simulations (Cooja and NS-3) and actual hardware
deployments (Z1 and EXP430F5438 motes) are used to im-
plement and evaluate the system performance. This two-tiered
strategy guarantees the framework’s durability, scalability, and
energy performance under a variety of real-world conditions.

A. Research Challenges

Three key research questions (RQs) serve as the foundation
for our research: A number of Significant research challenges
arise in the design of IoT systems that are both secure and
energy-efficient. Due to the extremely limited capabilities of
IoT devices, as well as their vulnerability to multi-layered
cyber threats and dynamic operating environments, creative so-
lutions that strike a balance between security and functionality
are needed. In this study, three fundamental issues that must be
addressed to facilitate low-power, scalable, and resilient IoT
deployments are covered.

o« RQI1: What cross-layer IoT framework best balances
multi-layer security and energy constraints under real-
world conditions? The design of a scalable and adaptable
architecture that incorporates security features at the sen-
sor, network, and application layers without going over
the constrained energy budgets of devices with limited
resources is examined in this question.

o RQ2: What is the effectiveness of ML-based anomaly
detection when integrated with adaptive lightweight en-
cryption in constrained IoT settings? Alongside energy-
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efficient encryption algorithms like Speck and Present,
this study explores how machine learning might improve
threat detection accuracy. In real-time, low-power set-
tings, it seeks to quantify the useful advantages and trade-
offs of integrating intelligent detection with lightweight
security. For more details, see Table I.

+ RQ3: What metrics most accurately capture the trade-offs
between security robustness and energy efficiency across
IoT layers? Finding relevant evaluation criteria that bal-
ance energy conservation and IoT system security, such
as energy consumption, packet delivery ratio, latency, and
attack mitigation, is the goal of this inquiry. The objective
is to provide quantitative trade-off indicators that can be
used to a variety of IoT scenarios in order to assist design
decisions.

B. Study Contribution

The main contributions of this paper are highlighted as
follows.

o We develop a coordinated cross-layer design that aligns
sensing, networking, and application-layer decisions to
better suit constrained devices.

o We implement an adaptive lightweight encryption mech-
anism that adjusts cipher strength according to energy
state and traffic conditions.

o We formulate threat and energy models that enable quan-
titative comparison of different configurations, evaluated
using Cooja/Contiki, NS-3, and hardware measurements
on Z1 and EXP430F5438 motes.

II. RELATED WORK

Adaptive machine learning, cross-layer designs, and
lightweight encryption have been the main focuses of recent
developments in IoT security and energy optimisation. In
order to improve energy efficiency by 39% in RPL networks,
Safaei et al. devised ECROF, a cross-layer routing objective
that decreases strobe transmissions by 25% [1]. Using CNN
and LightGBM, Antonijevic et al. showed how effective ex-
plainable Al is in Metaverse IoT security, attaining 99.83%
detection accuracy [2]. Majji and colleagues used hybrid
encrypted machine learning in healthcare IoT to increase
accuracy and latency [3]. Secure edge-cloud load forecasting
was used by Joha et al. to improve IIoT energy resilience [4].
For fog-cloud networks, Khan et al. developed EcoTaskSched
(CNN-BiLSTM), which guarantees minimum SLA violations
and energy gains [5]. Additional contributions include the
supply chain architecture by Li et al. that uses XAI and
survival models to preserve privacy [6], the no-code Al for
resilient inventory forecasting by Jauhar et al. [7], and the
fault-tolerant ML inference for edge systems by Shafique et
al. [8] that uses pruning and quantization. Liu et al. presented a
multi-agent deep RL approach in WP-MEC contexts to tackle
energy-aware offloading issues [9]. Furthermore, Mustafa et al.
emphasized the necessity of blockchain-enabled, integrated,
ML-secure smart city frameworks [10]. Cross-layer IoT se-
curity has advanced recently, highlighting the necessity of

intelligent, scalable, and energy-efficient frameworks that can
manage settings that are becoming more dynamic. A thorough
analysis of IoT-driven smart tourism ecosystems was carried
out by Rosario et al. [11], who emphasized the improvement
of user experience and system responsiveness through the use
of big data, augmented reality, virtual reality, and machine
learning. Even though the study highlights personalization
and operational efficiency, it also identifies recurring security
and scalability flaws, most notably the absence of edge-layer
integration for real-time threat mitigation. This emphasizes
how flexible frameworks that cover different security domains
and protocol layers are essential. In response to public health
catastrophes like COVID-19, Vishwakarma et al. [12] sug-
gested an enhanced Adaptive Process Optimization (APO) ar-
chitecture backed by machine learning to address the resilience
of healthcare systems. They present scalable, egalitarian IoT-
based healthcare infrastructures that adapt to changing de-
mands by synthesizing more than 80 sources. Ghazlane et al.
[13] introduced the Theory of AI-Driven Scheduling (TAIS),
integrating real-time machine learning with the Theory of
Constraints to resolve bottlenecks via dynamic resource and
queue adjustments. This approach supports efficient lifecycle
management in service-manufacturing, aligning with scalable,
secure, and energy-efficient design goals. A summary of
related work on cross-layer IoT frameworks is presented in
Table L.

TABLE I: Related work on cross-layer IoT linked to RQs

Ref [Problem-Addressed Secure?[Energy-Aware?[Cross-layer?[RQ(s)

[TT |Cross-layer RPL  with| No Yes Yes 1,3
MAC strobe metric

[2] |CNN + LightGBM for| Yes Yes No 2,3
explainable IoT security

[3] ML + encrypted IoT for| Yes No Yes 1,2
healthcare

[4] |Edge-cloud ML  for| Yes Yes No 2
anomaly detection in
IloT

[5] [CNN-BiLSTM scheduler| Partial No Yes 1,3
for fog-cloud QoS

[8] |Pruned, quantized secure| Yes Yes No 1,3
ML at edge

[TIT [Review of smart tourism| Partial Partial No 1
IoT using ML/AR/VR

[I2T ML for resilient post-| No Yes Partial 1,3
COVID healthcare sys-
tems

[13T [TAIS:ML-driven- Yes Yes No 1,3
scheduling with TOC
logic

Our [Adaptive-ML Yes Yes Yes 1,2,3

Work|+lightweight-encryption
with-RBAC

TABLE II: Comparison of Encryption Protocols and ML-Detection

Metric AES Speck Present ML
Detection
Energy (mW) 4.32 3.02 3.10 N/A
Packet Delivery (%) 95 97 94 N/A
Attack Mitigation (%) 90 95 88 95
False Positives (%) N/A N/A N/A -32%
Latency (ms) 120 130 135 +15
overhead
Tested Nodes 5-20 5-20 5-20 5-20
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III. PROPOSED CROSS-LAYER FRAMEWORK

This section reports how the proposed framework behaves
under simulation and hardware testing, with particular atten-
tion to the balance between threat mitigation and resource
usage. The experiments apply consistent traffic patterns and
attack scenarios to allow fair comparison of alternative con-
figurations.

For more details, see Fig. 1.The framework exhibits strong
mitigation against both passive and active attacks, significant
energy savings ( 30%), and high packet delivery (>95%)
when tested on Z1 and EXP430F5438 motes and simulated
in Cooja and NS-3. Speck leads security and energy conser-
vation. Machine learning decreases false alarms and improves
detection accuracy. Three basic problems must be resolved for
designing a secure [oT system:

o Trade-off between energy and security: Traditionally,
robust security measures necessitate energy-intensive cal-
culations, which reduce device longevity.

o Multi-Layer Attack Surfaces: Coordinated security re-
sponses are necessary because threats may target multiple
protocol layers at once.

e Dynamic and Diverse Environments: The scale and
operating conditions of IoT deployments vary greatly,
necessitating scalable and adaptable security models.

The system consists of sensor, network, and application layers.
At each layer, we deploy distinct ML models (e.g. LSTM
for temporal patterns and decision trees for application-layer
events) and adaptive encryption (e.g., Speck, AES). See Ta-
ble II for more details. RBAC is embedded to enforce role-
specific permissions. The proposed secure and energy-aware
cross-layer IoT framework is shown in Fig. 1. To clarify the
operation of the proposed design, the cross-layer coordination
logic exchanges a small set of signals between layers. The
sensor layer reports remaining energy and encryption cost, the
network layer shares anomaly scores derived from temporal
features, and the application layer contributes RBAC context.
These signals allow each layer to adjust its behaviour without
increasing overhead. The machine learning models operate in
a lightweight manner: LSTM is used only for short traffic
windows to capture temporal deviations, while a simple tree-
based model handles application-layer irregularities. This di-
vision ensures that detection remains feasible on constrained
nodes while still allowing cross-layer reasoning.

A. Threat Model

We consider an attacker that can deploy passive and active
attacks across layers, such as sinkhole behavior, eavesdrop-
ping, packet injection, and jamming. These attacks focus
on availability, integrity, and confidentiality. By employing
multi-layer encryption, machine learning-based detection, and
access control, the suggested architecture protects against these
threats and guarantees network resilience under pressure.

B. Energy Model

We consider an attacker that can launch sinkhole/jamming
attacks at the network and MAC layers, inject packets, and
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Fig. 1: Proposed secure and energy-aware cross-layer loT framework

eavesdrop. We used Cooja and Contiki OS for simulations,
setting up up to 20 nodes to withstand injection, sinkhole,
and jamming attacks. The protocol abstraction was done with
NS-3. Real-world conditions were validated through hardware
tests using Z1 and EXP430F5438 motes, which revealed 18%
differences in AES energy consumption.

We employed the following total energy to model energy
consumption across layers:

Etotal - ECPU + Eradio (1)

Ecpy = Popu X Tepu + Prev X Topm (2)

where

P and T represent the power and time consumed in each
respective state (CPU active, low-power mode, transmitting,
and receiving). These values were logged using Energest in
Cooja and cross-verified using custom trace analysis scripts
in NS-3. The model enabled us to quantify and compare the
energy footprints of AES, Speck, and Present encryption under
identical network conditions. The Gini-Simpson index was
used to calculate the RBAC access entropy, and the result
for balanced permissions across roles was 0.667. The model
enabled us to quantify and compare the energy footprints of
AES, Speck, and Present encryption under identical network
conditions.
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Fig. 2: Comparison of CPU Power Z1/EXP430F5438

IV. RESULTS AND ANALYSIS

The results and analysis section provides a thorough as-
sessment of the suggested cross-layer IoT security framework,
emphasizing how well it balances robust threat mitigation
with energy efficiency using simulation and hardware-based
measures. For consistent testing purposes, this validates the
integration of cross-layer modules across the application, net-
work, and sensor layers (Fig. 3).

A. Simulation Environment

The Cooja (Contiki) and NS-3 platforms are both used in
the simulation setup to model IoT network scenarios with
five to twenty nodes. Throughput, latency, and energy con-
sumption are important performance indicators, and simulated
attacks are used for security testing. Modelled estimations
enable flexible and scalable evaluations through energy pro-
filing. However, some hardware behaviors are abstracted in
the simulations, which could compromise accuracy in the
real world. The Cooja/Contiki and NS-3 simulation outputs
replicated the behaviors of IoT sensor nodes and networks.
The current AES/Speck/Present simulation is shown in Fig. 3.

Laptop ns-3.42 % ./ns3 run speck_app
globbed directories...
do.

Laptop ns-3.42 % | /ns3
globbed directories...
do.

Laptop ns-3.42 % ./ns3
globbed directories...
do.

Laptop ns-3.42 % ./ns3
globbed directories...
do.

Laptop ns-3.42 % ./ns3
globbed directories...
do.

Laptop ns-3.42 % ./ns3
globbed directories.
[

Laptop ns-3.42 %
globbed directories.
do.

Fig. 3: NS-3 Simulation Setup for AES/Speck/Present Cipher

aes_app

present_app

speck_network

aes_network

present_network

Specifically, energy consumption figures show how much
power encryption algorithms (AES, Speck, Present) use at

the network, application, and sensor layers. In a variety of
network circumstancesIn a variety of network circumstances
and attack situations, the packet delivery ratios demonstrate
reliable data transfer (Fig. 5). These graphs examine how
energy economy and communication performance are traded

- off, showing how adaptive lightweight encryption techniques

lower power usage while preserving high packet delivery, two

- essential components for realistic IoT installations.

This method confirmed that lightweight ciphers like Present
and Speck significantly reduce power consumption compared
to AES without compromising packet delivery ratios, allowing
for a thorough comparison of the trade-offs between energy
efficiency and encryption strength. The simulation parameters

TABLE III: Simulation parameter setup

Parameter Value

Platforms Cooja (Contiki), NS-3
Network Size 5-20 nodes

Metrics Energy, throughput, latency

Simulated attacks
Modeled estimation
16MHz, 8KB (RAM)
25MHz,16 KB(RAM)

Security Testing
Energy Profiling

Z1 (MSP430F2617)
MSP430F5438

are listed in Table III. The Z1 and EXP430F5438 parameters
used in the simulation having CPU power consumption during
encryption tasks, are contrasted in the graph (See Fig. 2).
According to the results, the EXP430F5438 continuously uses
more CPU power than the Z1, which is indicative of its
superior processing power shown in Fig. 2. The trade-off
between energy efficiency and computational performance
in resource-constrained IoT devices is highlighted by this
comparison.

As shown in Fig. 4, the Present cipher uses the least amount
of energy, followed by Speck, while AES uses the most. This
demonstrates that encryption techniques that use less energy
are more suited for Internet of Things devices with limited
power. Even with these energy reductions, all techniques main-
tain high packet delivery ratios exceeding 90%, demonstrat-
ing that communication dependability is maintained. These
findings highlight how well adaptive lightweight encryption
balances strong network performance with energy savings.
The research goals on secure and sustainable IoT architecture
design are directly supported by these measures, which offer
precise evaluation standards for evaluating security-energy
trade-offs in various IoT scenarios.

These bar charts’ data came from comprehensive simu-
lations that used the Cooja/Contiki and NS-3 platforms to
replicate the behaviours of real-world IoT sensor nodes and
networks. Specifically, energy consumption figures show how
much power encryption algorithms (AES, Speck, Present) use
at the network, application, and sensor layers. In a variety
of network circumstances and attack situations, the packet
delivery ratios demonstrate reliable data transfer as shown in
Fig. 5. These graphs illustrate the energy economy and com-
munication performance trade off. The adaptive lightweight
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encryption achieves low power usage while preserving high
packet delivery which are essential components for realistic
IoT installations.

We used a two-phase simulation approach combining Cooja
(with Contiki OS) and NS-3 to assess the performance of the
suggested cross-layer architecture. Cooja based simulation is
used to perform fine-grained energy profiling of constrained
sensor nodes (Z1 and EXP430F5438 motes) in a variety
of attack scenarios including sinkhole, jamming and packet
injection. We replicated the scenarios in NS-3 supporting
protocol abstraction at high fidelity and enables simulation at
scale to validate and generalize the energy trends in Cooja.
Cross validation strengthened the findings’ credibility and
guaranteed consistency of results across various simulation
environments. To simulate and compare encryption techniques
in the IoT contexts, the NS-3 simulation snapshot displays
several protocol executions, such as AES and Speck IoT
networks. We observe that both the Z1 (0.354 mW) and
EXP430F5438 (0.410 mW) platforms, AES encryption uses
the most CPU power. Present and Speck ciphers, on the other
hand, show noticeably less energy overhead, proving that they
are appropriate for IoT devices with limited resources. The
results of the packet delivery ratio analysis show that Hybrid
ML models and Speck Encryption surpass AES in maintaining
a high delivery of 95%. The robustness of adaptive speck
encryption in preserving communication integrity in limited
circumstances is also demonstrated by its consistent perfor-
mance. Adaptive Speck Encryption uses the least amount of

Energy Consumption by Method (mW)

W
w
o

Energy Consumption {(mW)

Fig. 4: Adaptive Energy Consumption against lightweight Cipher
Methods (AES/Speak/Present)
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Fig. 5: Packet Delivery Ratio against Encryption methods

energy out of all the examined algorithms, followed by Present
and Speck, as the energy usage graph makes evident. Despite
being the most secure, AES is not appropriate for IoT devices
with limited power. Both passive (like eavesdropping) and
active (like jamming and packet injection) threats that target
various IoT stack layers are taken into account by the threat
model. The suggested cross-layer framework combines RBAC,
lightweight encryption, and ML-based anomaly detection to
reduce these risks. By looking Table IV, we observe that up
to 30% energy savings and over 94% packet delivery. We
found that Hybrid ML+Speck and Adaptive Speck Encryption
offers the best trade-off. These results confirm that, when faced
with practical limitations, the suggested adaptive cross-layer
structure effectively balances network performance and energy
efficiency.

TABLE IV: Energy vs. packet delivery comparison

Method Energy (mW) | Packet Delivery (%)
AES 4.32 95
Speck 3.02 97
Present 3.10 94
Hybrid-ML+Speck 3.27 95

Beyond packet delivery and energy data, the experiments
also produced quantitative indicators of security behaviour un-
der adversarial conditions. Across sinkhole, packet-injection,
and jamming attacks, the framework maintained a threat-
mitigation effectiveness between 90% and 95%, consistent
with the anomaly scores generated at the network layer. These
values match the detection-column trends in Table II and
confirm that the integrated ML models and lightweight ciphers
contribute to practical resilience. This explicit validation com-
plements the energy and delivery metrics and demonstrates
that the framework strengthens security as well as efficiency.

It is important to note that the packet delivery values in
Fig. 5 and Table IV correspond to different experimental
conditions. The figure summarises behaviour under varying
attack intensities and therefore exhibits wider fluctuations.
Table IV reports the steady-state averages obtained under a
fixed traffic load and a constant threat profile. The two sets
of results are therefore consistent: the table reflects stable
performance, while the figure captures the impact of dynamic
adversarial conditions.

V. RESULTS VALIDATION AND DISCUSSION

We evaluated IoT network security and energy efficiency us-
ing machine learning models on data collected from Cooja and
NS-3 simulations, along with measurements from a hardware
testbed. We found that using adaptive lightweight encryption
in conjunction with ML-driven anomaly detection significantly
increased threat identification accuracy and decreased false
positives. Furthermore, compared to conventional AES encryp-
tion, the energy consumption data showed that lightweight
ciphers like Speck and Present significantly use less power.
According to this analysis, combining adaptive encryption
with machine learning techniques results in a well-balanced
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IoT framework that improves security while conserving en-
ergy. These results provide important information for creating
IoT architectures that are secure, scalable, and energy-efficient
while tackling the main issues raised by the research questions.
Promising outcomes in striking a balance between security
resilience and energy efficiency are shown by the suggested
cross-layer IoT architecture. But, like with any system created
for dynamic and limited contexts, it’s crucial to evaluate
its shortcomings and contrast its results with those of usual
baseline methods. This section demonstrates how our design
outperforms current solutions in the field and describes the
practical limitations observed during execution.

There are still a few restrictions even though the adaptive
cross-layer design enhances security and energy efficiency.
When traffic conditions change in the real world, ML anomaly
detectors may become less accurate and need to be retrained or
updated online on a regular basis. Although they save power,
lightweight ciphers like Speck and Present are not as strong
as AES in terms of cryptography, and as attacks change, their
resilience may deteriorate. Latency-sensitive applications may
be impacted by the computation and delay added by real-time
encryption or machine learning threshold adjustments. Lastly,
scalability to larger, more varied IoT deployments needs more
research because the results are based on small- to medium-
sized testbeds (5—20 nodes).

A. Baseline Comparison

On low-power IoT devices, static, single-layer schemes
like AES-only encryption are less flexible and waste energy.
The problem is addressed by our cross-layer design, which
combines adaptive machine learning models with lightweight
ciphers to reduce energy consumption by up to 30% without
sacrificing robust packet delivery or detection accuracy. Be-
cause ML-only baselines lack access control and encryption,
they are vulnerable to replay and injection attacks.

Our framework offers coordinated, multilayer protection
against a wider range of threats by combining sensor-layer
encryption, network-layer ML detection, and application-layer
RBAC. Overall, it offers better security coverage, efficiency,
and adaptability than methods that only use machine learning
or encryption.

VI. CONCLUSION

We presented an adaptive cross-layer architecture that
combines role-based access control, machine learning-based
anomaly detection, and lightweight encryption in recognition
of the drawbacks of static, single-layer security in devices with
limited resources. We used a two-pronged assessment utilising
Cooja/Contiki and NS-3 simulations in addition to hardware
validation on Z1 and EXP430F5438 motes to guarantee prac-
tical feasibility. Our findings show that ML-based detection in
conjunction with adaptive encryption protocols such as Speck
can save energy usage by about 30% while preserving over
95% packet delivery and attack prevention across a range of
simulated threat scenarios. These results confirm that scalable
solutions for IoT deployments with limited power budgets are

provided by dynamic, context-aware security mechanisms. We
intend to expand the suggested architecture to extensive het-
erogeneous [oT settings in subsequent work, with an emphasis
on creating online learning strategies for adaptive machine
learning models and secure key management approaches that
preserve energy efficiency in the face of changing threats.
This will tackle the issue of cryptographic resilience and
real-time flexibility in more varied and quickly changing IoT
deployments.
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