Clickjacking and Double-Clickjacking: Attack
Mechanisms and Prevention Algorithms

Hosung Yun Youngeun Cho Jiyoon Lee
Department of Software Engineering Department of Data Science Department of Software Engineering
Kangnam University Kangnam University Kangnam University
Gyeonggi-do, Korea Gyeonggi-do, Korea Gyeonggi-do, Korea
hosung0504@kangnam.ac.kr eun030423@kangnam.ac.kr ict22jy@kangnam.ac.kr

Jungsoo Park
Department of Computer Engineering
Kangnam University
Gyeonggi-do, Korea

jspark@kangnam.ac.kr
Abstract— This paper presents the implementation of a II. DOUBLE-CLICKJACKING ATTACK TYPES
clickjacking attack and a novel hacking method based on it, R . .
termed "double-clickjacking." It also details the design of a Generally, clickjacking is an attack technique where a

Chrome extension to prevent these attacks. We move beyond the ~ malicious element is overlaid on a button that the user intends
conventional technique where a user clicks on a seemingly to click, causing the user to unintentionally click the malicious
legitimate button but is redirected to an unintended destination. element. In modern systems, this can be defended against by
The purpose is to develop a Chrome extension that blocks getting security headers for the code and requiring double
malicﬁous act'ivities such as. inducing fl double-click.to ins‘ert confirmation for important buttons. However, in double-
x;::cfﬁlslts :cg(:lnieb:ltivz ﬁf r:):hcc;(vs‘;:l(ec::g;fezt?gul::)e':l:::;l?:it;?lg clickjacking, the malicious action does not originate from the

J & Y g button's function itself. Fig. 1 illustrates a fundamental

website in the background without the user's knowledge. We le of the af . le-clickiacki K
demonstrate that the developed Chrome extension can effectively ~ cXample of thea orementioned double-clickjacking attack.

defend against not only traditional clickjacking but also double- g
N S 1. Visit the attacker's 2. Generate a pop-up
clickjacking. webpage prompting a double-clck

(2] — @]
— | A | —
Keywords—Clickjacking, Double-ClickJacking, Web Security, [g | - m

ses the Show a prompt ancouraging
i a click in a new window

Temporal Heuristics, Event Interception, Formal Methods

I. INTRODUCTION ~|' 4. Execute the

Double-clickjacking, an evolution of traditional T e— R _%
clickjacking [1], [8], [13], is emerging as a new web hacking — X
paradigm and presents a formidable challenge to web security. o e o Gpane s

redirected to the target site

This sophisticated technique deceptively exploits the user's
habitual double-clicking behavior. An attacker associates
different events with the first and second clicks in a user's Fig. 1. Examples of Double-ClickJacking Basic Attack

sequence, executing malicious actions without explicit

consent. By leveraging this user behavior, double-clickjacking Instead, it is a method where a malicious element is
can lead to severe consequences such as background malware executed in the interval between the first and second clicks.
downloads and information leakage. Although solutions for ~ This represents a significant security threat, as an action
clickjacking are being actively developed [9], [10], [12], the intentionally performed by the user can lead to a malicious

concept of double-clickjacking remains largely unfamiliar, outcome, leaving the user vulnerable to an attack without their
making an in-depth analysis imperative. knowledge. Furthermore, as new malicious activities utilizing

This study, therefore, aims to systematically analyze the ~ double-clickjacking emerge, we construct four additional
core attack scenarios and operational principles of double- ~ scenarios—A, B, C, and D—and implement an algorithm to

clickjacking. Our goal is to clarify its inherent risks and ~ address them.
provide a solid academic foundation for the development of
robust security countermeasures. Based on clickjacking 4. Background Downloads

principles [2], our research focuses on analyzing the This scenario describes a double-clickjacking attack that
mechanisms and creating security algorithms for four novel induces an unintentional file download by making the user
double-clickjacking attack types: 'background download,’ believe they are interacting with a legitimate UI component.

'forced click,' new window background redirection,'" and The attacker exploits the user's rapid clicking habits to bind
'existing window background redirection' [6]. By referencing different events to the first and second clicks, respectively.
existing techniques for identifying malicious redirections [11], Although the user perceives they are performing a single

we will first apply preventative measures to clickjacking, action (such as a double-click for security confirmation), in

specifically by blocking the opening of new windows, to reality, a malicious script designed by the attacker is executed,

eliminate the potential for double-clickjacking attacks. causing a file to be downloaded in the background [3], [7].
The step-by-step execution of this attack is summarized in
TABLE L.

979-8-3315-7896-1/26/$31.00 ©2026 IEEE 697 ICOIN 2026

TABLE L. BACKGROUND DOWNLOAD SUMMARY TABLE

Background Download Execution Order
Step Act Description
. The first time a user clicks a
Click
Recoenize button, changes the button
First Click a r%d style and sets the time until
Standb the second click to wait for a
y double click.
If a second click occurs within
Double the set time, the script
Second
Click click considers it a double click,
detection releases the set timer and
initiates a malicious behavior.
The function is called,
Performing Download dynamically (frt?atmg tags to
.. L. download malicious files, and
a Malicious Malicious . R L
Behavior Files immediately clicking to run
file downloads without the
user's knowledge.
Immediately after the file
download starts, the function
Traces . .
. is called and redirects the
removed Redirect the
and screen current page to another URL.
. This tricks the user as if the
deceptive
normal process has been
completed.

B. Force Click

This scenario, conceived from the three elements that
compel input commands in clickjacking [2], expands a user's
single click into two intentionally consecutive events to lead
the user to a malicious website. Although the user clicks a
legitimate button only once, an attacker's script
programmatically triggers a second event after a time delay,
creating a result equivalent to a double-click.

The core of this technique is to create a discrepancy
between the user's action and the actual system response. The
user is led to believe that their single click only produced
visual feedback, while internally, a malicious action is
scheduled and executed after a predetermined time. The step-
by-step execution of this attack is summarized in TABLE II.

TABLE II. FORCE CLICK SUMMARY TABLE
Force Click Execution Order
Step User Experience Hidden beht.lvwr of the
script
A single click of the Detect the click to change
. button changes the
Click tvle immediatel the button style
Initia sty'e cdiately, immediately, and
leading to the belief .
1 > schedule a short delay in
that it has been .
the next action.
processed normally.
Disg | After a while, the style Change the style back to
uise changed again, and I the scheduled action to
the mistook the whole trick the user, and further
progr | process as part of the schedule the final page
ess normal process. move.
Go to
As soon as you thought Execute the last
a .
mali the process was over, scheduled code, forcing
. you were forced to go the user to a malicious
cious : . .
site to an unintended site. site.

C. New Window Background Redirection

This scenario describes a sophisticated attack technique that
covertly redirects the original (parent) window to a malicious
website in the background while drawing the user's attention
to a new pop-up window. The attacker triggers two actions
simultaneously with the user's double-click. First, a new
window, appearing as a legitimate confirmation process, is

698

brought to the foreground. Second, while the user's focus is
fixed on this new window, the address of the original window,
now obscured, is changed to a malicious page [4]. The step-
by-step execution of this attack is summarized in TABLE IIL

TABLE III. NEW WINDOW BACKGROUND REDIRECTION SUMMARY
TABLE
Redirect to New Window Background Execution Order
Step User Experience Hidden beht.lvtor of the
script
When the user double- It detects a double .Clle
Sepa) and runs both actions
- clicks the button, a . .
ratio . simultaneously. One is to
new confirmation .
n of . . . display a fake
window immediately . .
event appears in front of the confirmation window that
s pp will catch the user's
screen. .
attention.
Back The user concentrates At the same time as
grou on the new floating a fake window,
nd confirmation window the original window is
mani | and is not aware ofany | moved to a malicious site
pulat | changes in the previous without the user's
ion window. knowledge.
:)
. While the user's eyes Taking advantage of the
distr are on the new o :
. . . user's distraction, the
actio confirmation window, . .
. . hidden window completes
n and the original window . -
. loading of malicious
contr behind has already a0es and preparcs o
ol changed to a different pag prep
attack.
page.

D. Redirect existing window background

This scenario represents the archetypal attack model of
double-clickjacking based on window overlay and UI
redressing. In this case, the attacker prepares two visually
identical windows—a decoy (lure) window and a malicious
window—aligned at exactly the same screen position. The
user is induced to perform a double-click on the visible lure
window. The first click immediately closes the lure window,
thereby exposing the malicious window hidden directly
beneath it at the exact same location. As a result, the user's
second click is delivered directly to the dangerous button on
the malicious window, which may lead to unintended
permission grants or information leakage [5]. The step-by-step
execution of this attack is summarized in TABLE IV.

TABLE 1V. REDIRECT EXISTING WINDOW BACKGROUND SUMMARY
TABLE
Redirect existing window background Execution Order
Step User Experience Hidden behtfvmr of the
script
As soon as the pop-up
Back
ou A normal pop-up opens, you are ready to
ﬁ d window appears to replace the original
mani open, and the original window behind it with a
ulat window appears to be forged malicious page
p at the back. without the user's
ion
knowledge.
View messages such as
Dou "Session Design the first and
ble- Reauthentication" in second clicks to be
click the pop-up window applied to different
indu and recognize that you windows by inducing the
ction need to double-click user to double-click.
the button.
I think I double-clicked | Close the pop-up window
Click the button as itself with the first click
instructed, but in to reveal the fake page,
Inter . \
cept reality, the second and cause the user's
click is pressed on second click to press the
another button. page's dangerous button.

III. PROPOSED MODEL

The double-clickjacking prevention algorithm proposed in
this paper operates within a Chrome Extension environment
to block four types of illicit activities [6]: background
downloads, the use of synthetic events to mimic a double-click
from a single click (‘single-click — double-click mimicry"),
background redirections originating from new (popup)
windows, and background redirections within the existing
window.

This integrated defense algorithm is designed with a
sophisticated three-stage structure: it first distinguishes
between legitimate user clicks and anomalous actions initiated
by attack scripts, then blocks the execution of any behavior
identified as malicious, and finally, prompts the user for direct
confirmation in ambiguous cases. This entire process is
facilitated by synergistic communication between a content
script, injected directly into web pages to monitor their
behavior, and the extension's core background script, which
handles the main functionalities.

A. Core Function Interception (API Hooking [14])

The initial step of our defense mechanism involves
intercepting (hooking) core browser functions that are
susceptible to exploitation by an attacker. The moment a web
page loads, the extension injects a custom JavaScript file into
the page's JavaScript execution environment. This script then
assumes control over the following critical functions,
masquerading as their native counterparts.

e window.open: As the primary function for opening
new windows and pop-ups, we take control of it to
capture all relevant information, such as the intended

destination URL.

location.assign / location.replace: These functions
forcibly redirect the current page. We monitor calls
to these functions to prevent attackers from
redirecting users to advertisement or phishing sites.

<a>.click() / <form>.submit(): While these are
standard link-clicking and form-submission
functions, they can be programmatically invoked by
a script to trigger unintended actions. We secure
control over them to detect such forced executions.

Crucially, the invocation of these hooked functions does
not lead to their immediate execution. Instead, a signal
containing detailed information about the pending action (e.g.,
"an attempt is being made to perform X action on the current
page") is transmitted to the background script, which serves as
the extension's central processing unit, to request a definitive
judgment.

B. Identifying Suspicious Behavior by Analyzing State and
Time
While a signal is sent to the background script, the injected
content script concurrently assesses whether the current
situation constitutes an attack by leveraging two critical clues:
a 'state flag' and 'time'.

When a user clicks on the page, if an attempt to open a new
window is detected through a window.open call, the defense
script immediately records a 'suspicious state' flag in the tab's
sessionStorage. This is tantamount to marking the page with a
label: "A pop-up attempt has just occurred on this page. All
subsequent activities are to be considered suspicious!" This

699

flag is maintained until the user performs another legitimate
click on the page.

From the moment the 'suspicious state' flag is set, the
defense logic operates with heightened sensitivity and utilizes
temporal information to thwart attacks.

Blocking Background Redirection of the Existing
Window: Previous research [11] utilized code readability and
complexity analysis to detect malicious redirections that
change the location property via window.opener. By de-
obfuscating code and applying signature-based detection, this
approach could detect attempts to covertly redirect the original
window in double-clickjacking attacks. However, being based
on static analysis, it has limitations in blocking a diverse range
of real-time attacks, including synthetic clicks, background
redirections, and programmatic navigation.

To address these limitations, this study proposes a
detection and blocking mechanism within a browser extension
environment that combines dynamic overriding with time-
and state-based analysis. Specifically, we override key in-page
APIs such as window.open, location.assign/replace,
history.pushState/replaceState, anchor.click, and form.submit.
This allows us to immediately block suspicious programmatic
behaviors that occur directly after a user's click. Furthermore,
delayed redirections initiated by an attacker within a short
interval after a click, or redirection attempts from a
background page, are also identified and blocked as malicious.
We also leverage pointerdown and click events to record
trusted user gestures, thereby neutralizing synthetic events or
automated click attempts. This real-time dynamic blocking
technique can defend against a broader spectrum of attack
vectors than existing static analysis-based detection,
fundamentally neutralizing the sophisticated malicious
redirection attempts associated with double-clickjacking.

Blocking Background Redirection of a New Window: The
algorithm also prevents a newly opened window from covertly
navigating to a different address while it is not visible (i.e., in
the background). The script checks the current page's
document.visibilityState. If a redirection occurs while the
page is not visible, it is identified as a malicious act and is
consequently blocked.

By integrating state and time analysis in this manner, our
approach fundamentally neutralizes sophisticated, time-
delayed attacks that deceive the user's perception, as well as
all forms of covert page manipulation occurring in the
background.

C. User Confirmation (Explicit Permission Acquisition)

The algorithm treats every attempt to open a new window
as a potential threat, maximizing the defense's robustness by
deferring the final decision to the user.

e New Window Confirmation Prompt: When a
window.open attempt from Stage 1 is detected and
its signal is received by the background script, the
script does not immediately open a window to the
requested URL. Instead, it first displays a small
confirmation prompt on the screen with the content:
"This site is attempting to open a new window to the
following address. Do you want to allow it?". Only
when the user explicitly clicks the 'Allow' button in
this prompt is the new tab opened. This simple
procedure effectively blocks all unwanted pop-ups
and new windows.

Automatic Cancellation of Suspicious Downloads:
The final stage of this defense logic is to prevent
malicious file downloads. The user's action of
clicking 'Allow' in the aforementioned confirmation
prompt is logged as a 'trusted user approval' record.
In contrast, the initial window.open attempt is logged
as a 'suspicious event occurrence'. If a download for
a potentially dangerous file type (e.g., .exe or .zip) is
initiated, and this download occurs immediately
following the 'suspicious event occurrence' without
an intervening 'trusted user approval' record, it is
deemed a malicious download initiated covertly and
is automatically canceled.

Thus, through this three-tiered defense framework—
combining function interception, state and time analysis, and
user confirmation—the algorithm functions as a robust
countermeasure against double-clickjacking, moving beyond
simple pop-up blocking to comprehensively defend against
sophisticated redirections and malicious file downloads.

D. Conditions for a Successful Double-clickjacking Attack

The formal conditions for a successful double-
clickjacking attack are defined in Table V.

TABLE V. FORMAL DEFINITION OF DETECTION CONDITIONS
Condition Mathematical Definition
Name formula D
Existt v<t o<t _csuch that (A_p(t o) and
AttackSuccess A ot c)and (t c-t v<1) (€8]

The variables ¢ v, ¢t o,and ¢ _c are timestamps that indicate
the temporal order of relevant events: ¢ v denotes the time of
the first user click, # o denotes the time of the preparatory
action, and ¢_c denotes the time of the execution action. The
constraint ¢ ¢ — ¢ v <t in Equation (1) requires that the time
elapsed from the first click to the execution action falls within
the permissible double-click interval z. In this context:

e A p(t o) represents the malicious preparatory action
(e.g., initiating a background download) executed

immediately after the first click.

A _c(t c) represents the malicious execution action
performed immediately after the second click.

T denotes the maximum permissible time interval for
a double-click.
E. Observation and Marking

The conditions for detecting a user-initiated new window
(Open Event) are defined in Table VL.

TABLE VI FORMAL DEFINITION OF DETECTION CONDITIONS
Condition Mathematical Definition
Name Sformula ID
Open Event M open* = O(1)° ?)

4 M_open: Timestamp of the last user-initiated window open event.

b-t: The timestamp of the event being evaluated.

€ O(t): A predicate that is true if a monitored event (e.g., a new window opening) is confirmed at time t.

The system monitors all potential core API calls, such as

opening new windows, navigation, dynamic creation of

anchor/iframe elements, and the generation of blob URLs. If

a detection is confirmed according to Equation (2), a session
marker M_open is recorded.

700

F. Time- and State-Based Anomaly Predicate

This predicate determines whether a specific action P(¢ p)
constitutes a legitimate user action or is part of an attack
attempt. The determination is based on temporal intervals and
the page's visibility state.

Table VII defines the four conditions used to detect
suspicious user behavior.

TABLE VII. FORMAL DEFINITION OF DETECTION CONDITIONS
. Mathematical Definition
Condition Name
Sformula ID
WithinGrace M open existence® aGndd (t P -M opent< 3)
SuspiciousDelay L minc<t P°-t U'<L max® “)
h— _
HiddenRedirect V(t_P)" = hidden and (t_P*-1_U'<)
L maxe)
isProgrammatic P(t_P)iand —U(t_P)i(isTrusted = false etc) | (6)

% M_open existence: A boolean indicating a user-initiated window open event has occurred.

b. t_P: Timestamp when the popup is created.

¢ M_open: Timestamp of the last user-initiated window open event.

d-G: Grace period threshold following a user action.

¢ L_min: Minimum time threshold for a suspicious delay.

£ t_U: Timestamp of the last user interaction (e.g., click, keypress).

& L_max: Maximum time threshold for a suspicious delay.

h. V(t_P): Visibility state of the popup.

i P(t_P): A predicate that is true if the popup was created programmatically.

i U(t_P): A predicate describing the popup's origin and trust status.

For a specific action, the following equations are evaluated
to check for suspiciousness:

e Equation (3) serves as the post-pop-up predicate,

which assesses actions immediately following a pop-
up.

Equation (4) is the suspicious delay predicate, used
for actions that occur after a questionable delay.

Equation (5) is the hidden (background) redirection
predicate.

Finally, Equation (6) provides a programmatic action
marker.

When an action is detected, these formulas are evaluated
to perform a suspicion check.

G. Decision Rules

The decision rule outputs a final action—either allowing
the behavior, blocking it, or requesting user confirmation—
based on the results of the predicate evaluations.

This is formally defined by a decision function D which
takes an event E as input and returns a value from the set
(Allow, Block, RequireConfirm).

Table VIII presents the final mathematical formulation for
either blocking or allowing suspicious behavior, based on the
conditions defined above.

TABLE VIII. FORMAL DEFINITION OF DETECTION CONDITIONS
. Mathematical Definition
Policy Name
Sformula D
g?;t_;il:;l;tic if WithinGrace(t_P*) and)
Blotg;k isProgrammatic(t_P*) — D(P(t_P))* = Block

Mathematical Definition

Policy Name

Sformula 1D
Suspicious if SuspiciousDelay(t_P*) — D(P(t_P)*)*= ®)
Delay Block Block
Hidden
Window if HiddenRedirect(t_P*) — D(P(t_P)*)*= ©)
Redirection Block
Block
Require
fC‘O(;nﬁrma;(:;V if O(t_0)° — D(O(t_0)*)* = RequireConfirm (10)
Window
Final
Allowance AllowOpen(t) — (=1t At and t A2>1t 0% (11)
Condition

if D(t_D", url)® and url not S' and ((t_ D" —
gﬁ)ﬁ”ﬁﬁ;‘i{ub M _open) <G_D¥) and —~((t D" t U) < (12)
G DY) — D(D)" = Block

2 t_P: Timestamp when the popup is created.

b. D(...): Decision function for a given event, e.g., Block, Allow.

¢ P(t_P): A predicate that is true if the popup was created programmatically.

d. t_o: Timestamp when a new window is opened.

€ O(t_o): An event or operation of opening a new window, occurring at time t_o.

£ t: Current time or the time of evaluation.

& t_A: Timestamp when an allowance condition is met.

h. t_D: Timestamp when a file download is initiated.

S: A set of trusted source URLS.

i M_open: Timestamp of the last user-initiated window open event.

k. G_D: Grace period threshold for downloads.

L t_U: Timestamp of the last user interaction (e.g., click, keypress).

The following equations represent the specific decision
rules:

e (7) Post-Popup Programmatic Block: Blocks
programmatic actions that occur immediately after a
pop-up is generated.

e (8) Suspicious Delayed Redirection Block: Blocks
redirections that are initiated after a suspicious delay.

e (9) Hidden Window Redirection Block: Blocks
redirection attempts from a window that is hidden or
in the background.

e (10) New Window Opening — User Confirmation:
Dictates that any attempt to open a new window
requires explicit user confirmation.

e (11) Final Allowance Condition: The actual opening
of a tab is permitted only if a user confirmation
marker ¢ A is recorded.

e (12) Automatic Download Cancellation Rule: This is
the decision rule for automatically canceling a
download.

H. Theorem and Proof

The following theorems formally state the guarantees
(defense properties) provided by the double-clickjacking
defense.

1) Blocking of Programmatic Manipulation Following a
Pop-up

For any tab, if M open =t o and P(t_P) occurs in that tab,
and ¢t P —t o < G and isProgrammatic(t_P), then P(t_P) is
blocked.

Proof: By the definitions provided thus far,
WithinGrace(t_P) holds true. Rule (7) states WithinGrace(t_P)

701

and isProgrammatic(t_P) — D(P) = Block. Therefore, when
this condition is satisfied, D returns Block.

2) Blocking of Delayed Suspicious Redirection
For any navigation action P(t_ P), if L min<t p—t U<
L _max, then P(¢_P) is blocked.

Proof: By definition, SuspiciousDelay(t P) holds true. As
Rule (8) is SuspiciouslyDelay — D = Block, the action is
blocked.

3) Blocking of Background Redirection from a Hidden
Window

If V(t_P) = hidden and t P — t U < L _max, then the
navigation P(¢_P) is blocked.

Proof: By definition, HiddenRedirect(t_P) holds true. The
action is blocked by Rule (9).

4) Automatic Cancellation of Suspicious Downloads

If a download D(t D, url) occurs, and it satisfies the
conditions url not S, t D—M open <G D,and (t D—t U)>
G_D, then the download is automatically canceled.

Proof: The conditions precisely match the premise of Rule
(12). Therefore, the outcome is D(D) = Block.

5) Guarantee of New Window Initiation via User
Allowance

When a new window request O(t_o) occurs, the double-
clickjacking defense immediately prompts for the user's
explicit confirmation. The actual URL is opened only when
the user confirms and provides ¢ 4. Consequently, no
automatic redirection or action through a new window can
occur without user confirmation.

Proof: By Rule (10), Ot o) returns RequireConfirm.
According to the allowance condition in Rule (11), the actual
opening is permitted only if ¢ 4 >¢ o (the user's confirmation)
is provided. Therefore, the opening is not permitted without
confirmation.

IV. ANALYSIS AND EVALUATION

A. Correspondence experiment results

Fig. 2 illustrates the step-by-step operation of the proposed
double-clickjacking prevention browser extension in a real
attack environment.

File Drive
o seiect th tosk you wont

@

Fig. 2. Double-clickjacking defense process using the proposed browser
extension: (1) Attacker main website, (2) Preemptive security confirmation
popup for user consent, (3) Authentication window, (4) Blocking message
displayed after detecting a double-clickjacking attempt.

Fig. 2-(1) represents the attacker’s main website
constructed for a double-clickjacking attack, which is

designed to appear as a legitimate service page to mislead the
user.

When the user attempts to access the site, a preemptive
security confirmation popup is displayed as shown in Fig. 2-
(2) by the proposed defense logic. This step serves as a
preventive protection phase, allowing the user to explicitly
verify whether the accessed site is indeed the intended
destination before any deceptive interaction can proceed.

Only if the user grants permission does a normal
authentication window appear, as shown in Fig. 2-(3). This
authentication process is visually identical to a legitimate
authentication procedure. However, immediately after the
authentication is completed, when the attacker attempts to
exploit the second click for double-clickjacking to steal
information or trigger additional malicious actions, the input
is detected as malicious and is immediately blocked by the
proposed extension, as shown in Fig. 2-(4).

In the current experiment, the implementation primarily
focused on blocking download-based attacks. In addition, the
same detection mechanism was also verified to effectively
block other major forms of click-based attacks, including
forced click manipulation that induces unintended double-
click actions, as well as background redirection attacks
targeting both newly opened windows and existing parent
windows. These results experimentally demonstrate that the
proposed system is not limited to a single attack type but
provides scalable and comprehensive security protection
against a wide range of click-based attack scenarios.

B. Complexity

The proposed double-clickjacking prevention system is
designed to perform only a constant number of operations for
each click event, enabling immediate detection and blocking
in real-time browsing environments. This design allows the
system to provide stable security protection without
introducing noticeable input delay.

In addition, a comparative evaluation of the web browsing
environment before and after applying the browser extension
showed no significant performance degradation, including
page loading latency, input response delay, or increased CPU
and memory usage. These results experimentally confirm that
the proposed system operates as a lightweight security
mechanism that supports real-time protection with minimal
performance overhead in practical user environments.

V. CONCLUSION

In this paper, we defined the threat model of Double-
Clickjacking and proposed a real-time detection and blocking
algorithm to counteract it. The proposed approach analyzes
the time interval (At) between clicks, the timing of high-risk
events, and user focus transitions, enabling it to block not only
conventional clickjacking attacks but also stealthy malicious
behaviors such as background downloads and page
redirections.

Through theoretical analysis and real-world attack
experiments, we demonstrated that the proposed method can
reduce the success probability of double-clickjacking attacks
to virtually zero within the defined threat model. A Chrome
extension—based Proof-of-Concept implementation further
verified that effective attack blocking can be achieved without
interfering with legitimate user interactions.

702

A key contribution of this work is that the proposed
method is formulated as a platform-independent algorithm,
which enables its extension toward a general-purpose double-
clickjacking defense mechanism at the web framework level,
similar to CSRF protection.

As future work, we plan to validate the proposed algorithm
across diverse browsers and platforms, extend it for
integration into server-side frameworks such as Spring Boot,
and incorporate machine learning—based anomaly detection to
further enhance its robustness against unknown attack patterns.

ACKNOWLEDGMENT

This work was supported by the IITP(Institute of
Information & Coummunications Technology Planning &
Evaluation)-ITRC(Information Technology Research Center)
grant funded by the Korea government(Ministry of Science
and ICT)(IITP-2025- RS-2020-11201602)

REFERENCES

S. Y. Jeon, G. M. Jo, J. H. Im, and M. G. Lee, "Analysis of recent
Clickjacking attacks on Social Network Services," in Proceedings of the
Korean Institute of Information Scientists and Engineers (KIISE), June
2015, pp. 2120-2122.

L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and C. Jackson,
"Clickjacking: Attacks and Defenses," Carnegie Mellon University /
Microsoft Research, Aug. 2012.

J.H. Oh, C. T. Im, and H. C. Jeong, "Technical Trends and Response
Methods of Drive-by Download," Communications of the Korean
Institute of Information Scientists and Engineers, pp. 112-116, Nov.
2010.

K. S. Park, "A Method to Block Clickjacking using Java EE
Architecture," M.S. thesis, Graduate School of Engineering, Korea
University, Seoul, Korea, Aug. 2014.

J. W.Min, S. M. Jeong, and T. M. Jeong, "Design of a Mini-Page Based
Clickjacking Prevention Browser," in Proceedings of the 38th Korea
Information Processing Society (KIPS) Fall Conference, vol. 19, no. 2,
Nov. 2012, pp. 1072-1075.

X. Xing, S. Zhang, H. Wang, et al., "Understanding Malvertising
Through Ad-Injecting Browser Extensions," in Proceedings of The Web
Conference (WWW) 2015, May 2015.

M. Egele, T. Scholte, E. Kirda, and C. Kruegel, "Mitigating Drive-by
Download Attacks: Challenges and Approaches," in Proceedings of the
2nd Workshop on Information Security (INETSEC), 2009, pp. 52—62.
G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, "Busting Frame
Busting: a Study of Clickjacking Vulnerabilities on Popular Sites," in
Proceedings of the Web 2.0 Security & Privacy (W2SP) Workshop,
July 2010.

M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel, "A
Solution for the Automated Detection of Clickjacking Attacks," in
Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security (ASIACCS '10), Apr. 2010, pp. 135—
144.

J.Y.Kim and K. J. Lee, "A development of a web phishing detection
service based on dynamic diagnosis," in Proceedings of the Korean
Institute of Electrical Engineers Conference, Jul. 2024, pp. 2876-2877.

K. M. Choi and C. S. Hong, "Detection of malicious redirection
through code complexity and readability analysis," in Proceedings of
the Korean Institute of Information Scientists and Engineers
Conference, Jun. 2017, pp. 1033-1035.

U. U. Rehman, W. A. Khan, N. A. Saqib, and M. Kaleem, "On
detection and prevention of clickjacking attack for OSNs," in
Proceedings of the 11th International Conference on Frontiers of
Information Technology (FIT), Dec. 2013, pp. 160-165.

A. S. Narayanan, "Clickjacking vulnerability and countermeasures,"
Dept. of Information Technology, Salalah College of Technology,
Sultanate of Oman, Dec. 2012, pp. 7-10.

W. K. Kim, U. Y. So, and K. Seong, "Study on API hooking detection
methods in Windows," Journal of Advanced Navigation Technology,
pp. 884-893, 2009.

(1

[10

[11]

[12]

[13]

[14]

