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Abstract— Artificial intelligence (AI), particularly
machine learning (ML), has become a key technology in
antenna design due to its ability to model nonlinear
relationships between antenna dimensions and
performance. ML enables accurate prediction of antenna
performance parameters based on input dimensions,
reducing optimization time and the number of
simulations compared to traditional methods. However,
some existing studies still face limitations such as small
datasets, high prediction errors, or complex and manual
data processing procedures. This study proposes a data
processing method on Google Colab to rapidly and
accurately construct training datasets for machine
learning. Based on a dataset of 15,000 samples created by
this method, the Gradient Boosting (GB) model is used to
predict antenna performance with a mean squared error
(MSE) of 0.2914, demonstrating high prediction accuracy
and low error, thereby significantly reduce simulation
and antenna design optimization time.

Keywords— Al, ML, GB, Data processing, Google Colab.

[. INTRODUCTION

In recent years, artificial intelligence (AI) has rapidly
developed and become a crucial technology in various
engineering fields, including antenna design. Al possesses
the capability to process and analyze large volumes of data,
thereby facilitating the optimization of design processes. ML,
an important branch of Al has emerged as a prominent trend
in antenna design. The application of ML enables the
modeling of complex nonlinear relationships between
antenna  dimensions and  antenna  characteristics.
Consequently, ML models can accurately predict antenna
characteristics, substantially reducing optimization time and
the number of simulations required compared to traditional
methods, thus improving accuracy and reducing costs.

Numerous recent studies have applied ML to antenna
optimization; however, these works still face -certain
limitations, such as small dataset sizes [1], [2], [4] or high

979-8-3315-7896-1/26/$31.00 ©2026 IEEE

Nguyen Thanh Dat
Faculty of Telecommunication 1
Posts and Telecommunications Institute of
Technology
Hanoi, Vietnam
DatNT.B21VT119@stu.ptit.edu.vn

Do Nguyen Minh Quan
Faculty of Telecommunication 1
Posts and Telecommunications Institute of
Technology
Hanoi, Vietnam
QuanDNM.B23VT349@stu.ptit.edu.vn

657

Phan Huu Phuc
Faculty of Telecommunication 1
Posts and Telecommunications Institute of
Technology
Hanoi, Vietnam
PhucPH.B21VT351@stu.ptit.edu.vn

Tran Phuong Khanh Nhi
Faculty of Telecommunication 1
Posts and Telecommunications Institute of
Technology
Hanoi, Vietnam
NhiTPK.B25KD074@stu.ptit.edu.vn

Mai Trung Hieu
Faculty of Telecommunication 1
Posts and Telecommunications Institute of Technology
Hanoi, Vietnam
HieuMT.B23VT153@stu.ptit.edu.vn

mean squared error (MSE) [1], [6]. Additionally, some
studies involve complex, manual, or multi-step data
processing procedures, which are time-consuming and prone
to errors [7], [8]-

In this research, a data processing method is proposed to
construct high-quality training datasets for machine learning.
Si1 simulation results obtained from CST software are
exported as .txt files and processed on the Google Colab
platform to rapidly and accurately extract antenna dimensions
and performance parameters. The final dataset is saved in .csv
format. This method not only significantly reduces the time
required to build training datasets but also ensures high-
quality, consistent input data for ML models. Based on the
constructed dataset, a Gradient Boosting model is employed
to predict antenna performance parameters from antenna
dimensional parameters, achieving a MSE value of only
0.2914. This demonstrates high prediction accuracy with low
error, thereby greatly reducing simulation and antenna design
optimization time.

II. MACHINE LEARNING-BASED ANTENNA PERFORMANCE
PREDICTION

In antenna design, machine learning is increasingly
asserting its important role due to its ability to accurately
predict antenna characteristics based on antenna dimensions,
or conversely, to predict antenna dimensions based on desired
performance parameters. However, the process of
constructing training datasets is often time-consuming, as
traditional simulation data collection and processing typically
rely on manual operations, which likely to cause errors.

In this section, in addition to presenting the application of
machine learning models for antenna performance prediction,
a data processing method from CST software is proposed. Si;
simulation results are exported as text files and processed on
the Google Colab platform to rapidly and accurately extract
both input dimensional parameters and performance
parameters, which are then saved as .csv files for machine
learning training. This method replaces a manual dataset
construction process that typically requires several days with
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an automated process completed in minutes, thereby
substantially improving efficiency, data quality, and
scalability for machine learning—based antenna design.

A. Antenna design

To construct the dataset for the rectangular patch antenna,
CST Microwave Studio simulation software is utilized. The
antenna is designed on a commonly used Rogers RO4003C
substrate with a dielectric constant of &, = 3.55, a loss tangent
0f'0.0027, and a thickness of # = 0.8 mm as shown in Fig.1.
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Fig. 1. Rectangular patch antenna

The effective dielectric constant €.¢¢ is calculated as
follows [1]:
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Where €, is the dielectric constant of the substrate
material. The width and length of the radiating patch of the
rectangular microstrip antenna are determined as follows [2]:

c
W =
e +1 2
2fo 55
L= Leff — 2AL (3)

Where W and L are the width and length of the radiating
patch, c is the speed of light in vacuum and fj is the operating
frequency. Lesr is the effective length, and AL is the extended
length of the antenna calculated by the following formula [2]:
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B. Data acquisition

The methodology for constructing the antenna design
dataset is illustrated in Fig. 2:

Run parametric sweep
in CST

Export S11 and
frequency (.txt)

( Data processing on ]
Google Colab

Save dataset (.csv)

End

Fig. 2. Data acquisition workflow

The antenna design data is generated using the Parameter
Sweep function in CST, as shown in Fig. 3. The Parameter
Sweep process systematically varies the antenna dimension
parameters within a defined range. After the simulation
process, the resulting Si; data is presented in Fig. 4:

Parameter Sweep

Simulation type: Time Domain Solver v
Sequences
=
beLp =21, 23, ... , 47 (14, Linear)

i~Lsl =5, 10, 15 (3, Linear)
iLslot = 3, 4, ..., 16 (14, Linear)
“Wp = 39, 41, 43 (3, Linear)
+Ws1 =5, 10, 15 (3, Linear)

‘- Wslot = 1, 2, 3 (3, Linear)

Fig. 3. Parameter Sweep setup in CST
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Fig. 4. Simulated S, results



| *Lp35 - Notepad

File Edit Format View Help
#Parameters
#"Frequency / GHz"

"S1,1 (1) [Magnitudel”

1.0000000000000
1.0039999485016
1.0080000162125
1.0119999647141
1.0160000324249
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1.0240000486374
1.02799999713%0
1.0319999456406
1.0360000133514
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-9.852084881339198
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-0.8571e5532141519
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Fig. 5. Example of exported S, data from CST

No. Lp Ls Lslot Wp Ws Wslot f1 s11_1 | bw_1 f2 s11 2 | bw_2 f3 sll1 3 | bw_3 f4 s11 4 | bw 4
1 21 26 3 39 44 1 3.648 |-49.379 |0.074 |0 0 0 0 0 0 0 0 0
2 21 26 3 41 46 1 3.640 |-16.394 |0.057 |0 0 0 0 0 0 0 0 0
3 21 26 3 43 48 1 0 0 0 0 0 0 0 0 0 0 0 0
4 21 26 3 39 44 2 3.656 |-18.331 |0.062 |0 0 0 0 0 0 0 0 0
5 21 26 3 41 46 2 3.640 |-10.164 |0.011 |0 0 0 0 0 0 0 0 0
14996 |47 62 16 41 56 2 1.696 |[-16.997 |0.016 |3.276 |-26.148 |0.028 [3.856 |-21.959 |0.028 |4.452 |-17.142 [0.042
14997 |47 62 16 43 58 2 1.692 |-15.469 |0.015 |3.276 |-25.617 |0.028 |3.692 |-22.342 |0.026 |4.272 |-19.657 |0.039
14998 |47 62 16 39 54 3 1.708 |[-12.158 |0.011 |3.260 |-12.737 |0.023 |4.060 |-20.148 |0.029 |4.792 |-10.663 [0.028
14999 |47 62 16 41 56 3 1.704 |-11.127 |0.008 |3.260 |[-12.679 |0.023 |3.872 |-22.071 |0.028 |4.576 |-11.480 |(0.032
15000 (47 62 16 43 58 3 1.700 |-10.301 |0.004 |3.256 |-12.107 |0.021 |3.708 |-21.813 |0.025 |[4.392 |-13.196 [0.038

Fig. 6. Data processed by proposed method

The Sy result data is exported in .txt file format as shown
in Fig. 5. Each data sample includes antenna dimension
parameters along with the corresponding resonant frequency
and reflection coefficient values. The data file is then
processed on the Google Colab platform to extract the input
dimension parameters and performance metrics for each
antenna sample. The complete dataset is subsequently saved
in .csv format as shown in Fig. 6, serving as input for machine
learning training.

The dataset collected using this method consists of 15,000
samples, with each sample containing six key antenna
dimension parameters that directly affect the resonant
frequency and bandwidth. Using this dataset, machine
learning models are trained to predict antenna performance
based on input dimensions, thereby providing highly accurate
predictions of resonant frequency and bandwidth, and
significantly reducing optimization time compared to
traditional methods.

C. Machine learning workflow for antenna performance
prediction

In this research, eight different regression models are
selected to train and predict antenna performance parameters.
These machine learning models are chosen for their ability to
model complex nonlinear relationships between independent
variables (antenna dimensions) and dependent variables
(antenna characteristics).
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Fig. 7. Machine Learning for antenna performance prediction workflow

The workflow for building machine learning models for
antenna performance parameter prediction is detailed in
Fig. 7. First, antenna dimension and performance data are
simulated and collected using CST Microwave Studio. Next,
the dataset is split into two parts: 80% for training and 20%
for testing. This split ensures that the model not only
memorizes the training data but can also accurately predict



unseen samples, reflecting the model’s true capability in new
antenna designs. Subsequently, regression models including
Linear Regression, Support Vector Machine, K-Nearest
Neighbor, Decision Tree, Random Forest, Gradient Boosting,
Extreme Gradient Boosting, and Artificial Neural Network
are applied. Finally, the trained models are evaluated on the
test set to select the best model for antenna design.

C. Algorithms selection

To model the complex nonlinear relationships between
antenna dimensions and performance parameters, eight
different machine learning models were employed: Linear
Regression, Support Vector Machine, K-Nearest Neighbor,
Decision Tree, Random Forest, Gradient Boosting, Extreme
Gradient Boosting, and Artificial Neural Network. Each
model has distinct characteristics and strengths in handling
nonlinear data, thereby enhancing the accuracy and
generalization capability of the prediction system.

- Linear Regression: models proportional relationships
between independent and dependent variables using a
linear approach; assumes normally distributed errors and
homoscedasticity [9].

- Support Vector Machine: effectively models nonlinear
relationships by using kernel functions to project data into
high-dimensional spaces. It performs well with limited
samples and maintains strong resistance to overfitting due
to its margin-maximization principle [10].

- K-Nearest Neighbor: determines the label of a new
sample based on the K nearest points in the feature space.
The label is assigned according to the majority voting
principle among these neighbors. The value of K
influences model performance: a small K is sensitive to
noise, while a large K reduces sensitivity to local data
patterns [11].

- Decision Tree: a supervised learning algorithm that
utilizes a branching structure to perform classification or
regression. Each node represents a data-splitting
condition, making the model highly interpretable and
intuitive [12].

- Random Forest: an ensemble model that combines
multiple decision trees using bootstrap aggregation,
which helps reduce variance and improve prediction
accuracy [13].

- Gradient Boosting: a sequential training method of
multiple weak learners, where each subsequent model
corrects the errors of the previous one to minimize the loss
function and enhance overall performance [14].

- Extreme Gradient Boosting: an advanced version of
Gradient Boosting, capable of handling large-scale data,
offering high training speed and superior performance,
and is widely applied in both regression and classification
tasks [15].

.- Artificial Neural Network: a machine learning approach
inspired by biological neural networks. Its structure
consists of interconnected layers of neurons, where data
is propagated from the input layer through hidden layers
to the output layer. The model learns by adjusting
connection weights to optimize prediction capability and
approximate complex nonlinear relationships between
input and output [16].
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D. Evaluation metrics

To evaluate the performance of machine learning models,
this study employs regression metrics including Mean
Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), R-squared (R?), and Explained
Variance Score. These metrics provide a comprehensive
assessment of model accuracy, generalization, and fit to
simulated data. According to [17], the above evaluation
metrics are defined as follows:

- Mean Squared Error (MSE): a widely used regression
metric, MSE calculates the average of the squared differences
between actual and predicted values. Lower MSE values
indicate better model performance. The formula for MSE is
expressed as follows:

1 on N
MSE==% _ (Y;,— %)’ (6)
where: Y; is the actual value and, ?i is the predicted value for
the i-th sample.

Root Mean Squared Error (RMSE) is the square root of
MSE, expressing error in the same units as the target variable.
It is sensitive to large errors and provides insight into model
stability. Lower RMSE values indicate higher prediction
accuracy. The formula for RMSE is expressed as follows:

1 "
RMSE = —Zn (v, - %)
n i=1

Due to its sensitivity to large errors, the RMSE provides
a clearer indication of the model’s stability. A smaller RMSE
value indicates higher prediction accuracy of the model.

Mean Absolute Error (MAE) is the average of the
absolute differences between predicted and actual values,
treating all errors equally. It is less sensitive to outliers than
RMSE. The formula for MAE is expressed as follows:

(7

®)

R-squared (R?) represents the proportion of the variance in
the dependent variable that is explained by the regression
model, thereby indicating how well the model fits the actual
data. Let ¥ denote the mean of the observed values Y;, the R-
squared formula is expressed as follows:

n ~
2, (1)
T o o<
Y, (i —T)?

R? = 0 indicates that the model fails to explain any of the
variability in the data, while R? = 1 means that the model
perfectly explains the variability of the dependent variable.

However, in practice, achieving a perfect R? is extremely rare
and often suggests overfitting.

MAE =~ 3" |V, -

RZ=1

©

Explained Variance Score is a commonly used regression
metric that measures the extent to which a model can account
for the variance in the target variable. In other words, it
reflects the model’s ability to capture the range of variation of
the dependent variable, thereby indicating how well the model
fits the observed data. The formula for the Explained Variance
Score is expressed as follows:

Var (Y;—7;)

Variance Score=1 -
Var (¥;)

(10)



E. Result

TABLE I COMPARISON OF MACHINE LEARNING MODELS
Algorithms MSE RMSE MAE R-squared Var Score
Linear Regression 0.861584 0.928215 0.629906 0.156248 0.156726
Support Vector Machine 0.568739 0.754148 0.373921 0.442634 0.454233
K-Nearest Neighbor 0.510844 0.714733 0.349556 0.498060 0.498381
Decision Tree 0.391175 0.625439 0.257077 0.616245 0.616401
Random Forest 0.291573 0.539975 0.248159 0.713733 0.713837
Gradient Boosting 0.291371 0.539788 0.279197 0.714053 0.714155
Extreme Gradient Boosting 0.291814 0.540198 0.279138 0.713593 0.713699
Artificial Neural Network 0.319222 0.564997 0.299310 0.683862 0.685793

Table I shows that the Gradient Boosting algorithm
achieves more accurate prediction results than other
regression models, with the lowest mean squared error of just
0.291371 and the highest R-squared value of 0.714053. The
key advantage of Gradient Boosting lies in its additive
training mechanism, where multiple weak learners are built
sequentially to iteratively reduce the residual errors of
previous models. This enables the model to capture complex
nonlinear relationships between antenna dimensions and
performance more effectively.

To evaluate the accuracy of the Gradient Boosting model,
validation is performed by comparing the model’s predicted
performance results with simulation data from CST. Table II
summarizes the input dimension parameters extracted from
the test set, while Table III presents the comparison between
the predicted performance metrics and the corresponding
simulated values, demonstrating the consistency between the
model and CST simulations.

TABLE II. ANTENNA DIMENSIONS FROM SIMULATION
Antenna dimensions from simulation

No. Lp Ls Lslot Lfeed Wp Ws Wslot Wreed h
1 21 31 14 10 39 54 3 1.72 0.8
2 23 38 3 10 43 58 3 1.72 0.8
3 39 49 5 10 39 49 2 1.72 0.8
4 47 62 5 10 43 48 2 1.72 0.8
5 47 62 5 10 39 54 1 1.72 0.8

TABLE III.  ANTENNA CHARACTERISTICS FROM SIMULATION AND PREDICTION
Antenna characteristics from simulation

No. F, S BW, F, Sz BW, F; Si13 BW; F, Si14 BW,
1 3.476 -14.614 0.0608 0 0 0 0 0 0 0 0 0
2 3.364 -16.408 0.0421 0 0 0 0 0 0 0 0 0
3 4.064 -15.760 0.0362 0 0 0 0 0 0 0 0 0
4 3.648 -13.594 0.0213 0 0 0 0 0 0 0 0 0
5 3.34 -33.977 0.0285 3.98 -26.224 0.0324 0 0 0 0 0 0

Antenna characteristics from prediction

No. F, Si 1 BW, F, Si2 BW, F; Sii3 BW; Fs4 Siia BW,
1 3.3325 -16.462 0.054 0 0 0 0 0 0 0 0 0
2 3.0814 -17.774 0.042 0 0 0 0 0 0 0 0 0
3 3.9037 -15.134 0.028 0 0 0 0 0 0 0 0 0
4 3.4398 -13.901 0.019 0 0 0 0 0 0 0 0 0
5 3.3702 -20.573 0.024 3.852 -25.920 0.0303 0 0 0 0 0 0
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The comparison results in Table III demonstrate that the
Gradient Boosting model is capable of accurately learning
and predicting performance parameters from input dimension
parameters, with only minor deviations from the simulation
values. As such, the model can be utilized to replace
traditional simulation methods that are time-consuming and
costly. The zero values observed in columns F2, S1; 2, BW»,

etc., indicate that no additional resonances with a reflection
coefficient lower than -10 dB were detected in the dataset.

Table IV compares the proposed Gradient Boosting-based
method with other machine learning approaches for antenna
optimization reported in recent studies. The proposed method
enables the optimization of antennas with compact size,
complex structures, and low MSE.

TABLE IV. COMPARISON WITH RECENT METHODS

No. Algorithms used Dataset MSE MAE RMSE R-squared Var Score

Decision Tree 5.556

[ Random Forest 215 3.45 ) } ) }
Support Vector Regression 5317
Artificial Neural Network 4.39
Linear Regression 0.0759 0.0741 0.1136 0.7491 0.7957

2] Random Forest 164 0.0857 0.0931 0.1028 0.8233 0.8453
Support Vector Regression 0.1354 0.1040 0.0992 0.7308 0.7675
Gaussian Process Regression 0.0138 0.0639 0.0698 0.9287 0.9377
Decision Tree 0.0839 0.0866 0.0852 0.4289 0.5085
XGBoost 0.0732 0.0683 0.0713 0.5901 0.6288

[3] Extra Trees Regression - 0.0701 0.0450 0.0845 0.8213 0.8568
Random Forest 0.0789 0.0619 0.0765 0.6630 0.7117
Gradient Boosting 0.0660 0.0494 0.0413 0.9842 0.9847
K-Nearest Neighbor 0.31 0.11 0.98
Decision Tree 0.51 0.16 0.97

[4] Random Forest 216 0.32 0.13 - 0.99 -
XGBoost 0.33 0.18 0.98
Artificial Neural Network 1.02 0.42 0.94
Artificial Neural Network 1.892 3.017

5] Decision Tree 35,035 0.036 ) 0.487 ) )

;Fvl;;sl( Gradient Boosting 15,000 0.291371 0.279197 0.539788 0.714053 0.714155

III. CONCLUSION

This project proposes an effective method for antenna
design and optimization. A data processing approach on
Google Colab was developed, enabling precise extraction of
antenna dimension and performance values from CST. This
process facilitates the creation of a comprehensive dataset for
training machine learning models. Utilizing the Gradient
Boosting and a dataset of 15,000 samples, the model is
capable of predicting antenna parameters with a MSE of
0.2914, demonstrating the high prediction accuracy of the
proposed approach. This result highlights the method’s
potential to significantly improve the efficiency and reliability
of antenna design and optimization compared to traditional
simulation-based approaches.
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