
SentinelFL: Noise-Driven Global Model Protection
Against Model Theft in Federated Learning

Daeho Kwon
Department of Mathematics

Soongsil University
Seoul, Republic of Korea
kwndh01@soongsil.ac.kr

Bong Jun Choi
School of Computer Science and Engineering

Soongsil University
Seoul, Republic of Korea
davidchoi@soongsil.ac.kr

Abstract—In federated learning, model theft by malicious
clients poses a significant risk to the intellectual property of the
model owner. However, the central server must share the model
parameters with clients for training, making it vulnerable to such
attacks. This study proposes a mechanism to mitigate the risk of
model theft by adding calculated noise to the model parameters,
ensuring that the shared model retains low accuracy to prevent
theft while preserving high accuracy for the global model created
from aggregated local models. The proposed method introduces
a Noise Control Unit that minimizes the loss of accuracy for the
global model while significantly reducing the chances of model
theft. Experimental results show that the proposed approach
successfully maintains high global model accuracy and protects
model privacy. This work contributes to enhancing privacy in
federated learning frameworks, offering a viable solution to
balance model privacy and performance.

Index Terms—federated learning, model theft attack, differen-
tial privacy, crowdsourcing

I. INTRODUCTION

Since the emergence of Federated Learning (FL) [1], its
adoption has grown across various training scenarios. Re-
cently, in particular, FL-based crowdsourcing platform [2],
[3] encourages client participation, providing a means for
organizations that cannot independently build models to com-
mission specialized model training companies. However, it
raises intellectual property concerns, as the model requester
and the platform are separate entities.

While the crowdsourcing platform must share the model
parameters with clients in each round of training under the
traditional FL scenarios, this creates a potential risk of model
theft by malicious clients. To mitigate this issue, existing
methods such as homomorphic encryption [4], [5] have been
proposed. However, these methods are often related to ex-
cessive time complexity and high computational cost on the
client’s local device.

In response, this study proposes a novel mechanism that
intentionally adds noise to the model parameters, thus degrad-
ing their utility for malicious clients while ensuring that the
model provided to the model requester retains its performance.
The goal of this research is to strike a balance between
maintaining model privacy in FL environments and preserving
the performance of the model, addressing the challenges of
both privacy protection and model accuracy.

Fig. 1: Model theft in FL-based crowdsourcing platform; the
global model shared by the FL platform can be easily copied
or reconstructed by the clients

TABLE I: Comparison of centralized learning, federated learn-
ing, and SentinelFL

Centralized Federated SentinelFL
(Proposed)

Data
privacy

No; data collected
at server

Yes; data kept lo-
cally

Yes; data kept lo-
cally

Model pri-
vacy

Yes; model not
shared

No; parameters
shared

Yes; noisy parame-
ters shared

Attack
mechanism

Model extraction (1) Model theft (In-
sider), (2) Extrac-
tion (Outsider)

(1) Model theft (In-
sider), (2) Extrac-
tion (Outsider)

II. RELATED WORKS

A. Model Theft Attack

Model Theft [6] refers to an attack mechanism where
the model is copied or replicated without authorization. The
strategies employed to mitigate model theft in FL differ sig-
nificantly from those used in traditional (centralized) learning
frameworks. In centralized learning, the model architecture is
typically concealed from the clients, with clients only transmit-
ting their local data to a central server. As a result, defensive
strategies in centralized environments place less emphasis on
protecting against the direct theft of model parameters than on
other threats (e.g., Model Extraction Attack [7], [8]).

In contrast, FL operates in a more transparent environ-
ment, where model parameters are exposed to clients during
the training process. This transparency provides clients with
greater visibility into the model’s internal structure but also

691979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

increases the risk of exploitation by malicious clients. Given
that clients can interact with and observe the model, there is
a heightened potential for unauthorized replication or theft.
This distinction emphasizes the need for robust defensive
mechanisms tailored to mitigate the risks of model theft in
FL. To address these concerns, it is essential to enhance
technical safeguards that effectively counter malicious actions
while ensuring the privacy preservation of the model while
maintaining its performance.

B. Differential Privacy

Differential Privacy (DP) [9], [10] is a robust data analysis
technique that provides a quantifiable privacy guarantee for
individual data within a dataset. This guarantee is formalized
through a mathematical condition known as ε-Differential
Privacy (ε-DP). An algorithm M is said to satisfy ε-DP if,
for any two neighboring datasets D1 and D2 that differ by at
most one individual’s data, the probability of any particular
outcome occurring remains nearly identical, with the similarity
bound controlled by the parameter ε.

Definition 1. (ε-Differential Privacy)
Let ε > 0. A randomized function M is said to be ε-
differentially private if, for all neighboring datasets D1 and
D2 that differ by at most one element, and for all subsets
S ⊆ Range(M), the following condition holds:

Pr[M(D1) ∈ S]

Pr[M(D2) ∈ S]
≤ eε.

A smaller ε provides stronger privacy, as the algorithm’s
output changes minimally when any single individual’s data
is added, making it difficult to infer their participation while
preserving overall dataset insights.

The reason for applying DP to model training is to ensure
that the dataset is not exposed during the model training
process. As outlined in Definition 1, the goal is to protect
the data so that specific individuals cannot be identified.

In contrast, in our scenario, the primary objective is to
protect the privacy of the global model itself. Unlike tradi-
tional scenarios, we should add noise to the global model’s
parameters. This approach obscures the structure of the global
model and diminishes its utility. Additionally, since the server
has complete control over how the noise is added to the
distributed model and interpreted after collecting the updated
model parameters from the client, we can achieve robust
privacy control. Therefore, we can devise a Noise Control
Unit that can control how noise affects the model performance
and privacy.

III. GLOBAL MODEL PROTECTION CONSIDERATIONS

To achieve the goal of protecting the global model, we
define three conditions that must be satisfied:

• First, the client-distributed model should not guarantee
utility.

• Second, the global model should guarantee utility.
• Third, the computational cost on local devices should

remain low, ensuring that the protection mechanisms

are economically feasible without excessive resources or
time.

At this point, it is necessary to define what we mean by
utility. The utility of a model can be considered guaranteed if
one of the following circumstances holds:

• First, the model must be accessible for client use.
• Second, if shared or stolen without authorization, the

model should not be traceable.
• Third, the model should support self-replication, allow-

ing clients to duplicate or modify it without permission.
• Finally, the model’s practicality (e.g., accuracy, F1 score)

must be ensured, with the ability to maintain and improve
performance over time.

The goal of this study is to reduce the practicality of
the client-distributed model, thereby breaking the final utility
condition. While the global model is generally expected to
outperform client-distributed models, the key objective here is
to degrade the performance of client-distributed models to the
extent that they become impractical.

IV. NOISE-DRIVEN GLOBAL MODEL PROTECTION

We propose a noise-driven federated averaging method to
protect the global model. This approach aims to degrade the
accuracy of client-distributed models by introducing noise into
the parameters of deep learning models, while simultaneously
enhancing the accuracy of the global model. In this study, we
use three different global models, unlike conventional Feder-
ated Averaging (FedAvg) [1]. These include client-distributed
models, CM1, and CM2, which function like client-side
global models, and global model GM for the model requester.

The basic concept is that the client-distributed models will
experience accuracy degradation due to added noise during
each round. The noise follows a normal distribution and is
applied to the parameters as follows:

w1,t ← w1,t +N (0, σ2), w2,t ← w2,t −N (0, σ2),

where w1,t and w2,t are the parameters for CM1 and CM2 at
round t, respectively. Here, we define σ as the noise intensity
value, which is dynamically adjusted in each round to ensure
that the accuracy of both CM1 and CM2 does not exceed a
certain threshold, as discussed later.

The modified parameters are then shared with clients, where
S1,t and S2,t denoted the groups receiving CM1 and CM2

parameters, respectively.
The parameters from all models in the client groups S1,t

and S2,t are aggregated through FedAvg, and the resulting pa-
rameters update CM1 and CM2. Therefore, at the end of each
round, the parameters of CM1 and CM2 remain identical. The
aggregation method for GM , however, is slightly different.
Here, we introduce the concept of a server-side client. A
server-side client is a client that uses the previous round’s
GM as its local model, and we define these clients as the
server-side client group St. Although St consists of multiple
clients, they essentially represent one server-side client in the
form of dummy clients. This server-side client group is added

692

Algorithm 1: Noise-Driven Federated
Averaging

Description:
K: total number of clients, indexed by k.
B: local mini-batch size.
E: number of local training epochs.
η: learning rate.
C: fraction of clients participating in each round.
nk: number of data samples on client k.
Pk: index set of data points on client k.
l: number of server-side clients.
τ : utility guarantee threshold
C1: number of input channels in CONV1.
H1,W1: height and width of the input to CONV1.
K1: number of filters in CONV1.
Server Execution:
Initialize: w0

for each round t = 1, 2, 3, . . . do
m ← max(⌊C ·K⌋, 1)
Si,t ← random subset of m

2 clients, i ∈ {1, 2}
St ← randomly subset of l clients
for each client k ∈ St and t > 1 do

wk
t ← wt−1

σ ← NoiseControlUnit(δ, ε, n, γ)
while CM1,test ≥ τ or CM2,test ≥ τ and t > 3
do

u ← 0
if u = 1 then

wCONV1
1,t ← wCONV1

1,t − ξ
wCONV1

2,t ← wCONV1
2,t + ξ

ξ ∼ N (0, σ2), ξ ∈ RC1×H1×W1×K1

wCONV1
1,t ← wCONV1

1,t + ξ
wCONV1

2,t ← wCONV1
2,t − ξ

CM1,test ← Acc(CM1,t)
CM2,test ← Acc(CM2,t)
u ← 1

for each client k ∈ S1,t in parallel do
wk

t ← ClientUpdate(k, w1,t)

for each client k ∈ S2,t in parallel do
wk

t ← ClientUpdate(k, w2,t)

if t > 3 then
mt ←

∑
k∈S1,t∪S2,t∪St

nk

wt+1 ←
∑

k∈S1,t∪S2,t∪St

nk

mt
wk

t

m1,t, m2,t ←
∑

k∈S1,t∪S2,t
nk

w1,t+1, w2,t+1 ←
∑

k∈S1,t∪S2,t

nk

mt
wk

t

if t ≤ 3 then
wt+1 ← w1,t+1

ClientUpdate(k, w):
β ← split Pk into batches of size B
for each local epoch i = 1 to E do

for each batch b ∈ β do
w ← w − η · ∇ℓ(w; b)

return w

to the FedAvg process so that S1,t, S2,t, and St all participate
in the aggregation process.

Regarding the issue of the server-side client not having the
number of samples, we randomly select St clients out of the
total K participants, and use their number of data samples to
assign weights to the server-side client. After repeating this
process over several rounds, the final GM is provided to the
model requester.

With this training approach, even if malicious clients par-
ticipate in the training process, the models CM1 and CM2

for each round t they obtain will both be affected by noise,
meaning the accuracy of GM is not guaranteed. Therefore,
this method provides a passive defense against model theft.

A. Accuracy-Noise Trade-off

Generally, as noise intensity (σ) increases, the average
accuracy tends to decrease. but. there remains a very low prob-
ability that high accuracy will be maintained, and likewise,
there is a low but non-zero probability of complete accuracy
loss.

Fig. 2: Accuracy of CM1 (t = 10)

Figure 2 shows a graph illustrating how the accuracy
changes as the σ is increased for the model trained on the
client-distributed model CM1 at round 10. This graph presents
the results of testing where the noise was regenerated 200
times for each noise intensity. The key observation is that the
fluctuation in accuracy also increases as the σ rises. In other
words, the variability of the accuracy increases, suggesting
that the σ not only reduces accuracy but also raises the
unpredictability of the results, affecting the consistency of the
outcomes. These results point to two important conclusions.
First, while the σ significantly affects accuracy, it does not
necessarily guarantee the same level of performance degrada-
tion for the same intensity of noise. Second, as the σ increases,
the range of accuracy degradation also becomes larger. This
implies that when adjusting the σ, it is crucial to consider its
impact on model performance thoroughly.

693

B. How to Control the Noise?

In each round, noise is added to the client-distributed models
CM1,t and CM2,t as part of the federated learning process.
Based on the concept of differential privacy, we can define ε
-differentially private model.

Definition 2. (ε - differentially private model)
Let ε > 0 and ξ ∼ N (0, σ2) where ξ ∈ RC1×H1×W1×K1 .
Let A(M,D) denote the accuracy of model M on dataset D.
CM + ξ is said to be ε-differentially private model if the
following condition holds:

Pr[A(GM,D) ∈ T] ≤ eε × Pr[A(CM + ξ,D) ∈ T].

We can restrict the range of interest to specific intervals.
For example, let T = [60, 100], which corresponds to high-
accuracy predictions. Here, the objective is ensuring that the
global model GMt maintains its accuracy within this range,
while allowing degradation in the accuracy of client-distributed
models CM1,t and CM2,t. In this case, the probability of each
client-distributed model’s accuracy falling within this range
must be smaller than that of the global model.

The privacy sensitivity parameter (ε) governs the intensity
of the noise added to the model. As ε increases, the noise
intensity σ grows, leading to greater privacy protection but
also increasing variability in model predictions, especially
within the range T . The trade-off between model privacy and
model performance, particularly for high-accuracy predictions,
is managed through this parameter.

While an infinite ε ensures maximal privacy protection, it
results in diminishing model accuracy, and this balance must
be carefully managed in practical applications.

We aim to calculate the probability that a model’s output lies
within a specific interval T using the cumulative distribution
function (CDF).

Let µ denote the mean and σ the standard deviation of a
normal distribution. The Z-score for a value x is calculated
as:

Zx =
x− µ

σ
.

We are interested in calculating the probability that a random
variable X from this distribution lies within the interval
[δ, 100]. This probability is given by the difference between
the CDF values at the Z-scores corresponding to 100 and δ:

P (δ ≤ X ≤ 100) = P (Z100)− P (Zδ).

Thus, the probability that the random variable X lies within
the interval [δ, 100] can be expressed as:

P (δ ≤ X ≤ 100) =
∫ Z100

−∞
1√
2π

e−
z2

2 dz −
∫ Zδ

−∞
1√
2π

e−
z2

2 dz.

This represents the difference in the area under the standard
normal curve between Z100 and Zδ , which corresponds to the
probability that X lies between δ and 100.

Suppose that model M is subjected to random noise on each
parameter, following a normal distribution N (0, 22), while
model M ′ is perturbed by noise following N (0, 0.12). As
indicated earlier, model M may exhibit higher accuracy than

Algorithm 2: NoiseControlUnit
Input:
ε: privacy sensitivity
n: number of trials
γ: increase in σ
Initialization:
σ ← 0 // Noise intensity value
(co,ex1,ex2) = ([], [], []) // List of accuracy from n

random tests on control group, CM1 and CM2

for i = 1 to n do
co.append(Acc(CM1,t))

µco ← 1
n

∑n
i=1 co[i] //Compute Average

σco ←
√

1
n−1

∑n
i=1(co[i]− µco)2

Z100 ← 100−µco
σco

//Compute CDF
Zδ ← δ−µco

σco

Pco ← P (Z100)− P (Zδ)
while εtest ≤ ε do

σ+ = γ
for z = 1 to n do

ξ ∼ N (0, σ2), ξ ∈ RC1×H1×W1×K1

wCONV1
1,t ← wCONV1

1,t + ξ
wCONV1

2,t ← wCONV1
2,t − ξ

ex1.append(Acc(CM1,t))
ex2.append(Acc(CM2,t))
wCONV1

1,t ← wCONV1
1,t − ξ

wCONV1
2,t ← wCONV1

2,t + ξ

µex1 = 1
n

∑n
i=1 Acc1,t[i] // Compute Averages

µex2 = 1
n

∑n
i=1 Acc2,t[i]

σex1 =
√

1
n−1

∑n
i=1 (ex1[i]− µex1)

2

σex2 =
√

1
n−1

∑n
i=1 (ex2[i]− µex2)

2

Z1100 ← 100−µex1
σex1

//Compute CDF Z1δ ← δ−µex1
σex1

Z2100 ← 100−µex2
σex2

Z2δ ← δ−µex2
σex2

Pex1 ← P (Z1100)− P (Z1δ)
Pex2 ← P (Z2100)− P (Z2δ)
εtest ← min(ln Pco

Pex1
, ln Pco

Pex2
)

return σ

model M ′, despite the increased noise intensity. This outcome
is somewhat counterintuitive, as it suggests that a model
with higher noise intensity can demonstrate greater accuracy.
According to Definition 2, model M—which has a higher
privacy sensitivity—also achieves higher accuracy, raising the
question of whether lower-accuracy models are necessarily
better suited as client-distributed models for protecting the
global model. The answer is not straightforward.

Suppose client-distributed model CM ’s convolutional layer
is A and global model GM ’s Convolutional Layer is B. Let
Aξ = A + ξ where ξ ∼ N (0, σ2) and ξ ∈ RC1×H1×W1×K1 .
We can calculate Frobenius distance between Aξ and B,
which is based on the Frobenius norm. The Frobenius norm

694

is advantageous in preserving the matrix structure.

||Aξ −B||F =
√∑

c,h,w,k(Ac,h,w,k + ξc,h,w,k −Bc,h,w,k)2.
(1)

Given that E[ξc,h,w,k] = 0 and E[ξ2c,h,w,k] = σ2 (since ξc,h,w,k

is sampled from N (0, σ2)), we get:

E[||Aξ −B||2F] =
∑

c,h,w,k

(Ac,h,w,k −Bc,h,w,k)
2

+ (C1 ×H1 ×W1 ×K1)σ
2.

(2)

By the definition of Expectation, the following relationship
holds:

σ ∝ E[||Aξ −B||2F] = E[||Aξ −B||F]2 + V ar(Aξ −B).

Here, the variance is always greater than or equal to 0. There-
fore, if σ increases, the expectation of the distance between
Aξ and B increases. This indicates that the model with higher
noise intensity will deviate more from the global model,
potentially capturing feature maps that differ significantly
from those learned by the global model. It suggests that the
perturbed model is learning features that diverge substantially
from those of the original global model. This can introduce
significant discrepancies during model updates, potentially
compromising the overall performance of the global model.

Therefore, it is insufficient to conclude that a model with
higher accuracy is inherently less suitable for model privacy
protection in a FL framework.

V. EXPERIMENTS

A. Experiment Settings

For our experiments, we use a CNN model consists of two
convolutional layers (32 and 64 filters, kernel size 3 × 3),
followed by two dropout layers (probability of 0.25 and 0.5),
and two fully connected layers (128 neurons and 10 output
classes).

TABLE II: Hyperparameter values

Dataset MNIST (IID)
Communication rounds 20 (Fig.3), 15 (Fig.4)
Learning rate η 0.0001
Batch size B 16
Local epochs E 10
Client participation S1,t = 5, S2,t = 5 per round
Server-side clients St 20 (from 2nd round, FedAvg)
Privacy sensitivity ε 0.6
σ increase in size (γ) 0.01 (Fig. 5), 0.1 (Fig. 6–7)
Lower bound T (τ = δ) 60
Noise application Conv1 parameters (from 4th round)
Optimizer SGD

B. Results

In Figure 3, GM maintains high accuracy, similar to the
baseline model (conventional FedAvg without global model
protection), with minimal impact from the applied noise.
Additionally, the accuracies of the client-distributed models
are effectively restricted, showing that the model privacy
protection mechanism is functioning as intended. Therefore,

Fig. 3: Comparison of accuracy between the proposed model
and the baseline model

the utility of the global model is kept at a similar level as
in traditional FL, while the utilities of the client distributed
models are kept below the predefined upper bound, making
the model theft attack meaningless.

Figure 4-(a) presents a comparison of the model perfor-
mance based on the number of server-side clients (|St|): 0,
20, and 40. The goal of server-side clients is to ensure stable
model convergence by minimizing the accuracy degradation
caused by noise variability. When too many server-side clients
are applied, the convergence speed decreases, or the previous
rounds are more likely to affect subsequent rounds. On the
other hand, when no server-side clients are used, convergence
can be faster, but the results are not as consistent.

Figure 4-(b) demonstrates the accuracy comparison across
different proportions of |S1| and |S2|, where the 1:1 proportion
results in the best convergence for the global model. The
experiment shows that a 1:1 ratio yields the best accuracy
and convergence, supporting the effectiveness of evenly dis-
tributing clients across groups in Algorithm 1.

Figure 4-(c) illustrates the relationship between γ and σ.
It shows that smaller γ (i.e., smaller increments in σ) leads
to higher accuracy, but increases computational cost by the
server.

VI. CONCLUSION

The method proposed in this study provides a robust mech-
anism for model privacy protection by introducing random
noise into the global model parameters, effectively reducing
the performance of client-distributed models. Experimental
results demonstrate that the global model maintained perfor-
mance comparable to the baseline, while successfully con-
straining the accuracy of the client-distributed models. This
outcome supports the efficacy of the proposed model privacy
protection mechanism. When compared to SOTA mechanisms
(e.g., homomorphic encryption), the proposed method signif-
icantly reduces computational overhead on the client side,
as, from the client’s perspective, whole procedure does not

695

differ from traditional FL. This is a considerable advantage,
as it avoids the computational burden typically associated with
clients in standard FL applications while maintaining a high
level of model privacy protection. However, the process of
determining noise intensity and the noise map, which are based
on model accuracy, introduces additional time complexity
for the server. Specifically, the computation required by the
NoiseControlUnit leads to delays that could pose challenges
in real-time applications. This issue calls for the development
of more efficient methods to adjust noise intensity, reducing
latency while preserving model privacy protection. Although
the proposed approach has been validated within a limited
scope, specifically for certain datasets and model architectures,
we expect that the approach will be applicable across a wide
range of models and datasets because the process of adding
noise to model parameters using our algorithm is quite generic
and does not depend on the model architecture.

ACKNOWLEDGMENTS

This research was supported by MSIT Korea under NRF
Korea (RS-2026-00557379, 60%). This research was also
supported by the MSIT, Korea, under the Innovative Human
Resource Development for Local Intellectualization support
program (IITP-2026-RS-2022-00156360, 30%) and the Con-
vergence Security Core Talent Training Business Support
Program (IITP-2026-RS-2024-00426853, 10%) supervised by
IITP.

REFERENCES

[1] B. McMahan et al., ”Communication-Efficient Learning of Deep Net-
works from Decentralized Data,” in Proc. 20th Int. Conf. Artif. Intell.
Stat., vol. 54, PMLR, pp. 1273–1282, 2017.

[2] S. R. Pandey et al., ”A Crowdsourcing Framework for On-Device
Federated Learning,” IEEE Trans. Wireless Commun., vol. 19, no. 5,
pp. 3241-3256, May 2020.

[3] B. Zhao et al., ”CrowdFL: Privacy-Preserving Mobile Crowdsensing
System via Federated Learning,” IEEE Trans. Mobile Comput., vol. 22,
no. 8, pp. 4607-4619, 2023.

[4] Y. Pan et al., ”FedSHE: Privacy Preserving and Efficient Federated
Learning with Adaptive Segmented CKKS Homomorphic Encryption,”
Cybersecurity, vol. 7, no. 1, article 40, 2024.

[5] J. H. Cheon et al., ”Homomorphic Encryption for Arithmetic of Ap-
proximate Numbers,” in Adv. Cryptol. – ASIACRYPT, vol. 23, Springer,
pp. 409-437, 2017.

[6] J. Liang and R. Wang, ”FedCIP: Federated Client Intellectual Property
Protection with Traitor Tracking,” arXiv preprint arXiv:2306.01356,
2023.

[7] S. Pal et al., ”ActiveThief: Model Extraction Using Active Learning
and Unannotated Public Data,” in Proc. AAAI Conf. Artif. Intell., pp.
865-872, 2020.

[8] K. Khaled et al., ”Efficient Defense Against Model Stealing Attacks on
Convolutional Neural Networks,” in Proc. Int. Conf. Mach. Learn. Appl.
(ICMLA), IEEE, pp. 45-52, 2023.

[9] C. Dwork, ”Differential Privacy: A Survey of Results,” in Int. Conf.
Theory Appl. Models Comput., Springer, pp. 1-19, 2008.

[10] M. Aitsam, ”Differential Privacy Made Easy,” in Proc. Int. Conf. Emerg.
Trends Electr., Control Telecommun. Eng. (ETECTE), IEEE, pp. 1-7,
2022.

(a) Impact of server-side clients

(b) Impact of |S1| : |S2|

(c) Impact of γ

Fig. 4: Comparison of experimental results across different
settings

696

