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Abstract— Artificial intelligence (AI), particularly 
machine learning (ML), has become a key technology in 
antenna design due to its ability to model nonlinear 
relationships between antenna dimensions and 
performance. ML enables accurate prediction of antenna 
performance parameters based on input dimensions, 
reducing optimization time and the number of 
simulations compared to traditional methods. However, 
some existing studies still face limitations such as small 
datasets, high prediction errors, or complex and manual 
data processing procedures. This study proposes a data 
processing method on Google Colab to rapidly and 
accurately construct training datasets for machine 
learning. Based on a dataset of 15,000 samples created by 
this method, the Gradient Boosting (GB) model is used to 
predict antenna performance with a mean squared error 
(MSE) of 0.2914, demonstrating high prediction accuracy 
and low error, thereby significantly reduce simulation 
and antenna design optimization time. 
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I. INTRODUCTION 
In recent years, artificial intelligence (AI) has rapidly 

developed and become a crucial technology in various 
engineering fields, including antenna design. AI possesses 
the capability to process and analyze large volumes of data, 
thereby facilitating the optimization of design processes. ML, 
an important branch of AI, has emerged as a prominent trend 
in antenna design. The application of ML enables the 
modeling of complex nonlinear relationships between 
antenna dimensions and antenna characteristics. 
Consequently, ML models can accurately predict antenna 
characteristics, substantially reducing optimization time and 
the number of simulations required compared to traditional 
methods, thus improving accuracy and reducing costs. 

Numerous recent studies have applied ML to antenna 
optimization; however, these works still face certain 
limitations, such as small dataset sizes [1], [2], [4] or high 

mean squared error (MSE) [1], [6]. Additionally, some 
studies involve complex, manual, or multi-step data 
processing procedures, which are time-consuming and prone 
to errors [7], [8]. 

In this research, a data processing method is proposed to 
construct high-quality training datasets for machine learning. 
S11 simulation results obtained from CST software are 
exported as .txt files and processed on the Google Colab 
platform to rapidly and accurately extract antenna dimensions 
and performance parameters. The final dataset is saved in .csv 
format. This method not only significantly reduces the time 
required to build training datasets but also ensures high-
quality, consistent input data for ML models. Based on the 
constructed dataset, a Gradient Boosting model is employed 
to predict antenna performance parameters from antenna 
dimensional parameters, achieving a MSE value of only 
0.2914. This demonstrates high prediction accuracy with low 
error, thereby greatly reducing simulation and antenna design 
optimization time.  

II. MACHINE LEARNING-BASED ANTENNA PERFORMANCE 
PREDICTION 

In antenna design, machine learning is increasingly 
asserting its important role due to its ability to accurately 
predict antenna characteristics based on antenna dimensions, 
or conversely, to predict antenna dimensions based on desired 
performance parameters. However, the process of 
constructing training datasets is often time-consuming, as 
traditional simulation data collection and processing typically 
rely on manual operations, which likely to cause errors. 

In this section, in addition to presenting the application of 
machine learning models for antenna performance prediction, 
a data processing method from CST software is proposed. S11 
simulation results are exported as text files and processed on 
the Google Colab platform to rapidly and accurately extract 
both input dimensional parameters and performance 
parameters, which are then saved as .csv files for machine 
learning training. This method replaces a manual dataset 
construction process that typically requires several days with 
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an automated process completed in minutes, thereby 
substantially improving efficiency, data quality, and 
scalability for machine learning–based antenna design. 

A. Antenna design 
To construct the dataset for the rectangular patch antenna, 

CST Microwave Studio simulation software is utilized. The 
antenna is designed on a commonly used Rogers RO4003C 
substrate with a dielectric constant of 𝜀𝜀𝑟𝑟 = 3.55, a loss tangent 
of 0.0027, and a thickness of h = 0.8 mm as shown in Fig.1. 

 
Fig.  1. Rectangular patch antenna 

The effective dielectric constant 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 is calculated as 
follows [1]: 

   𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 =

{
  
 

  
 𝜀𝜀𝑟𝑟+1

2 + 𝜀𝜀𝑟𝑟−1
2 ( 1

√1+12ℎ𝑤𝑤
) , for 𝑤𝑤ℎ < 1

𝜀𝜀𝑟𝑟+1
2 + ( 𝜀𝜀𝑟𝑟−1

2√1+12ℎ𝑤𝑤
) , for 𝑤𝑤ℎ > 1

                (1) 

Where εr is the dielectric constant of the substrate 
material. The width and length of the radiating patch of the 
rectangular microstrip antenna are determined as follows [2]: 

 W = 𝑐𝑐

2𝑓𝑓0√
𝜀𝜀𝑟𝑟 + 1
2

      (2) 

 L = Leff − 2ΔL       (3) 

Where W and L are the width and length of the radiating 
patch, c is the speed of light in vacuum and f0 is the operating 
frequency. Leff is the effective length, and ΔL is the extended 
length of the antenna calculated by the following formula [2]: 

 Leff =
c

2𝑓𝑓0√𝜀𝜀𝑓𝑓𝑓𝑓
      (4) 

 

                  ΔL = 0.412h (𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒+0.3)(
𝑤𝑤
ℎ+0.264)

(𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒−0.258)(
𝑤𝑤
ℎ+0.8)

                   (5) 

B. Data acquisition 
The methodology for constructing the antenna design 

dataset is illustrated in Fig. 2: 

 
Fig.  2. Data acquisition workflow 

The antenna design data is generated using the Parameter 
Sweep function in CST, as shown in Fig. 3. The Parameter 
Sweep process systematically varies the antenna dimension 
parameters within a defined range. After the simulation 
process, the resulting S11 data is presented in Fig. 4:   

 
Fig.  3. Parameter Sweep setup in CST 

 
Fig.  4. Simulated S11 results 

658



 
Fig.  5. Example of  exported S11 data from CST 

 
Fig.  6. Data processed by proposed method

The S11 result data is exported in .txt file format as shown 
in Fig. 5. Each data sample includes antenna dimension 
parameters along with the corresponding resonant frequency 
and reflection coefficient values. The data file is then 
processed on the Google Colab platform to extract the input 
dimension parameters and performance metrics for each 
antenna sample. The complete dataset is subsequently saved 
in .csv format as shown in Fig. 6, serving as input for machine 
learning training. 

The dataset collected using this method consists of 15,000 
samples, with each sample containing six key antenna 
dimension parameters that directly affect the resonant 
frequency and bandwidth. Using this dataset, machine 
learning models are trained to predict antenna performance 
based on input dimensions, thereby providing highly accurate 
predictions of resonant frequency and bandwidth, and 
significantly reducing optimization time compared to 
traditional methods. 

C. Machine learning workflow for antenna performance 
prediction 

In this research, eight different regression models are 
selected to train and predict antenna performance parameters. 
These machine learning models are chosen for their ability to 
model complex nonlinear relationships between independent 
variables (antenna dimensions) and dependent variables 
(antenna characteristics). 

 
Fig. 7. Machine Learning for antenna performance prediction workflow  

The workflow for building machine learning models for 
antenna performance parameter prediction is detailed in     
Fig. 7. First, antenna dimension and performance data are 
simulated and collected using CST Microwave Studio. Next, 
the dataset is split into two parts: 80% for training and 20% 
for testing. This split ensures that the model not only 
memorizes the training data but can also accurately predict 
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unseen samples, reflecting the model’s true capability in new 
antenna designs. Subsequently, regression models including 
Linear Regression, Support Vector Machine, K-Nearest 
Neighbor, Decision Tree, Random Forest, Gradient Boosting, 
Extreme Gradient Boosting, and Artificial Neural Network 
are applied. Finally, the trained models are evaluated on the 
test set to select the best model for antenna design. 

C. Algorithms selection 

To model the complex nonlinear relationships between 
antenna dimensions and performance parameters, eight 
different machine learning models were employed: Linear 
Regression, Support Vector Machine, K-Nearest Neighbor, 
Decision Tree, Random Forest, Gradient Boosting, Extreme 
Gradient Boosting, and Artificial Neural Network. Each 
model has distinct characteristics and strengths in handling 
nonlinear data, thereby enhancing the accuracy and 
generalization capability of the prediction system. 

- Linear Regression: models proportional relationships 
between independent and dependent variables using a 
linear approach; assumes normally distributed errors and 
homoscedasticity [9]. 

- Support Vector Machine: effectively models nonlinear 
relationships by using kernel functions to project data into 
high-dimensional spaces. It performs well with limited 
samples and maintains strong resistance to overfitting due 
to its margin-maximization principle [10]. 

- K-Nearest Neighbor: determines the label of a new 
sample based on the K nearest points in the feature space. 
The label is assigned according to the majority voting 
principle among these neighbors. The value of K 
influences model performance: a small K is sensitive to 
noise, while a large K reduces sensitivity to local data 
patterns [11]. 

- Decision Tree: a supervised learning algorithm that 
utilizes a branching structure to perform classification or 
regression. Each node represents a data-splitting 
condition, making the model highly interpretable and 
intuitive [12]. 

- Random Forest: an ensemble model that combines 
multiple decision trees using bootstrap aggregation, 
which helps reduce variance and improve prediction 
accuracy [13]. 

- Gradient Boosting: a sequential training method of 
multiple weak learners, where each subsequent model 
corrects the errors of the previous one to minimize the loss 
function and enhance overall performance [14]. 

- Extreme Gradient Boosting: an advanced version of 
Gradient Boosting, capable of handling large-scale data, 
offering high training speed and superior performance, 
and is widely applied in both regression and classification 
tasks [15]. 

zz- Artificial Neural Network: a machine learning approach 
inspired by biological neural networks. Its structure 
consists of interconnected layers of neurons, where data 
is propagated from the input layer through hidden layers 
to the output layer. The model learns by adjusting 
connection weights to optimize prediction capability and 
approximate complex nonlinear relationships between 
input and output [16]. 

D. Evaluation metrics 

To evaluate the performance of machine learning models, 
this study employs regression metrics including Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), R-squared (R²), and Explained 
Variance Score. These metrics provide a comprehensive 
assessment of model accuracy, generalization, and fit to 
simulated data. According to [17], the above evaluation 
metrics are defined as follows: 

- Mean Squared Error (MSE): a widely used regression 
metric, MSE calculates the average of the squared differences 
between actual and predicted values. Lower MSE values 
indicate better model performance. The formula for MSE is 
expressed as follows: 

 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)2𝑛𝑛

𝑖𝑖=1       (6) 

where: 𝑌𝑌𝑖𝑖 is the actual value and, 𝑌̂𝑌𝑖𝑖 is the predicted value for 
the i-th sample. 

Root Mean Squared Error (RMSE) is the square root of 
MSE, expressing error in the same units as the target variable. 
It is sensitive to large errors and provides insight into model 
stability. Lower RMSE values indicate higher prediction 
accuracy. The formula for RMSE is expressed as follows: 

 
RMSE = √1

𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)
2𝑛𝑛

𝑖𝑖=1
      (7) 

Due to its sensitivity to large errors, the RMSE provides 
a clearer indication of the model’s stability. A smaller RMSE 
value indicates higher prediction accuracy of the model. 

Mean Absolute Error (MAE) is the average of the 
absolute differences between predicted and actual values, 
treating all errors equally. It is less sensitive to outliers than 
RMSE. The formula for MAE is expressed as follows: 

 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|

𝑛𝑛
𝑖𝑖=1       (8) 

R-squared (R²) represents the proportion of the variance in 
the dependent variable that is explained by the regression 
model, thereby indicating how well the model fits the actual 
data. Let 𝑌̅𝑌 denote the mean of the observed values 𝑌𝑌𝑖𝑖, the R-
squared formula is expressed as follows: 

 
R2 = 1 −

∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖 )2𝑛𝑛
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖 − 𝑌̅𝑌 )2𝑛𝑛
𝑖𝑖=1

       (9) 

R² = 0 indicates that the model fails to explain any of the 
variability in the data, while R² = 1 means that the model 
perfectly explains the variability of the dependent variable. 
However, in practice, achieving a perfect R² is extremely rare 
and often suggests overfitting. 

Explained Variance Score is a commonly used regression 
metric that measures the extent to which a model can account 
for the variance in the target variable. In other words, it 
reflects the model’s ability to capture the range of variation of 
the dependent variable, thereby indicating how well the model 
fits the observed data. The formula for the Explained Variance 
Score is expressed as follows: 

 Var (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)
Var (𝑌𝑌𝑖𝑖)        (10) 
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E. Result 
TABLE I.  COMPARISON OF MACHINE LEARNING MODELS 

Algorithms MSE RMSE MAE R-squared Var Score 

Linear Regression 0.861584 0.928215 0.629906 0.156248 0.156726 

Support Vector Machine 0.568739 0.754148 0.373921 0.442634 0.454233 

K-Nearest Neighbor 0.510844 0.714733 0.349556 0.498060 0.498381 

Decision Tree 0.391175 0.625439 0.257077 0.616245 0.616401 

Random Forest 0.291573 0.539975 0.248159 0.713733 0.713837 

Gradient Boosting 0.291371 0.539788 0.279197 0.714053 0.714155 

Extreme Gradient Boosting 0.291814 0.540198 0.279138 0.713593 0.713699 

Artificial Neural Network 0.319222 0.564997 0.299310 0.683862 0.685793 

 

Table I shows that the Gradient Boosting algorithm 
achieves more accurate prediction results than other 
regression models, with the lowest mean squared error of just 
0.291371 and the highest R-squared value of 0.714053. The 
key advantage of Gradient Boosting lies in its additive 
training mechanism, where multiple weak learners are built 
sequentially to iteratively reduce the residual errors of 
previous models. This enables the model to capture complex 
nonlinear relationships between antenna dimensions and 
performance more effectively. 

To evaluate the accuracy of the Gradient Boosting model, 
validation is performed by comparing the model’s predicted 
performance results with simulation data from CST. Table II 
summarizes the input dimension parameters extracted from 
the test set, while Table III presents the comparison between 
the predicted performance metrics and the corresponding 
simulated values, demonstrating the consistency between the 
model and CST simulations. 

TABLE II.  ANTENNA DIMENSIONS FROM SIMULATION 

TABLE III.  ANTENNA CHARACTERISTICS FROM SIMULATION AND PREDICTION 

 
 

 

Antenna dimensions from simulation 

No. Lp Ls Lslot Lfeed Wp Ws Wslot Wfeed h 

1 21 31 14 10 39 54 3 1.72 0.8 

2 23 38 3 10 43 58 3 1.72 0.8 

3 39 49 5 10 39 49 2 1.72 0.8 

4 47 62 5 10 43 48 2 1.72 0.8 

5 47 62 5 10 39 54 1 1.72 0.8 

Antenna characteristics from simulation  

No. F1 S11_1 BW1 F2 S11_2 BW2 F3 S11_3 BW3 F4 S11_4 BW4 

1 3.476 -14.614 0.0608 0 0 0 0 0 0 0 0 0 

2 3.364 -16.408 0.0421 0 0 0 0 0 0 0 0 0 

3 4.064 -15.760 0.0362 0 0 0 0 0 0 0 0 0 

4 3.648 -13.594 0.0213 0 0 0 0 0 0 0 0 0 

5 3.34 -33.977 0.0285 3.98 -26.224 0.0324 0 0 0 0 0 0 

Antenna characteristics from prediction 

No. F1 S11_1 BW1 F2 S11_2 BW2 F3 S11_3 BW3 F4 S11_4 BW4 

1 3.3325 -16.462 0.054 0 0 0 0 0 0 0 0 0 

2 3.0814 -17.774 0.042 0 0 0 0 0 0 0 0 0 

3 3.9037 -15.134 0.028 0 0 0 0 0 0 0 0 0 

4 3.4398 -13.901 0.019 0 0 0 0 0 0 0 0 0 

5 3.3702 -20.573 0.024 3.852 -25.920 0.0303 0 0 0 0 0 0 
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The comparison results in Table III demonstrate that the 
Gradient Boosting model is capable of accurately learning 
and predicting performance parameters from input dimension 
parameters, with only minor deviations from the simulation 
values. As such, the model can be utilized to replace 
traditional simulation methods that are time-consuming and 
costly. The zero values observed in columns F2, S11_2, BW2, 

etc., indicate that no additional resonances with a reflection 
coefficient lower than -10 dB were detected in the dataset.  

Table IV compares the proposed Gradient Boosting-based 
method with other machine learning approaches for antenna 
optimization reported in recent studies. The proposed method 
enables the optimization of antennas with compact size, 
complex structures, and low MSE. 

TABLE IV.  COMPARISON WITH RECENT METHODS 

No. Algorithms used Dataset MSE MAE RMSE R-squared Var Score 

[1] 

Decision Tree 
Random Forest 
Support Vector Regression 
Artificial Neural Network 

215 

5.556 
3.45 
5.317 
4.39 

- - - - 

[2] 

Linear Regression 
Random Forest 
Support Vector Regression 
Gaussian Process Regression 

164 

0.0759 
0.0857 
0.1354 
0.0138 

0.0741 
0.0931 
0.1040 
0.0639 

0.1136 
0.1028 
0.0992 
0.0698 

0.7491 
0.8233 
0.7308 
0.9287 

0.7957 
0.8453 
0.7675 
0.9377 

[3] 

Decision Tree 
XGBoost 
Extra Trees Regression 
Random Forest 
Gradient Boosting 

- 

0.0839 
0.0732 
0.0701 
0.0789 
0.0660 

0.0866 
0.0683 
0.0450 
0.0619 
0.0494 

0.0852 
0.0713 
0.0845 
0.0765 
0.0413 

0.4289 
0.5901 
0.8213 
0.6630 
0.9842 

0.5085 
0.6288 
0.8568 
0.7117 
0.9847 

[4] 
K-Nearest Neighbor 
Decision Tree 
Random Forest 
XGBoost 
Artificial Neural Network 

216 
0.31 
0.51 
0.32 
0.33 
1.02 

0.11 
0.16 
0.13 
0.18 
0.42 

- 

0.98 
0.97 
0.99 
0.98 
0.94 

- 

[5]  Artificial Neural Network 
Decision Tree 35,035 1.892 

0.036 - 3.017 
0.487 - - 

This 
work Gradient Boosting 15,000 0.291371 0.279197 0.539788 0.714053 0.714155 

III. CONCLUSION 
This project proposes an effective method for antenna 

design and optimization. A data processing approach on 
Google Colab was developed, enabling precise extraction of 
antenna dimension and performance values from CST. This 
process facilitates the creation of a comprehensive dataset for 
training machine learning models. Utilizing the Gradient 
Boosting and a dataset of 15,000 samples, the model is 
capable of predicting antenna parameters with a MSE of 
0.2914, demonstrating the high prediction accuracy of the 
proposed approach. This result highlights the method’s 
potential to significantly improve the efficiency and reliability 
of antenna design and optimization compared to traditional 
simulation-based approaches. 
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