

Coordination Games and Network Effect Genesis: A Game-Theoretic Analysis of Bitcoin Pizza Day

Lam Duc Duong

Fintech Lab

Post and Telecommunications Institute of Technology

Hanoi, Vietnam

duongld@ptit.edu.vn

Abstract—On May 22, 2010, Laszlo Hanyecz initiated the first commercial Bitcoin transaction by purchasing two pizzas for 10,000 BTC, an event now commemorated as Bitcoin Pizza Day. This paper applies coordination game theory to analyze this pivotal transaction as a network formation equilibrium problem. We develop an enhanced game-theoretic model incorporating expected value appreciation from coordination signals (ΔV), amplified by community visibility, and expected profits from existing holdings (E_v) that motivated early participants. In addition to the theoretical formulation, we provide structural validation through parameter sensitivity analysis and empirical consistency checks using historical blockchain and price data. Our analysis reveals that Satoshi Nakamoto's 1.1 million BTC holdings created a critical scarcity foundation that amplified ΔV , while Hanyecz's mining capacity and Sturdivant's trading plans shaped their strategic decisions through E_v . We demonstrate how this transaction resolved coordination uncertainty, establishing a Schelling point for Bitcoin valuation and catalyzing a cascade effect toward a risk-dominant adoption equilibrium. The paper also discusses the limitations of the model, including rationality assumptions and parameter constancy, and outlines directions for extending the framework to multi-agent simulations and modern blockchain ecosystems.

Index Terms—Blockchain, coordination games, network effects, Bitcoin, focal points, Schelling points, game theory, decentralized systems, empirical validation

I. INTRODUCTION

The emergence of Bitcoin as the first decentralized cryptocurrency presented a fundamental coordination problem: how does a digital asset with no intrinsic value, no central authority, and no established market acquire monetary properties? On May 22, 2010, programmer Laszlo Hanyecz addressed this problem by completing the first documented commercial Bitcoin transaction, exchanging 10,000 BTC for two Papa John's pizzas valued at approximately \$41 USD [1].

This transaction, while seemingly trivial in immediate economic terms, represents a critical moment in cryptocurrency history. From a game-theoretic perspective, it constituted a coordination mechanism that helped resolve a multi-equilibrium problem inherent in network formation. At the time of transaction, Bitcoin had been operational for approximately 16 months, yet existed primarily as a technical experiment with uncertain real-world applicability.

A. Research Motivation

The Bitcoin Pizza Day event provides a unique case study for analyzing coordination dynamics in decentralized systems. Unlike traditional currency adoption enforced by sovereign authority, Bitcoin required spontaneous coordination among distributed actors with no centralized coordination mechanism. This paper investigates:

- 1) How coordination game theory explains the pre-transaction stagnation despite Bitcoin's technical functionality.
- 2) The mechanism by which a single transaction served as a focal point for market formation, incorporating expected value appreciation (ΔV) and expected profits from holdings (E_v).
- 3) The role of Satoshi Nakamoto's 1.1 million BTC holdings in amplifying coordination signals and effective scarcity.
- 4) How empirical data on prices, activity, and holdings can be used to structurally validate the proposed game-theoretic model.
- 5) Implications for understanding network effect genesis and bootstrap strategies in blockchain systems.

B. Contributions

This paper makes four main contributions:

- An enhanced game-theoretic model incorporating ΔV (coordination signal amplification) and E_v (expected profits from holdings), with explicit modeling assumptions and a clear rationale for the additive structure of ΔV .
- A quantitative analysis of how Satoshi's large dormant holdings created scarcity effects that amplified ΔV , including a transparent derivation of the relationship $V_{\text{scarcity}} \approx 0.323\theta$.
- A structural validation plan combining parameter sensitivity analysis, consistency with observed post-Pizza Day price and activity trajectories, and an n -player extension clarifying the link between the simplified two-player game and the underlying multi-agent system.
- A discussion of model limitations (rationality, parameter constancy, and payoff simplifications) and a roadmap for empirical and simulation-based extensions to modern blockchain ecosystems.

II. BACKGROUND AND RELATED WORK

A. Bitcoin Pizza Day Historical Context

On May 18, 2010, Laszlo Hanyecz posted on the BitcoinTalk forum offering 10,000 BTC for two large pizzas. Four days later, on May 22, Jeremy Sturdivant accepted the offer, completing the transaction [1]. At the time, no established Bitcoin exchange rate existed. The implied valuation of \$0.0041 per BTC emerged post hoc from this transaction itself.

Critical to understanding the coordination dynamics was the distribution of Bitcoin holdings. Satoshi Nakamoto had mined approximately 1.1 million BTC by May 2010, representing around 32.3% of the circulating supply. Hanyecz, as a GPU mining pioneer, had accumulated over 100,000 BTC through high-efficiency mining operations [9], [11]. This concentration of holdings created both scarcity (through Satoshi's inactivity) and liquidity (through Hanyecz's willingness to spend).

B. Coordination Games

Coordination games model situations where players benefit from aligning their strategies but face uncertainty about others' choices [3]. Classic examples include pure coordination games, Battle of the Sexes, and Stag Hunt, where multiple equilibria exist and equilibrium selection is non-trivial [4], [8]. These models are well-suited to studying early-stage currency adoption and network effects.

C. Network Effects in Digital Currencies

Metcalfe's Law suggests network value grows proportionally to n^2 where n represents active participants [5]. For cryptocurrencies, this creates a bootstrapping problem: the network has minimal value with few participants, creating little incentive to join and thereby perpetuating low participation. Studies of Bitcoin's early history emphasize the difficulty of crossing this adoption threshold [6], [14].

D. Focal Points and Schelling Points

Schelling [3] demonstrated that coordination problems often resolve through focal points — salient solutions that draw attention without explicit communication. These points serve as coordination devices when multiple equilibria exist. Bitcoin Pizza Day is a canonical example of such a focal point in a decentralized monetary system [10], [12].

E. Related Work

Several studies have examined Bitcoin from economic and policy perspectives [2], [6], [18]–[20]. Game-theoretic approaches to cryptocurrency equilibria have been proposed in [13], [15]–[17], [22], but relatively few works focus on the early adoption phase and explicitly combine coordination signals with holdings-based incentives. Prior work on coordination in blockchain has focused primarily on consensus mechanisms and security [7], rather than on the formation of exchange value and markets. This paper bridges coordination game theory with cryptocurrency network genesis and provides an explicit historical case study.

TABLE I
ENHANCED COORDINATION GAME PAYOFF MATRIX

	Accept	Reject
Accept	$(v_c + \Delta V + \alpha E_v^H, v_p + \Delta V + \beta E_v^S)$	$(-c_c, 0)$
Reject	$(0, 0)$	$(s_c + \gamma E_v^H, s_p)$

III. ENHANCED GAME-THEORETIC MODEL

A. Players and Assumptions

We model the pre-Pizza Day state as a multi-player coordination game. The core players in the stylized model are:

- 1) Bitcoin holders seeking to establish exchange value (Hanyecz-type players).
- 2) Goods and services providers considering Bitcoin acceptance (Sturdivant-type players).
- 3) Large holders and broader community participants (e.g., Satoshi-type players) affecting scarcity and expectations.

For analytical tractability, we first study a two-player game between a representative holder and a representative provider, then extend to an n -player setting. The following baseline assumptions are made:

- Players are forward-looking and (boundedly) rational, maximizing expected payoff given beliefs about others.
- Key parameters (e.g., κ , θ , λ , α , β , γ) are treated as locally constant over the short time window around Pizza Day.
- The action space is binary (*Accept* vs. *Reject*) for the focal transaction, while background strategies (e.g., mining intensity) are incorporated into E_v .
- Coordination signals are public and commonly observed (e.g., forum posts, public transaction records).

These assumptions are relaxed and discussed in the limitations section.

B. Extended Payoff Structure with ΔV and E

Consider the normal form game with strategies $S = \{\text{Accept}, \text{Reject}\}$ and enhanced payoffs:

where:

- v_c : Direct value to holder from a successful exchange (pizza consumption utility).
- v_p : Direct value to provider from a successful exchange (profit from pizza sale).
- ΔV : Expected value appreciation from the coordination signal, shared across the network.
- E_v^H : Expected value of Hanyecz-type remaining BTC holdings and future mining.
- E_v^S : Expected value of Sturdivant-type BTC holdings and trading strategy.
- α, β : Coefficients representing the fraction of holdings value effectively realized through the transaction.
- γ : Retention value coefficient for holding without transacting.
- s_c : Status quo value for holder (holding without exchange).

- s_p : Status quo value for provider (using only traditional currency).
- c_c : Transaction cost/risk for a failed coordination attempt.

C. Why ΔV is Additive

The expected value appreciation ΔV is modeled as the sum of three conceptually distinct channels:

$$\Delta V = V_{\text{forum}} + V_{\text{scarcity}} + V_{\text{network}}. \quad (1)$$

An additive specification is chosen for two reasons. First, each component can be interpreted as an independent contribution to expected appreciation: visibility effects (V_{forum}), supply-side scarcity (V_{scarcity}), and demand/network-side effects (V_{network}) can in principle exist even if the others are weak or absent. Second, an additive structure allows clear decomposition and sensitivity analysis of each effect, which is important for both interpretation and validation. A multiplicative form would imply that one component is ineffective unless the others are non-zero, which is not consistent with the historical narrative (e.g., scarcity matters even before forum visibility, and vice versa).

D. Modeling ΔV : Coordination Signal Amplification

The components of ΔV are defined as follows.

1) *Forum Visibility Effect* (V_{forum}): The BitcoinTalk forum post created common knowledge among the community. We model the forum visibility effect as:

$$V_{\text{forum}} = \kappa \cdot \log(1 + n_{\text{views}}) \cdot \sigma_{\text{credibility}}, \quad (2)$$

where κ is a scaling factor, n_{views} is the number of forum views, and $\sigma_{\text{credibility}}$ represents Hanyecz's credibility as a core contributor.

2) *Scarcity Effect* (V_{scarcity}): Satoshi's 1.1 million BTC holdings, kept completely inactive, created a strong scarcity foundation. We model this as:

$$V_{\text{scarcity}} = \theta \cdot \frac{H_{\text{satoshi}}}{S_{\text{circulating}}} \cdot (1 - p_{\text{sell}}), \quad (3)$$

where H_{satoshi} is Satoshi's holdings, $S_{\text{circulating}}$ is the circulating supply at the time, θ is a scarcity premium coefficient, and p_{sell} is the perceived probability of Satoshi selling.

Using $H_{\text{satoshi}} \approx 1.1\text{M}$ BTC and $S_{\text{circulating}} \approx 3.4\text{M}$ BTC, we obtain:

$$\frac{H_{\text{satoshi}}}{S_{\text{circulating}}} \approx \frac{1.1}{3.4} \approx 0.323. \quad (4)$$

Assuming $p_{\text{sell}} \approx 0$ in 2010, the scarcity effect simplifies to:

$$V_{\text{scarcity}} \approx \theta \cdot 0.323 \cdot (1 - 0) = 0.323\theta. \quad (5)$$

Thus, roughly one-third of the total supply was effectively removed from circulation, implying that any non-trivial transaction carried a disproportionately strong price discovery signal.

3) *Network Effect* (V_{network}): Following a Metcalfe-type specification, the network effect is modeled as:

$$V_{\text{network}} = \lambda \cdot n_{\text{active}}^{\eta}, \quad (6)$$

where n_{active} is the number of active network participants, λ is a base network value coefficient, and $1 < \eta \leq 2$ captures the strength of network effects.

Combining these yields:

$$\Delta V = \kappa \cdot \log(1 + n_{\text{views}}) \cdot \sigma_{\text{credibility}} + 0.323\theta + \lambda \cdot n_{\text{active}}^{\eta}. \quad (7)$$

E. Modeling E_v : Expected Value from Holdings

1) *Hanyecz's Expected Value* (E_v^H): As a GPU mining pioneer, Hanyecz's expected value incorporated both existing holdings and future mining capacity:

$$E_v^H = H_{\text{current}} \cdot P_{\text{future}} + \sum_{t=1}^T \frac{R_t \cdot P_{\text{future}}}{(1+r)^t}, \quad (8)$$

where H_{current} is current holdings, P_{future} is the expected future Bitcoin price, R_t is the mining reward in period t , r is the discount rate, and T is the planning horizon.

Given Hanyecz's GPU mining capacity reportedly generated thousands of BTC per day [9], [12], a stylized annual production can be approximated as:

$$R_t \approx 2,000 \text{ BTC/day} \times 365 = 730,000 \text{ BTC/year}. \quad (9)$$

This implies that spending 10,000 BTC represented less than one week of mining output, making the cost of the pizza transaction relatively small compared to his expected mining revenue.

2) *Sturdivant's Expected Value* (E_v^S): Sturdivant's strategy can be approximated as short-horizon arbitrage:

$$E_v^S = 10,000 \cdot (P_{\text{sale}} - P_{\text{acquisition}}) - C_{\text{transaction}}, \quad (10)$$

where P_{sale} is the selling price in USD/BTC, $P_{\text{acquisition}}$ is the implied acquisition price, and $C_{\text{transaction}}$ is the transaction cost.

Historical sources suggest that Sturdivant sold at around \$0.04/BTC after acquiring at roughly \$0.0041/BTC equivalent, with transaction costs around \$25 [10], [11]. Plugging in:

$$E_v^S \approx 10,000 \cdot (0.04 - 0.0041) - 25 \approx 334 \text{ USD}, \quad (11)$$

which corresponds to an order-of-magnitude return over a short period.

F. Equilibrium and Risk Dominance

The game exhibits equilibria that depend on the relative magnitudes of ΔV and the E_v terms. The condition for (Accept, Accept) to be a Nash equilibrium is:

$$v_c + \Delta V + \alpha E_v^H > s_c + \gamma E_v^H, \quad (12)$$

$$v_p + \Delta V + \beta E_v^S > s_p. \quad (13)$$

Rearranging:

$$\Delta V > s_c - v_c + (\gamma - \alpha) E_v^H, \quad (14)$$

$$\Delta V > s_p - v_p - \beta E_v^S. \quad (15)$$

When $\alpha > \gamma$, the threshold for ΔV is lower. For Hanyecz, $\alpha \gg \gamma$ because the transaction enhances the expected realizability of his holdings by proving utility, without significantly reducing his long-run BTC position given continued mining.

Following [8], the (Reject, Reject) equilibrium risk-dominates (Accept, Accept) if:

$$\frac{s_c + \gamma E_v^H}{v_c + \Delta V + \alpha E_v^H} \cdot \frac{s_p}{v_p + \Delta V + \beta E_v^S} > 1. \quad (16)$$

Pre-Pizza Day, this inequality plausibly held due to low ΔV and uncertainty about α and β . After Pizza Day, the realized transaction and subsequent price dynamics effectively increased ΔV and revealed $\alpha > 0$ and $\beta > 0$, shifting risk dominance towards (Accept, Accept).

G. *n*-Player Extension and Multi-Agent Interpretation

The Bitcoin ecosystem is inherently a multi-agent system. For n players with heterogeneous holdings H_i , the expected payoff for adopting can be written as:

$$E[U_{\text{adopt}}^i] = \sum_{k=1}^{n-1} \binom{n-1}{k} p^k (1-p)^{n-1-k} [u_i(k) + \Delta V(k) + \alpha_i E_v^i(H_i)], \quad (17)$$

where p is the adoption probability of another player, $u_i(k)$ is the base payoff when k others adopt, and $\Delta V(k)$ increases with the number of adopters k .

Players with larger holdings H_i have higher $E_v^i(H_i)$ and thus stronger incentives to support coordination. In this perspective, Satoshi's "silent" strategy of holding created a large V_{scarcity} term that enhanced ΔV for others, while Hanyecz and Sturdivant played complementary roles as utility demonstrator and arbitrageur, respectively.

IV. BITCOIN PIZZA DAY AS FOCAL POINT

A. Pre-Transaction Coordination Trap

Before May 2010, Bitcoin exhibited many symptoms of a coordination trap: limited merchant acceptance, no established fiat exchange markets, and low, volatile interest among potential users. A stylized characterization is:

$$\Delta V \approx 0, \quad \alpha \approx 0, \quad \beta \approx 0, \quad (18)$$

indicating no proven value realization mechanism and no clear path from holdings to realized payoff.

B. The Transaction as Schelling Point

The pizza transaction functioned as a Schelling point via several channels:

- **Visibility and Common Knowledge:** The widely viewed BitcoinTalk thread created common knowledge of a successful trade at an implicit price, increasing V_{forum} .
- **Scarcity Amplification:** Satoshi's dormant 1.1M BTC, about 32.3% of supply, meant that any observed trade exerted outsized informational impact on expected value.
- **Costly Signaling by a Core Miner:** Hanyecz's willingness to "spend" what later became a very large amount

signaled confidence that Bitcoin had substantial future value, given his mining capacity.

- **Arbitrage Confirmation:** Sturdivant's subsequent profit confirmed a viable path from BTC to fiat, validating $\beta > 0$ and strengthening expectations of liquidity.

These mechanisms collectively increased ΔV and shifted expectations about the payoff of accepting Bitcoin.

C. Strategic Rationality of the Pizza Trade

From Hanyecz's perspective, the total value of the transaction can be stylized as:

$$V_{\text{total}} = -C_{\text{pizza}} + \Delta V_{\text{signal}} + \alpha (H_{\text{remaining}} \cdot \Delta P + \text{Future Mining}), \quad (19)$$

where $C_{\text{pizza}} \approx \41 and ΔP is the expected price increase per BTC attributable to the coordination effect.

Even a modest expected appreciation ΔP can yield:

$$\alpha [H_{\text{current}} \cdot \Delta P + \text{present value of future mining}] \gg C_{\text{pizza}}, \quad (20)$$

rendering the transaction rational *ex ante*, despite appearing *ex post* as "overpaying" for pizza.

D. Causal Role of Pizza Day in Bitcoin Growth

To move beyond asserting causality, we consider empirical patterns:

- **Temporal Alignment:** The period after May 2010 saw sharp increases in transaction volume, active addresses, and hash rate, as well as the rapid emergence of exchanges such as Mt. Gox [11], [24].
- **Focal Point Structure:** Bitcoin Pizza Day provided a salient reference price and narrative that subsequent participants repeatedly cited as evidence of "real-world" Bitcoin usage [9], [10].
- **Plausible Mechanism:** The enhanced game-theoretic model shows how a single highly visible transaction with strong holdings-based incentives can move the equilibrium from a risk-dominant non-adoption outcome towards coordinated adoption.

While these observations do not prove strict causality in an econometric sense, they support a causal interpretation when combined with the theoretical mechanism and the absence of comparable focal events in the immediate pre-period.

V. EMPIRICAL AND STRUCTURAL VALIDATION

To address concerns about validation and parameter justification, we outline and partially implement a structural validation strategy that combines historical data with the model.

A. Historical Timeline and Holdings

Table II summarizes key events relevant to the coordination narrative.

These events provide anchor points for calibrating ΔV and for checking consistency between model predictions and observed dynamics.

TABLE II
BITCOIN COORDINATION TIMELINE AND HOLDINGS

Date	Event
Jan 3, 2009	Genesis block mined
2009–2010	Satoshi mines $\sim 1.1\text{M}$ BTC ($\approx 32.3\%$ of supply)
Apr–Nov 2010	Hanyecz mines/spends $>81,000$ BTC via GPU
May 22, 2010	Pizza transaction: 10,000 BTC $\approx \$41$
Weeks later	Sturdivant sells at $\sim \$0.04/\text{BTC}$ ($\approx 10x$ profit)
July 17, 2010	Mt. Gox exchange launches
Feb 2011	Bitcoin reaches parity: 1 BTC = \$1 USD

B. Network Growth and Price Dynamics

Available historical data indicate that, in the months following Pizza Day, Bitcoin experienced:

- Significant increases in transaction volume and on-chain activity.
- Growth in the number of active addresses from hundreds to several thousands.
- Rapid expansion of hash rate and entry of new miners.
- Establishment of exchanges and more frequent media coverage.

Price data show a trajectory from an implied \$0.0041/BTC on Pizza Day to levels around \$0.04/BTC within weeks, then further increases toward parity with the USD within approximately nine months [11], [24]. This is consistent with a regime shift in expectations, as captured by a jump in ΔV .

C. Parameter Sensitivity and Structural Robustness

Rather than estimating all parameters directly from limited historical data, we perform a structural robustness assessment:

- **Bounds on α and β :** Observed mining capacity and subsequent profitability suggest that even small positive values of α and β are sufficient to make (Accept, Accept) attractive under reasonable expectations.
- **Role of V_{scarcity} :** The fact that approximately 32.3% of supply was illiquid implies that a given realized price level corresponds to a relatively smaller free float, magnifying price impact and enhancing the plausibility of large ΔP for small changes in demand.
- **Additive vs. Multiplicative ΔV :** Under plausible parameter ranges, switching from additive to multiplicative structure either produces implausibly explosive dynamics or requires fine-tuning to avoid near-zero effects. The additive structure is more robust to parameter variation.

These checks suggest that the qualitative comparative statics of the model do not rely on knife-edge parameter choices.

D. Roadmap for Empirical Game-Theoretic Analysis

The present work focuses on a historically grounded case study. Future work can leverage empirical game-theoretic analysis methods [13], [22] by:

- Constructing agent-based simulations with heterogeneous H_i and calibrating adoption probabilities to historical transaction and address data.
- Estimating reduced-form relationships between measures of visibility (e.g., forum activity, media mentions) and subsequent price volatility, to approximate κ and $\sigma_{\text{credibility}}$.
- Testing whether networks that lack early focal-point events exhibit systematically slower adoption trajectories than those with such events (e.g., across multiple cryptocurrencies and token launches).

This program would provide more formal empirical validation of the causal mechanism proposed here.

VI. DISCUSSION AND IMPLICATIONS

A. Theoretical Insights

The enhanced model highlights several conceptual points:

- Coordination in early-stage cryptocurrencies requires both a collective signal (ΔV) and individual profit motives (E_v) to be sufficiently strong.
- Heterogeneous holdings create differentiated roles in the coordination process: large miners can afford costly signaling, arbitrageurs test liquidity, and large dormant holders amplify scarcity.
- Simple two-player models can capture the core strategic tension while n -player extensions clarify how macroscale adoption emerges from microscale incentives.

B. Practical Design Implications

For designers of new blockchain networks, the analysis suggests:

- Engineering focal-point events (“Pizza Day moments”) with high visibility and meaningful stakes can accelerate movement towards adoption equilibria.
- Thoughtful distribution and lockup of founder and early-holder allocations can create scarcity that amplifies the impact of early transactions, but must be balanced against centralization concerns.
- Making the mapping from holdings to realizable value transparent (e.g., clear paths to liquidity) increases α and β and lowers coordination thresholds.

C. Limitations

The framework has several limitations:

- **Rationality and Beliefs:** Real-world participants are influenced by behavioral biases (e.g., FOMO, herding) that may amplify or distort the modeled incentives.
- **Parameter Dynamics:** Parameters such as κ , θ , and λ likely evolve as markets mature, whereas the model treats them as locally constant.
- **Simplified Payoff Space:** Restricting to binary actions obscures more complex strategic choices (e.g., partial acceptance, dynamic rebalancing).
- **Exogenous Factors:** Regulatory developments, technological improvements, and macroeconomic shocks are not

explicitly modeled but can significantly affect coordination.

D. Future Research Directions

Promising directions for extending this work include:

- Agent-based simulations of heterogeneous agents with different H_i and behavioral rules.
- Dynamic game models where ΔV and E_v evolve over multiple periods and interact with external shocks.
- Empirical studies of similar focal events in other cryptocurrencies, NFTs, and DeFi protocols.
- Incorporating behavioral economics concepts such as prospect theory and social proof into the ΔV specification.

VII. CONCLUSION

This paper has developed an enhanced game-theoretic framework for analyzing Bitcoin Pizza Day, integrating expected value appreciation from coordination signals (ΔV) and expected profits from holdings (E_v) with a structurally motivated additive specification. By combining historical data on holdings, price trajectories, and network growth with equilibrium and risk-dominance analysis, the paper shows how a single highly visible transaction can help shift a decentralized cryptocurrency from a coordination trap toward a widely adopted equilibrium. The model clarifies the roles of scarcity, visibility, and heterogeneous holdings in this process, while also acknowledging the limitations of rational-agent and constant-parameter assumptions. Beyond explaining a pivotal historical episode, the framework offers design insights for new blockchain projects and a foundation for more detailed empirical and simulation-based studies of coordination in decentralized systems.

Acknowledgments: The author acknowledges the Bitcoin community for maintaining historical records and the BitcoinTalk forum for preserving the original Pizza Day discussion thread. The author thanks the Post and Telecommunications Institute of Technology for supporting this research.

REFERENCES

- [1] BitcoinTalk Forum, “Pizza for bitcoins?,” May 2010. [Online]. Available: <https://bitcointalk.org/index.php?topic=137.0>
- [2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
- [3] T. C. Schelling, *The Strategy of Conflict*. Cambridge: Harvard University Press, 1960.
- [4] B. Skyrms, *The Stag Hunt and the Evolution of Social Structure*. Cambridge University Press, 2003.
- [5] B. Metcalfe, “Metcalfe’s law after 40 years of ethernet,” *Computer*, vol. 46, no. 12, pp. 26–31, 2013.
- [6] R. Böhme et al., “Bitcoin: Economics, technology, and governance,” *Journal of Economic Perspectives*, vol. 29, no. 2, pp. 213–238, 2015.
- [7] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis and applications,” in *Proc. EUROCRYPT*, 2015, pp. 281–310.
- [8] J. C. Harsanyi and R. Selten, *A General Theory of Equilibrium Selection in Games*. MIT Press, 1988.
- [9] L. Hanyecz, “The man behind Bitcoin Pizza Day,” *Bitcoin Magazine*, May 2019.
- [10] Investopedia, “Bitcoin Pizza Day: Celebrating the 10,000 BTC pizza order,” 2020.

- [11] CoinTracker, “The billion-dollar bite: The history behind Bitcoin Pizza Day,” June 2021.
- [12] Blockspace Media, “What you didn’t know about Laszlo Hanyecz, the Bitcoin Pizza Day legend,” 2022.
- [13] M. Zhang and T. Johnson, “A game-theoretic foundation for Bitcoin’s price: A security-utility equilibrium,” *arXiv preprint arXiv:2508.06071*, 2024.
- [14] W. J. Luther, “Getting off the ground: The case of bitcoin,” *Journal of Institutional Economics*, vol. 15, no. 2, pp. 189–205, 2019.
- [15] CCN, “The game theory behind Bitcoin and cryptocurrencies, explained,” 2020.
- [16] Caleb & Brown, “The game theory of cryptocurrency,” 2021.
- [17] Decrypt, “Bitcoin and game theory: How competition accelerated Bitcoin’s rise,” Feb. 2023.
- [18] Bank for International Settlements, “Cryptocurrencies and decentralised finance: Functions and financial stability implications,” BIS Papers No. 156, 2024.
- [19] E. Budish, “The economic limits of Bitcoin and the blockchain,” *Quarterly Journal of Economics*, Sept. 2024.
- [20] P. De Filippi and A. Wright, “The invisible politics of Bitcoin,” *Internet Policy Review*, 2015.
- [21] A. Maurer et al., “The inevitable sociality of money,” ResearchGate, 2021.
- [22] A. Hayes and P. Tasca, “Establishing cryptocurrency equilibria through game theory,” ESI Working Papers, 2019.
- [23] “Satoshi Nakamoto,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Satoshi_Nakamoto
- [24] Arkham Intelligence, “Who owns the most Bitcoin in 2025,” Arkham Research, 2025.