
Deep Unfolding for Accelerating Iterative
Algorithms in Wireless Communications

The Vi Nguyen, Thi My Tuyen Nguyen, Kiet Nguyen Tuan Tran, Gahyun Kim, and Sungrae Cho
School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

Email: {tvnguyen, tuyen, knttran, ghkim}@uclab.re.kr, srcho@cau.ac.kr

Abstract—Iterative algorithms are widely used to solve op-
timization problems in communications and signal processing
tasks. However, high iteration counts and computational com-
plexity per iteration lead to excessive computational latency,
limiting the use of these algorithms in time-sensitive applications.
To overcome these challenges, a promising model-based deep
learning technique, called deep unfolding, has recently been
employed to accelerate iterative algorithms. In particular, deep
unfolding transforms iterative algorithms into trainable neural
network architectures, where each iteration corresponds to a
network layer and algorithmic parameters become learnable.
This approach preserves interpretability while enabling fast
inference. Moreover, recent advances further reduce computa-
tional complexity per iteration with surrogate functions. These
developments provide efficient and interpretable learning-based
optimization frameworks suitable for real-time communication
systems.

Index Terms—Deep unfolding, Machine learning, 6G networks

I. INTRODUCTION

Iterative algorithms are powerful methods for solving many
optimization problems that appear in communications and
signal processing tasks such as channel estimation, detection,
and control [1]–[5]. However, these algorithms need tens to
hundreds of iterations to find a solution, leading to high
time consumption. This fact limits the deployment of these
algorithms in practice, especially in the latency-sensitive appli-
cations, such as ultra-reliable and low-latency communication
(URLLC) and autonomous vehicle systems. This motivates
a new approach that offers high-quality solutions in time-
efficient manner.

Recently, deep learning has received increasing attention in
various applications [6]–[10], where deep learning models can
be utilized to improve the optimization algorithms. Among
them, deep unfolding has shown its promise in converting an
iterative algorithm into a deep neural network. In particular,
each iteration of the original algorithm is mapped into a layer
of the neural network, treating the set of hyperparameters
(e.g., step size, regularization parameters) as trainable ones.
This approach can preserve the interpretability/domain-specific
structure of the prior iterative algorithm within a limited
computational budget. Moreover, the deep unfolding offers
fast online inference, guaranteeing deployment in real-world
applications. In addition, recent work [11] has been targeting
reducing not only the number of iterations but also the
complexity of the computationally intensive operators (e.g.,
matrix inversion) in each iteration. To do this, the authors in

[11] proposed a new class of deep unfolding based on learning
each operator by a surrogate function with newly extended
hyperparameters.

In this paper, we review the background of deep unfolding
and its enhanced version to compensate for both the limited
number of iterations and the complexity per iteration. Such
advantages enable deep unfolding to be deployed in latency-
and resource-constrained network scenarios.

II. GENERAL FRAMEWORK OF DEEP UNFOLDING

Generally, an iterative algorithm is expressed as follows:

xt+1 = g(xt;θt), t ∈ {1, 2, ..., T} (1)

where xt is the point at t-th iteration, g(·; ·) is the iterative
function, and θt is a parameter. As depicted in Fig. 1, the main
principle of deep unfolding is to map each iterative function
g(·; ·) into a neural network layer. Stacking T layers forms a
T -layer deep neural network (DNN). In this way, executing the
update (1) over T times resembles the feed-forward operation
of the DNN. The parameter θt is learned by minimizing a
suitable loss function L(·), as follows:

min
Θ

L(xT+1(Θ)), (2)

where Θ = {θt}, ∀t ∈ {1, ..., T}, and xT+1(·) represents the
output function of the network. The minimization problem can
be solved using the common gradient-based algorithms, such
as stochastic gradient descent method [13]. The advantages
of the deep unfolding are listed below. First, performance
guarantees of the original iterative algorithm can be applied for
deep unfolding. Second, unfolded algorithms contain a small
number of learnable parameters, making the training process
easier. Third, unlike black-box neural networks, the unfolded
algorithms are interpretable. In the following, we provide an
example to illustrate this method.

Example 1: MIMO Detection [14]
The data transmission over a MIMO channel is represented

as:

ỹ = H̃x̃+ w̃, (3)

where ỹ ∈ CN is the received vector, H̃ ∈ CN×K is the
channel matrix, x̃ ∈ SK is the transmit symbol vector in
a finite constellation S, and w̃ is the noise vector whose
each entry is distributed as complex Gaussian with zero mean
and variance of σ2. MIMO signal detection aims to find the

663979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

Fig. 1. Deep unfolding framework [12].

estimate x̂ of the transmitted data x̃ that solves the following
problem:

x̂ = arg min
x̃∈SK

∥ỹ − H̃x̃∥22. (4)

To facilitate neural network operation, we need to decompose
the complex-valued matrix and vectors into real-valued ones.
Accordingly, the model in (3) can be rewritten as

y = Hx+w, (2)

where y ∈ R2N , w ∈ R2N , x ∈ R2K , and H ∈ R2N×2K ,
which are defined as

y =

[
ℜ(ỹ)
ℑ(ỹ)

]
,w =

[
ℜ(w̃)
ℑ(w̃)

]
,x =

[
ℜ(x̃)
ℑ(x̃)

]
, (5)

and

H =

[
ℜ(H̃) −ℑ(H̃)

ℑ(H̃) ℜ(H̃)

]
. (6)

The problem (4) is recast as

x̂ = arg min
x∈S2K

∥y −Hx∥22. (7)

Projected gradient descent (PGD) is a widely used method for
solving the above problem. The update is expressed as

x̂t+1 = PS

[
x̂t − λt

∂∥y −Hx∥2

∂x

∣∣∣
x=x̂t

]

= PS
[
x̂t − λtHTy + λtHTHx̂t] , (8)

where PS(·) represents the projection onto the set S. The
pseudocode for PGD is provided in Algorithm 1.

Algorithm 1 Project Gradient Descent Algorithm for Sig-
nal Detection

1: Initialize step size λ;
2: for t = 1, . . . , T do
3: Update zt = x̂t − λtHTy + λtHTHx̂t;
4: Update x̂t+1 = PS(z

t);
5: end for
6: return x̂ = x̂T+1.

The deep unfolding solver mimics PGD algorithm as fol-
lows:

zt = ReLU
(
Wt

1

[
x̂t − λt

1H
Ty + λt

2H
THx̂t

]
+ bt1

)
,

(9)

x̂t+1 = Soft Sign(Wt
2z

t + bt2). (10)

Here, trainable parameters are Θ =
{Wt

1,W
t
2, b

t
1, b

t
2, λ

t
1, λ

t
2}Tt=1. The architecture of the

proposed deep unfolding for MIMO detection is illustrated in
Fig. 2.

III. ENHANCED VERSION OF CLASSICAL DEEP
UNFOLDING

Even though the deep unfolding can replicate the iterative
algorithm for a given number of iterations, the computational
cost per iteration, such as matrix inversion, multiplication, or
projection, can be high. In this part, we review an approach
proposed in the recent work [11] to tackle this issue.

In [11], the authors proposed an approach to reduce the
computational cost in each iteration, resulting in an enhanced
deep unfolding solver with low running time and low com-
putational complexity. Specifically, instead of using scalar hy-
perparameters shared across iterations, the authors introduced
extended hyperparameters that are specific for each iteration,
without increasing computational complexity. Furthermore,
they replaced selected iterations with low-complexity approxi-
mations to reduce computational cost. For illustration, we take
the gradient descent method as an example.

Example 2: Gradient Descent Method
We consider the standard update expression

xt+1 = g(xt;θt) = xt − ηt · ∇xL(xt), (11)

where ηt represents the scalar step size (i.e., θt = ηt). We next
introduce an extended hyperparameter as a vector of scalar step
sizes, i.e., Θt = ηt.

xt+1 = g(xt; Θt) = xt − ηt ⊙∇xL(xt). (12)

This new expression of the update enables fine-grained control
in each iteration while still maintaining the computational
complexity. This is because the complexity of the element-
wise product is equal to that of the scalar product. The authors
in [11] also proved that the update in (12) maintains the
descent property, i.e., L(xt+1) ≤ L(xt). Next, to further
reduce the complexity, we choose a subset of the iteration
indices, denoted as T approx ⊆ {1, 2, ..., T}. In each chosen
iteration, we replace the complex gradient function by a low-
complexity approximation function g̃t(x

t). Then, the update
(12) is rewritten as

xt+1 = xt −
{

ηt ⊙ g̃t(x
t), t ∈ T approx

ηt ⊙∇xL(xt), t /∈ T approx (13)

664

Fig. 2. Deep unfolding for MIMO detection [15].

where g̃t(x
t) represents the approximation function for gradi-

ent ∇xL(xt). The authors demonstrated that the error induced
by the approximations is bounded, given that the number
of selected iterations is small, which is compensated by an
increasing number of extended hyperparameters.

IV. CONCLUSION

The deep unfolding framework effectively addresses this
limitation by transforming iterative algorithms into trainable
neural networks. This method preserves interpretability while
enabling fast inference. Recent works further reduce per-
iteration complexity through approximations over selected
iterations. In this way, deep unfolding offers an efficient
solution to make model-based optimization practical for real-
time communication systems.

ACKNOWLEDGMENT

This work was supported in part by the IITP (Institute
of Information & Communications Technology Planning &
Evaluation) - ITRC (Information Technology Research Center)
(IITP-2026-RS-2022-00156353, 50%) grant funded by the
Korea government (Ministry of Science and ICT) and in
part by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. RS-2023-
00209125).

REFERENCES

[1] Z.-Q. Luo and W. Yu, “An introduction to convex optimization for
communications and signal processing,” IEEE Journal on selected areas
in communications, vol. 24, no. 8, pp. 1426–1438, 2006.

[2] T. T. H. Pham, W. Noh, and S. Cho, “Multi-agent reinforcement learning
based optimal energy sensing threshold control in distributed cognitive
radio networks with directional antenna,” ICT Express, vol. 10, no. 3,
pp. 472–478, 2024.

[3] W. J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and J.-H.
Kim, “Cooperative multiagent deep reinforcement learning for reliable
surveillance via autonomous multi-UAV control,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 10, pp. 7086–7096, 2022.

[4] D. Kwon and D. K. Kim, “Channel estimation overhead reduction
scheme and its impact in IRS-assisted systems,” ICT Express, vol. 10,
no. 1, pp. 58–64, 2024.

[5] S. H. Gardner, T.-M. Hoang, W. Na, N.-N. Dao, and S. Cho, “Metaverse
meets distributed machine learning: A contemporary review on the
development with privacy-preserving concerns,” ICT Express, 2025.

[6] T. S. Do, T. P. Truong, Q. T. Do, and S. Cho, “TranGDeepSC:
Leveraging ViT knowledge in CNN-based semantic communication
system,” ICT Express, vol. 11, no. 2, pp. 335–340, 2025.

[7] D.-T. Hua, Q. T. Do, N.-N. Dao, and S. Cho, “On sum-rate maximization
in downlink UAV-aided RSMA systems,” ICT Express, vol. 10, no. 1,
pp. 15–21, 2024.

[8] J. Oh, D. Lee, D. S. Lakew, and S. Cho, “DACODE: Distributed
adaptive communication framework for energy efficient industrial iot-
based heterogeneous wsn,” ICT Express, vol. 9, no. 6, pp. 1085–1094,
2023.

[9] M. C. Ho, A. T. Tran, D. Lee, J. Paek, W. Noh, and S. Cho, “A DDPG-
based energy efficient federated learning algorithm with SWIPT and
MC-NOMA,” ICT Express, vol. 10, no. 3, pp. 600–607, 2024.

[10] C. Song, D. Lee, Y. Lee, W. Noh, and S. Cho, “Deep learning
based energy-efficient transmission control for STAR-RIS aided cell-free
massive MIMO networks,” ICT Express, vol. 11, no. 2, pp. 341–347,
2025.

[11] D. Avrahami, A. Milstein, C. Chaux, T. Routtenberg, and N. Shlezinger,
“Deep unfolding with approximated computations for rapid optimiza-
tion,” arXiv preprint arXiv:2509.00782, 2025.

[12] Y. Shi, L. Lian, Y. Shi, Z. Wang, Y. Zhou, L. Fu, L. Bai, J. Zhang, and
W. Zhang, “Machine learning for large-scale optimization in 6g wireless
networks,” IEEE Communications Surveys & Tutorials, vol. 25, no. 4,
pp. 2088–2132, 2023.

[13] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.

[14] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE
Transactions on Signal Processing, vol. 67, no. 10, pp. 2554–2564, 2019.

[15] R. Sun, N. Cheng, C. Li, W. Quan, H. Zhou, Y. Wang, W. Zhang,
and X. Shen, “A comprehensive survey of knowledge-driven deep
learning for intelligent wireless network optimization in 6g,” IEEE
Communications Surveys & Tutorials, 2025.

665

