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Abstract—In this paper, we introduce the SDIR (Suscepti-
ble–Delayable–Infected–Recovered) model, an extension of the
classical SIR epidemic framework, to provide a more explicit
characterization of user behavior in online social networks. The
newly merged state D (delayable) represents users who have
received the information but delayed its spreading and may
eventually choose not to share it at all. Based on the mean-field
approximation method, we derive the dynamical equations of the
model and investigate its convergence and stability conditions.
Under these conditions, we further propose a greedy algorithm
and a sandwich approximation algorithm for the edge-deletion
problem, aiming to minimize the influence of information diffu-
sion by identifying approximate solutions.

Index Terms—SIR epidemic, social networks, complex net-
works, Markov chains, discrete optimization, edge deletion,
mean-field approximation

I. INTRODUCTION

Online social networks have become one of the most crucial
and essential information platforms for communication and
commerce on a global scale. Because of their highly complex
data structures, information spreading in social networks has
emerged as an ideal environment for propagation—deep, wide,
and significantly faster than any previous medium. Studying
information diffusion on platforms such as Facebook, Twitter,
and TikTok plays an essential role in communication media,
information security, and the social sciences [8], [12], [26],
[29]. In these platforms, the influence maximization (IM) prob-
lem [8], [12], [22], [29] has been recognized as a fundamental
problem in viral marketing, while the influence minimization
(IMIN) problem [13], [23], [29], [31] is central to controlling
the spread of harmful or false information in online social
networks.

Epidemic models have long been studied using mathe-
matical formulations, for instance, the Susceptible-Infected-
Recovered (SIR) model is used for epidemic forecasting in
epidemiology [28]. Initially, epidemic models such as SIR
and SIS (Susceptible-Infected-Susceptible) were applied to
epidemiology for disease forecasting [4], [28]. Nowadays,
however, these models are also widely applied to other fields,

including viral advertising [24], [26], cybersecurity [1], [3],
and information diffusion [9], [16]. Models of information
propagation are generally categorized into stochastic and de-
terministic approaches, with several comprehensive surveys
available [19], [21]. For example, Wang et al. [32] introduced
a discrete-time virus spread model and evaluated the epidemic
threshold as a function of network structure. Mieghem et
al. [16], [18] applied Markov chain formulations to analyze
biological diffusion models such as SIR, and subsequent works
explored SIR variants, including SIS and SIRS [5], [27].
Through mean-field approximation, stochastic SIR models
can be transformed into deterministic and discrete forms,
enabling linearization and tractable analysis [10], [16], [20],
[34], [35]. More recently, Yi et al. [34] employed mean-field
approximations to study discrete SIR models, reformulated
them into matrix-based dynamical systems, and studied influ-
ence minimization via edge deletion, along with convergence
properties of the resulting models.

At present, personalization of user experience has become
a dominant trend and a primary objective of online social
networks, especially with the increasing use of artificial in-
telligence algorithms [30] to enhance user engagement on
platforms such as Facebook, Twitter, YouTube and TikTok.
Consequently, the study of users’ behavior has become partic-
ularly relevant in this context [35].

In this paper, we present a novel discrete-time SDIR model,
a new extension of the classical discrete SIR framework. The
SDIR model incorporates an intermediate state, D (Delayable),
between S and I. This new state captures scenarios where a
node that receives information does not immediately become
“infected,” but may instead exhibit a delay before spreading
the information-or may ultimately choose not to spread it
at all. This behavioral shade reflects realistic interactions in
online social networks, where users exercise discretion in
processing, accepting, and sharing information. Each seed
node corresponds to a social media account (e.g., a Face-
book/Twitter/YouTube/TikTok user account or fan page) that
initiates diffusion to its followers at the beginning. In reality,
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Fig. 1. The SDIR model

many users either ignore their received information or share
it only after a delay in judgment. User procrastination on
online social networks has been examined as an inherent
behavioral factor in the use of such platforms [6], [25]. By
introducing the Delayable state, the SDIR model offers a
more accurate representation of individual-level behavior in
information diffusion.

Our paper focus on discrete-time SDIR model by using
the mean-field approximation method to transform the model
SDIR to deterministic SDIR model. Using some techniques
in linear algebra and spectral matrix theory, we study op-
timization problems that minimize the number of infections
in SDIR Markov chain model on a network. By using some
technique assumptions, we give the sufficient condition for
the convergence and the stability of our model. Moreover,
we investigate the change of the number of infections after
deleting edges. We propose the an efficient modified greedy
algorithm based on [34] and Sandwich algorithm based on
Sandwich framework [15], [33] for minimize infections.

II. PROPOSED MODEL

The proposed SDIR model is extended from the SIR model
to better suit the application of simulating information dif-
fusion on social networks. A key characteristic of the SDIR
model is the introduction of state D (Delayable) which means
that a node can be delayed in its infection process. More
specifically, consider a directed graph G(V,E) with |V | = n,
where each node represents a user and can be in one of four
states: Susceptible (S), Delayable (D), Infected (I), or Recov-
ered (R). Notably, Delayable means that a delayed state after
being exposed to information but not immediately spreading
it, and more importantly, it is still considered as an infected
state. It is evident that Si(t) + Ii(t) +Di(t) +Ri(t) = 1. At
time t, a node i in state S can be infected by an adjacent node
j in state I that has an edge pointing to i with probability
βij(t). If successful, node i will transition to one of two
states: state I with probability αi(t) or state D with probability
1 − αi(t). Furthermore, if a node i is in state D at time t, it
may transition to another state or remain in its current state
according to the following rule: A real number p ∈ [0, 1] is
randomly chosen following a uniform distribution. Then, if
p < ωi(t), it transitions to state I; if ωi(t) ≤ p < ωi(t)+δ′i(t),
it transitions to state R; otherwise, it remains in its current
state D. When node i is infected at time t, it also heals with
rate δi(t). Before establishing the equations for the model, we
introduce the following assumptions.

Assumption 1. δi(t) ≤ δ′i(t), ∀i ∈ 1, n, t ≥ 0.

Assumption 2. αi(t) ∈ (0, 1], ∀i = 1, n, t ≥ 0.

The set of inequalities in Assumption 1 is derived from the
observation that during the process of information diffusion
and reception, users tend to ignore or quickly forget infor-
mation (transition to state R) if they do not share or interact
immediately.

Next, for every node i ∈ 1, 2, ..., n, we have:

Ii(t+ 1) =Si(t)αi(t)

(
1−

n∏
j=1

(
1− βij(t)Ij(t)

))

+ ωi(t)Di(t) + (1− δi(t))Ii(t) (1)

Di(t+ 1) =Si(t)(1− αi(t))

(
1−

n∏
j=1

(
1− βij(t)Ij(t)

))

+ (1− ωi(t)− δ′i(t))Di(t) (2)

Ri(t+ 1) =δi(t)Ii(t) + δ′i(t)Di(t) +Ri(t) (3)

By evaluating Si(t) ≤ Si(0), taking the expectation on both
sides of each equation, and then linearizing the model using
the mean-field approximation and the approximation formula
ex ≈ x + 1 when x → 0 for the quantity (1 −

∏n
j=1(1 −

βij(t)Ij(t))) under the assumption that βij(t) are independent
for every pair i, j, and the coefficients βij(t), δi(t), αi(t),
ωi(t), δ′i(t) are independent and identically distributed, we
obtain the following system:

x(t+ 1) = (I −D +AS(0)B)x(t)

+Wy(t) (4)

y(t+ 1) = (I −A)S(0)Bx(t)

+ (I −W −D′)y(t) (5)

r(t+ 1) = Dx(t) +D′y(t) + r(t) (6)

Here, x(t), y(t), r(t) are vectors whose i-th element takes
the value E[Ii(t)], E[Di(t)], E[Ri(t)], respectively. A, W , D,
D′ are diagonal matrices whose i-th diagonal element takes
the value E[αi(t)], E[ωi(t)], E[δi(t)], E[δ′i(t)], respectively.
S(0) is a diagonal matrix whose i-th diagonal element is
1− xi(0)− yi(0)− ri(0). The matrix B consists of elements
Bij = E[βij(t)]. We also assume that

∑n
j=1 Bij < 1,

∀i = 1, 2, · · · , n.

III. SUFFICIENT CONDITION FOR GLOBAL CONVERGENCE

One difference between the SDIR model and the SEIR
model in [21] is that the delayed state in the SDIR model is
still considered an infected state, while the SEIR model only
considers E as an exposed state. Therefore, when considering
global stability in the SDIR model, we need to find a sufficient
condition for x(t) and y(t) to both approach the zero state.
Consider a vector q ∈ (0, 1]n which has n elements q1, q2,· · · ,
qn, then define

C(q) := diag(min(Di, D
′
i + (1− 1/qi)Wi)),

M(q) := I −C(q) + (A+Q(I −A))S(0)B,
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where Q = diag(q). Moreover, if there is no confusion, we
convention to write M(q) as M . Recall that the sufficient
condition for the convergence of the SIR model is ρ(MSIR) <
1, where MSIR = I −D +S(0)B. Under Assumption 1, we
can give a convergence condition that is better than the SIR
model and is stated in the following theorem.

Theorem III.1. Under Assumption 1, there always exists a
choice of vector q ∈ (0, 1]n such that ρ(M) ≤ ρ(MSIR).
Moreover, if ρ(M) < 1 then x(t) and y(t) converge to the
0n×1.

Corollary III.2. If there exist a vector q ∈ (0, 1]n such that
ρ(M) < 1 then x(t) and y(t) converge to the 0n×1.

Theorem III.1 provides a ”loose” condition for the con-
vergence of the model due to the presence of n parameters
qi, i = 1, n. The variation of these n parameters may change
the convergence rate of the model, although it is not certain
whether this quantity is positively correlated with the spectral
radius of M or not. It should also be noted that introducing the
delayed state only helps the model to simulate in more detail
and better capture the information dissemination behavior of
social network users, but it does not assert that the convergence
condition of the SDIR model is always better than existing re-
lated models. We observe that when Assumption 1 is removed,
the result of Theorem III.1 may not always be achieved.

IV. THE PROBLEMS AND BOUNDING FUNCTIONS

A. The main problem

Let the vector m(t) := x(t) + y(t) + r(t) and m� ∈ Rn

consisting of elements m�
i = sup

t
mi(t).

Definition IV.1. The quantity ‖m∗ − m(0)‖1 is called the
number of increased infections on G after the diffusion process
ends.

In the following, we consider the problem of minimizing
the diffusion quantity from the nodes in the given seed set
by deleting some appropriate edges. Suppose we choose a set
of edges P ⊆ Q to delete from the graph. Denote B−P as
the matrix obtained from B, G−P = G(V,E\P ), and let
σ(P ) := ‖m� − m(0)‖1 be the function of the number of
increased infections in the network when the diffusion ends
after deleting the set of edges P .

Problem IV.2. Given a directed graph G(V,E) with |V | =
n, representing SDIR diffusion model, an initial state vector
x(0) ∈ [0, 1]n and y(0), r(0) such that x(0)+y(0)+ r(0) ∈
[0, 1]n. Let Q be a candidate set of edges such that Q ⊆ E
and a positive integer k satisfying k ≤ |Q| = q. Find a set of
edges P ⊆ Q, |P | ≤ k to delete from the graph such that the
infection amount on G−P is minimized i.e., find

P � ∈ argmin
P⊆Q,|P |≤k

σ(P )

An easily noticeable point is that the objective function for
Problem IV.2 lacks submodularity or supermodularity. This
motivates us to find a good heuristic algorithm that provides a

solution with good optimality approximation. Similar to [34],
if the condition of Theorem III.1 is satisfied, combined with
the constraints of the above assumptions, we can find a mono-
tonic upper bounding function that possesses supermodularity.

B. Supermodular Upper Bound

Theorem IV.3. Under Assumption 1, when ρ(M−P ) < 1, the
infection amount of the SDIR model with the removed edge
set P does not exceed

σU (P ) =1�(A+Q(I −A))−1

(D(I −M−P )
−1 − I)(x(0) +Qy(0)).

If the constraints of Assumption 1 are satisfied, it is clear
that the obtained upper bound function is not greater than
the upper bound function for the D-SIR model of [34] and is
significantly smaller if there exists a node i satisfying D′

i >
Di (the reader is recommended to see the proof of Theorem
III.1 in the appendix for more details). We have the following
lemma to prove the monotonicity and supermodularity of the
function σU (.).

Lemma IV.4. σU (.) is a non-increasing and supermodular
function.

C. Supermodular Lower Bound

A noteworthy point in the SDIR model is that one can find a
lower bound function that is also supermodular. Hence, instead
of running the greedy algorithm only for the upper bound
function σU (.), one can run the greedy algorithm once more
for the following lower bound function σL(.). This is precisely
the idea of the Sandwich approximation and will be presented
in more detail in the next section. Let N−P := I − D +
AS(0)B−P .

Theorem IV.5. Under Assumption 2, when ρ(N−P ) < 1 the
number of infections of the SDIR model with the set of removed
edges P is at least

σL(P ) =1�A−1
(
D(I −N−P )

−1 − I
)

(x(0) +W (W +D′)−1y(0)
)
.

Lemma IV.6. σL(.) is a non-increasing and supermodular
function.

The proofs of Lemmas IV.4 and IV.6 can be argued in
a manner similar to that in [34]. Now, we have σL(P ) ≤
σ(P ) ≤ σU (P ), with σL(P ), σU (P ) being two non-
increasing and supermodular functions. Accordingly, the Sand-
wich approximation principle [15], [33] implies that the so-
lution returned by the greedy algorithm always guarantees an
approximation ratio relative to the optimal solution; specifi-
cally,

σU (∅)− σ(PSand) ≥max

{
σU (∅)− σ(PL)

σU (∅)− σL(PL)
,
σU (∅)− σU (P �)

σU (∅)− σ(P �)

}

(
1− 1

e
− ε

)
(σU (∅)− σ(P �)),

where PSand = argminP∈{PL,P0,PU} σ(P ) with PL, PU being
the solutions returned by the greedy algorithm applied to σL(.)
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and σU (.), respectively, P0 being a solution returned by some
algorithm (possibly greedy) applied to σ(.), and P � denoting
the optimal solution for objective function.

V. ALGORITHMS

First, we have the following proposition showing that solv-
ing Problem IV.2 still remains computationally hard due to the
use of a more general model than SIR model.

Proposition V.1. The problem of finding the optimal edge set
P � to remove in order to minimize the spread in the SDIR
network model, as formulated in IV.2, is NP-hard.

Since the problem is NP-hard, it is very difficult to design
an algorithm that provides an exact solution in all cases
within polynomial time. Fortunately, with the two bound
functions derived in the previous section, and when the con-
dition ρ(M−P ) < 1 is satisfied, we propose the Sandwich
approximation algorithm, which is described in Algorithm 2.

Algorithm 1 Greedy Algorithm (GA)

Input: A function f ∈
{
σL, σU

}
, a graph G, initial states, a

candidate edge set Q, and an integer k.
Output: An edge set P ⊆ Q of size k.
Initialize P ← ∅
for i = 1 to n do

Compute f(P ∪ {e}) for each e ∈ Q\P
e� ← argmaxe∈Q\P

(
f(P )− f(P ∪ {e})

)
P ← P ∪ {e�}

end
return P

Specifically, Algorithm 1 is applied to the two functions
{σL, σU} in order to obtain three corresponding edge sets by
greedily selecting an edge in each iteration. Based on Lemmas
IV.4 and IV.6, the solution returned by this greedy algorithm
guarantees an approximation ratio of (1−1/e− ε) for the two
functions σU (∅)− σL(.) and σU (∅)− σU (.) with respect to
the optimal solution. Next, among the resulting edge sets, we
compute the estimated infection for each set and select the
one that yields the smallest spreading influence.

Algorithm 2 Sandwich Approximation Algorithm (SAA)
Input: A graph G, initial states, a candidate edge set Q, and
an integer k.
Output: An edge set P ⊆ Q of size k.
PL ← Result of GA for σL(.)
P0 ← Result of a heuristic algorithm for σ(.)
PU ← Result of GA for σU (.)
return PSand ← argminP∈{PL,P0,PU} σ(P )

Remark V.2. The solution P0 of σ(.) does not play a crucial
role in proving the approximation guarantee of SAA. More-
over, the greedy method for σ(.) does not provide any guar-
anteed approximation ratio compared to the optimal solution,
while incurring higher computational complexity. Therefore,
P0 can be obtained using other simpler methods, such as

random selection. We propose two algorithms that are GA
and SAA.

VI. EXPERIMENTS

In this section, we present numerical examples to demon-
strate the convergence and effectiveness of the proposed algo-
rithms. We evaluate the performance of our method on a real-
world dataset and compare it against some known strategies.

A. Comparison with Heuristic Algorithms

First, we compare the proposed SAA with two heuristic
algorithms, namely Max-degree [2] and Random [7], applied
to the SDIR model. The algorithms are defined as follows:

1) Max-degree: This algorithm iteratively removes the edge
incident to the node with the highest weighted degree at
each step.

2) Random: This algorithm removes an edge selected uni-
formly at random at each iteration. Note that the proce-
dure for determining P0 is integrated into this selection
process.

We conducted experiments using the real-world contact
network dataset collected in Haslemere, England [14]. The
parameter settings and preprocessing steps follow the method-
ology described in Yi et al [34]. The new simulation pa-
rameters are initialized as follows: The initial state y(0) is
set to zero for all nodes, except for five seed nodes which
are assigned random values in the interval [0, 0.05]. Also, the
initial state x(0) is set to zero for all nodes, except for five
seed nodes which are assigned random values in the interval
[0.8, 0.85]. Next, the infection rates Ai are distributed based
on node categories: the five seed nodes have Ai ∈ [0.9, 1];
forty-five randomly selected nodes have Ai ∈ [0.65, 0.87];
and the remaining nodes have Ai ∈ [0.15, 0.35]. For each
node i ∈ V , the weight Wi is chosen uniformly at random
from [0.15, 0.35]. To ensure Assumption 1 is satisfied, D′

i is
selected from the interval [max(0, Di −Wi), 0.95−Wi].

Fig. 2. Haslemere Network with preprocessing

The simulation results are presented in Fig. 2. It is evi-
dent that the solutions obtained from the proposed sandwich
bounding functions significantly outperform the two heuristic
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algorithms. The number of increased infections decreases
rapidly within the removal of the first 50 edges. Notably, the
upper and lower bounds derived from the sandwich algorithms
are very close to each other, indicating the tightness of the
approximation with respect to the objective function. It is
similar to the results or the complexity of the Greedy algorithm
in [34], in our simulations, the running time of our Algorithm
1 for the SDIR model is O(n3 + k(n2 + qn)).

B. Convergence Analysis

Fig. 3. Convergence of infection states over time

Next, utilizing the same parameter setup, we examine the
convergence of the infection states in both the proposed SDIR
model and the linear SIR model. The total amount of infection
state of the SDIR model is defined as ||x(t) + y(t)||1. For
comparison, the total amount of infection state of the linear
SIR model is calculated as ||x̂(t)||1, where the initial condition
is set to x̂(0) = x(0) + y(0).

The results illustrated in Fig. 3 demonstrate that the SDIR
model exhibits faster convergence compared to the linear
SIR model. Specifically, the infection states in the SDIR
model rapidly decays to 0n×1 within the first 10 time steps.
In contrast, the linear SIR model exhibits a slower decay,
requiring approximately 5 additional time steps to reach a
similar extinction state. This empirical observation reinforces
the theoretical validity of Theorem III.1 under Assumption 1.

VII. CONCLUSION

We studied the discrete-time SDIR model, a new modified
SIR model. We showed that the sufficient condition for the
convergence and the stability of the SDIR model. Furthermore,
we investigate the problem that minimize the number of infec-
tions where deleting some edges. Two algorithms, greedy and
Sandwich algorithms were proposed to solve the minimizing
infections problem. Some experimental results were given.
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APPENDIX

A. Proof of Theorem III.1

Under Assumption 1, it is clear that Di ≤ D′
i, ∀i =

1, 2, . . . , n. Hence we can choose qi ∈
[

Wi

Wi +D′
i −Di

, 1

]
.

We have: x(t+ 1) +Qy(t+ 1)

= (I −D + (A+Q(I −A))S(0)B)x(t)

+ (QI −QD′ − (I −Q)W )y(t)

= (I −D + (A+Q(I −A))S(0)B)x(t)

+ (I −D′ − (Q−1 − I)W )Qy(t)

≤ (I −C + (A+Q(I −A))S(0)B)x(t)

+ (I −C + (A+Q(I −A))S(0)B)Qy(t)

= M(x(t) +Qy(t)), ∀t ≥ 0.

Therefore, x(t)+Qy(t) ≤ M t(x(0)+Qy(0)). If ρ(M) ≤
1 − ε, then ‖x(t) + Qy(t)‖ ≤ (1 − ε)t‖x(0) + Qy(0)‖,
which forces x(t) and y(t) to converge to 0 as t → ∞. This
completes the proof.

B. Proof of Theorem IV.3

From the proof of Theorem III.1, we have x(t) ≤
M t

−P (x(0) +Qy(0)), ∀t ≥ 0. Next, observe that

m(t) = x(t) + y(t) + r(t)

= x(0) + y(0) + r(0) + S(0)B−P

t−1∑
l=0

x(l)

≤ m(0) + S(0)B−P

t−1∑
l=0

M l
−P

(
x(0) +Qy(0)

)
.

⇒ ‖m� −m(0)‖1 = lim
t→∞

‖m(t)−m(0)‖1

≤ 1�S(0)B−P (I −M−P )
−1(x(0) +Qy(0)).

This completes the proof.

C. Proof of Theorem IV.5

First, we have the following lemma:

Lemma VII.1. Let A and B be two square nonnegative real
matrices of the same dimension with spectral radius ρ(A) < 1
and ρ(B) < 1. Then

L = lim
t→∞

t∑
s=0

s∑
l=0

AlB s−l = (I −A)−1(I −B)−1.

Proof. Denote Cl = I +B+ · · ·+Bl for l = 0, 1, 2, . . .. For
t > t0 with fixed t0 ∈ N� we have

∑t
s=0

∑s
l=0 A

lB s−l ≥∑t0
l=0 A

lCt−t0 + At0+1
∑t−t0−1

l=0 Al. Fixing t0 and letting
t → ∞ yields L ≥ (I + · · · + At0)(I − B)−1 +
At0+1(I − A)−1. Now letting t0 → ∞ gives L ≥
(I − A)−1(I − B)−1. Similarly, one may show the reverse
bound by observing

∑t
s=0

∑s
l=0 A

lB s−l ≤
∑t0

l=0 A
lCt +

At0+1
∑t−t0−1

l=0 AlCt−t0−1, and repeating the same limiting
argument to obtain L ≤ (I−A)−1(I−B)−1. Thus the lemma
is proved.

Returning to Theorem IV.5. We have x(t+1) = N−Px(t)+
Wy(t) = N t+1

−P x(0)+
∑t

l=0 N
t−l
−P Wy(l), ∀t ≥ 0. It is easy

to see that y(t) ≥ Fy(t − 1) with F = I − W − D′, it
follows that y(t) ≥ F ty(0) for all t ≥ 0. So

m(t+ 1)−m(0) = S(0)B−P

(
t∑

s=1

(
N s

−Px(0)

+

s−1∑
l=0

N s−1−l
−P Wy(l)

)
+ x(0)

)
≥

S(0)B−P

t∑
l=0

N l
−Px(0) + S(0)B−P

t−1∑
s=0

s∑
l=0

N s−l
−P F lWy(0).

Setting t → ∞ and applying Lemma VII.1 yields m� −
m(0) ≥ S(0)B−P

(
(I −N−P )

−1x(0) + (I −N−P )
−1(I −

F )−1Wy(0)
)

. Then, equivalently, ‖m� − m(0)‖1 ≥
1�A−1

(
D(I−N−P )

−1−I
)(
x(0)+W (W +D′)−1y(0)

)
.

The theorem is proved.
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