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Abstract—This paper investigates instrument-to-instrument 
timbre conversion by employing the MaskCycleGAN 
architecture in conjunction with the MelGAN vocoder. The 
proposed framework enables the transformation of piano 
sounds into violin sounds using both parallel and non-parallel 
datasets. To examine the impact of training conditions, multiple 
model variants were implemented with different dataset types 
and residual channel settings. Objective evaluations, based on 
Mel-Cepstral Distortion (MCD) and Fréchet Audio Distance 
(FAD), demonstrate that models trained with parallel datasets 
achieve superior conversion performance. Subjective 
evaluations, including MOS and CMOS tests, further confirm 
the perceptual validity of the converted sounds. The results 
indicate that the proposed method reduces the technical barrier 
for performers by allowing seamless cross-instrument 
conversion and provides a promising tool for enhancing 
creativity in music production. 
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I. INTRODUCTION 
With the continuous advancement of technology, audio 

conversion has become an increasingly prominent research 
area, such as speech emotion conversion [1] and singing voice 
conversion [2]. Audio conversion also demonstrates 
significant potential in music creation. Instrument-to-
instrument timbre conversion has emerged as a new research 
direction, not only achieving the desired sound of target 
instruments but also fostering diversity and innovation in 
music creation. In music composition, the timbre of 
instruments is a crucial element, giving each work its unique 
character and opening up broader avenues for exploration. 
Different instruments represent distinct playing techniques 
and unique timbres. Composers aim to integrate these features 
to create novel and unique musical works. Through indepth 
exploration of instrument-to-instrument timbre conversion 
techniques, this research aspires to bring more inspiration and 
possibilities to music creation. 

Compared to voice conversion, which has received 
significant attention and has been the subject of the Voice 
Conversion Challenge held in 2016, 2018, and 2020 [3]-[5], 
research on instrument-to-instrument timbre conversion is 
relatively recent. Voice conversion techniques have evolved 
considerably, beginning with approaches utilizing parallel 
data, such as spectral parameter trajectory maximum-
likelihood estimation [6], spectral mapping using artificial 
neural networks [7], and Recurrent Temporal Restricted 
Boltzmann Machines (RTRBMs) [8]. Subsequently, methods 
for non-parallel data conversion were also proposed. Non-

parallel data conversion methods are generally categorized 
into two main types. The first is feature disentanglement-
based approaches, which aim to separate different factors of 
variation within a speech signal, such as linguistic content, 
speaker identity, and background noise, and by isolating these 
components, the model can independently manipulate specific 
attributes. For instance, L. Sun and H. Wang proposed a non-
parallel voice conversion system that combines Phonetic 
PosteriorGrams (PPGs) obtained from an Automatic Speech 
Recognition (ASR) system with a Deep Bidirectional Long 
Short-Term Memory (DBLSTM) network [9]. The second 
category involves direct transformation-based methods, where 
the model learns to convert source to target directly. Notable 
examples include CycleGAN-VC [10], as well as its enhanced 
versions CycleGAN-VC2 [11], CycleGAN-VC3 [12], and 
MaskCycleGAN-VC [13]. 

Recently, instrument-to-instrument timbre conversion has 
started gaining attention as well. For example, the 
Differentiable Digital Signal Processing (DDSP) audio 
synthesis model [14] has been applied to instrument timbre 
conversion. By incorporating differentiable oscillators, filters, 
and reverberation components, DDSP enables high-quality 
audio synthesis with fewer data and parameters.  

This study implements timbre conversion between 
instruments using the MaskCycleGAN architecture. 
MaskCycleGAN requires smaller datasets and results in a 
relatively compact model with faster processing times [13]. It 
incorporates the vocoder MelGAN [15] as a synthesizer for 
converting waveforms to Mel-spectrograms and vice versa. 
By adjusting various parameters and utilizing both parallel 
and non-parallel datasets for training, the experiments 
successfully realize audio conversion. Finally, subjective and 
objective evaluations are conducted to assess the outcomes.  

The structure of this paper is as follows: Section 2 presents 
the method for instrument-to-instrument timbre conversion. 
Section 3 and 4 provide the experimental results and 
evaluation analysis. Concluding remarks are provided in the 
final section. 

II. METHODOLOGY 
The preprocessing procedure is follows: audio samples are 

first transformed into Mel-spectrograms via the Short-Time 
Fourier Transform (STFT). The mean and standard deviation 
of each Mel-spectrogram are computed for normalization. The 
resulting normalized values serve as the real input  to the 
MaskCycleGAN architecture. 
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Detailed descriptions of the MaskCycleGAN and 
MelGAN architectures are provided in the following 
subsections. 

A. MaskCycleGAN 
The concept of Generative Adversarial Networks (GANs) 

was introduced by Ian J. Goodfellow in 2014 [16]. The core 
idea involves two neural networks— a generator and a 
discriminator—trained in opposition. The generator aims to 
produce realistic fake data, while the discriminator attempts to 
distinguish between real and generated data. Building upon 
this concept, CycleGAN [17] was later proposed, and in 2018, 
Kaneko et al. introduced CycleGAN-VC [10], followed by the 
improved CycleGAN-VC2 in 2019 [11]. 

The CycleGAN-VC architecture incorporates three 
primary loss functions: adversarial loss, identity-mapping 
loss, and cycle consistency loss. The improved CycleGAN-
VC2 model builds upon this structure by introducing a two-
step adversarial loss, employing a 2-1-2D CNN architecture 
for the generator, and adopting a PatchGAN as the 
discriminator. In 2020, CycleGAN-VC3 [12] was introduced 
to address a key limitation of previous CycleGAN-based voice 
conversion models—namely, the inability to fully preserve the 
time-frequency structure of mel-spectrograms during 
conversion. To overcome this limitation, CycleGAN-VC3 
draws inspiration from semantic image synthesis and adopts 
the SPatially-Adaptive (DE)normalization (SPADE) 
technique [18]. It further proposes Time-Frequency Adaptive 
Normalization (TFAN), which utilizes convolutional neural 
networks (CNNs) to learn the time-frequency structure of the 
source mel-spectrogram. This information is then used to 
modulate the scale and bias of the transformation features, 
thereby preserving the source structure in the converted mel-
spectrogram. In 2021, MaskCycleGAN-VC [13] was 
proposed as a further extension. While still operating on mel-
spectrogram representations, it introduces a novel strategy 
called "Filling-In Frames" (FIF), which guides the generator 
to recover missing frames by leveraging surrounding frame 
information. 

In the MaskCycleGAN framework, the input mel-
spectrogram is denoted as  ,  and a mask   of the same 
dimensions is applied through element-wise multiplication to 
obtain the masked spectrogram , as shown in Eq. (1). 

    ∙  (1) 

The masked spectrogram , together with the mask , is 
channel-wise concatenated (denoted by ) and passed 
to the forward generator →

. Conditioned on the mask , 
→

 can selectively infer and reconstruct the absent regions 
in the input spectrogram. The conditionally informed 
generator then outputs the converted mel-spectrogram , as 
in Eq. (2). 

   →
,  (2) 

Due to the lack of parallel data for direct supervision, the 
converted result cannot be directly compared with a ground-
truth target. Therefore, a reverse generator →

  is used in a 
cycle-consistent fashion to reconstruct , as defined in Eq. 
(3), where  is assumed to be a matrix of ones, indicating 
fully filled frames. 

   →
,  (3) 

Subsequently, a cycle consistency loss is applied between 
the original mel-spectrogram   and the reconstructed 
spectrogram  . Additionally, a second adversarial loss is 
imposed on , as defined in Eq. (4). 

   
→→  ~,~∥    ∥ (4) 

B. MelGAN 
Following the conversion process performed by 

MaskCycleGAN, MelGAN is employed as the vocoder to 
synthesize the converted speech. In MelGAN [15], the mel-
spectrogram serves as the primary representation for 
conversion. By optimizing the parameters of both the 
generator and the discriminator, the model is trained to 
reconstruct the original waveform within the GAN 
framework. 

As illustrated in Fig. 1, the architecture of the MelGAN 
generator takes the mel-spectrogram as input, which is first 
processed by a convolutional layer, followed by a series of 
upsampling layers and residual stacks within the generator. 
The output from these modules is then passed through a final 
convolutional layer to produce the synthesized audio 
waveform. The total upsampling factor of the generator is 
calculated as 10×10×2×2×2=800. 

Fig. 2 illustrates the MelGAN discriminator architecture, 
which employs three discriminators operating at different 
temporal resolutions. The original waveform is fed to the first 
discriminator, while downsampled versions—obtained via 
average pooling—are provided to the others. Each 
discriminator comprises a stack of one-dimensional 
convolutional layers, beginning with a large-kernel 
convolution to capture broad temporal context. This is 
followed by progressively smaller-kernel convolutional 
blocks with a fixed stride 2 to reduce temporal resolution and 
expand the receptive field. Non-linear activations LeakyReLU 
are applied to all layers, and weight normalization is used to 
stabilize adversarial training. Each discriminator produces a 
local real/fake decision map. The outputs across scales are 
aggregated to compute the discriminator loss in adversarial 
learning. 

 
Fig. 1. Schematic illustration of the MelGAN generator architecture 

 
Fig. 2. Schematic illustration of the MelGAN discriminator architecture 
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III. EXPERIMENTS 
In this study, the experimental setup focuses on musical 

instrument sound conversion from piano to violin. The 
MaskCycleGAN architecture is employed to perform the 
instrument voice conversion between piano and violin, while 
MelGAN is adopted as the vocoder for waveform synthesis. 

A. Datasets 
The dataset includes both parallel and non-parallel types. 

Since parallel datasets are relatively difficult to obtain, they 
are generated through MIDI-based conversions. The parallel 
dataset consists of 48 piano and 48 violin recordings with 
relatively simple melodies, among which 5 pieces are reserved 
as the test set. The non-parallel dataset contains 195 piano and 
195 violin pieces with more complex melodic structures. The 
piano and violin data in the non-parallel set come from 
different sources: the piano recordings are taken from the 
MAESTRO (MIDI and Audio Edited for Synchronous 
TRacks and Organization) dataset [19], which comprises 
approximately 200 hours of piano performances and 
corresponding MIDI files. The violin recordings are from the 
CocoChorales dataset [20], generated by Yusong Wu, Josh 
Gardner, and others using the Chamber Ensemble Generator. 
All datasets were resampled to 16 kHz. Table I summarizes 
the characteristics of the datasets. 

B. Training of MaskCycleGAN 
During the training of MaskCycleGAN, the audio 

sampling rate was set to 16 kHz, the mask size was 25, the 
number of mel-spectrogram channels was 64, and the number 
of training iterations was set to 5000. To evaluate the impact 
of different training settings on the quality of the generated 
audio, four training versions were created using combinations 
of parallel or non-parallel datasets and residual channels set to 
either 256 or 512, as summarized in Table II. 

The training loss dynamics of the MaskCycleGAN 
architecture are analyzed below. The horizontal axis 
represents training time in hours. As shown in Figs. 3 and 4, 
the loss curves for MCGnp512 and MCGp512 illustrate the 
evolution of various losses during training, including (a) 
generator loss, (b) generator X→Y loss and generator Y→X 
loss, (c) cycle consistency loss and mapping loss, and (d) 
discriminator loss, discriminator   loss, and discriminator 
  loss. 

TABLE I.  DATASETS 

Dataset 
Type 

Parallel Non-Parallel 

Instrument Piano Violin Piano Violin 
Sampling 

Rate 
16kHZ 16kHZ 16kHZ 16kHZ 

Number of 
Pieces 

48 48 195 195 

Duration 
Range 

9s~278s 9s~278s 241s~7689s 13s~39s 

Source MIDI MIDI MAESTRO CocoChorlaes 
 

TABLE II.  VERSIONS OF MASKCYCLEGAN 

Version Dataset Residual 
Channels 

MCGnp256 nonparallel 256 
MCGnp512 nonparallel 512 
MCGp256 parallel 256 
MCGp512 parallel 512 

 

  
(a) (b) 

  

  
(c) (d) 

Fig. 3. MCGnp512 Loss Plots: (a) Generator, (b) Generator X→Y and Y→
X, (c) Cycle-consistency and Mapping, (d) Discriminator,  and  

 

  
(a) (b) 

  

  
(c) (d) 

Fig. 4. MCGp512 Loss Plots: (a) Generator, (b) Generator X→Y and Y→
X, (c) Cycle-consistency and Mapping, (d) Discriminator,  and   

TABLE III.  TRAINING PARAMETERS OF MELGAN VOCODER 

Parameter Value 

Training Iterations 60000 

Sampling Rate 16kHz 

Mel Spectrogram Channels 64 
Segment Length 8000 

Batch Size 64 
FFT Size 1024 

Window Length 1024 
Upsampling Layers 800 
Upsampling Ratios 10 × 10 × 2 × 2 × 2 

C. Training of MelGAN 
To suit the voice conversion task, the sampling rate is set 

to 16 kHz, and the mel-spectrogram channel size and audio 
duration are adjusted accordingly. MelGAN is trained based 
on these settings, as summarized in Table III. 

Using the training parameters specified in Table III, 
MelGAN was trained with both parallel and non-parallel 
conversion datasets. The corresponding generator and 
discriminator losses were measured with respect to the 
number of iterations, as illustrated in Figs. 5 and 6. 
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(a) (b) 

Fig. 5. (a) Generator loss and (b) discriminator loss plots for the parallel 
conversion dataset 

 

  
(a) (b) 

Fig. 6. (a) Generator loss and (b) discriminator loss plots for the non-
parallel conversion dataset 

TABLE IV.  VERSIONS OF THE INSTRUMENT SOUND CONVERSION 
MODEL 

Version MaskCycleGAN Residual 
Channels MelGAN 

MCGnp256_MGnp nonparallel 256 nonparallel 
MCGnp256_MGp nonparallel 256 parallel 
MCGnp512_MGnp nonparallel 512 nonparallel 
MCGnp512_MGp nonparallel 512 parallel 
MCGp256_MGnp parallel 256 nonparallel 
MCGp256_MGp parallel 256 parallel 

MCGp512_MGnp parallel 512 nonparallel 
MCGp512_MGp parallel 512 parallel 

 

 
(a) 

 
(b) 

Fig. 7. (a) Waveform and (b) Mel-spectrogram of MCGp512_MGp 

D. Versions of the Instrument Sound Conversion Model 
Instrument-to-instrument sound conversion between piano 

and violin is conducted using the MaskCycleGAN 
architecture, with MelGAN employed as the vocoder. By 
combining either parallel or non-parallel datasets for training 
both MaskCycleGAN and MelGAN, and configuring the 
residual channels to either 256 or 512, eight different 
instrument sound conversion versions are generated, as 
summarized in Table IV. Fig. 7 presents an example of the 
converted instrument waveform along with the corresponding 
mel-spectrogram obtained from MCGP512_MGP. 

IV. EVALUATION 
Human perception of sound varies greatly among 

individuals, rendering auditory experience inherently 
subjective. Consequently, this study employs both subjective 

and objective evaluations as the criteria for assessing the 
experimental outcomes. 

A. Objective Evaluation Metrics 
The objective evaluation in this study adopts two widely 

used metrics: Mel-Cepstral Distortion (MCD) [21] and 
Fréchet Audio Distance (FAD) [22]. 

MCD, a common evaluation metric in voice conversion 
and speech synthesis, measures the difference between 
synthesized speech and target speech. It is particularly 
effective in reflecting perceived differences in audio quality. 
In this experiment, MCD is computed between audio 
converted from piano to violin and the corresponding target 
violin recordings; lower MCD values indicate higher 
similarity between the converted and target audio. 

FAD is an objective metric for evaluating the perceptual 
quality of audio signals, introduced by Google Research as an 
audio-domain counterpart to the Fréchet Inception Distance 
(FID) [23] used in image quality assessment. Unlike 
traditional distortion-based measures, FAD does not require 
the original (clean) audio as a reference. Instead, it computes 
the statistical distance between feature distributions extracted 
from the audio under evaluation and a set of high-quality 
reference recordings. The features are derived from a 
pretrained VGGish network, which captures high-level 
semantic and perceptual characteristics of the audio. The 
distance is calculated using the Fréchet distance between 
multivariate Gaussian distributions fitted to the feature sets. 
Lower FAD values indicate closer alignment of the evaluated 
audio with the reference domain, thus implying better 
perceptual quality. 

B. Subjective Evaluation Metrics 
For the subjective evaluation, two perceptual tests were 

conducted: the Mean Opinion Score (MOS) and the 
Comparison Mean Opinion Score (CMOS) test. Both tests 
were administered via online questionnaires distributed to 
participants, who were instructed to provide ratings according 
to the specified evaluation criteria. 

In the MOS test, participants were asked to evaluate the 
perceptual quality of the presented audio samples on a five-
point scale, where a score of 1 indicates "very poor" quality 
and a score of 5 indicates "excellent" quality. Audio samples 
generated in the experiments were embedded directly into the 
questionnaire, and ratings were collected through an online 
survey form. The detailed interpretation of the rating scale is 
provided in Table V. 

According to Annex E of the ITU-T Recommendation 
P.800 [24], the Comparative Mean Opinion Score (CMOS) 
method serves as an alternative subjective metric for quality 
assessment. In a CMOS test, listeners compare two different 
versions of the test audio and assign a score based on their 
perceived preference. The original scoring scale ranges from 
–3 to +3, corresponding to seven discrete levels. To reduce the 
cognitive load on participants when discerning subtle 
differences and assigning scores, this study simplifies the 
scale to three levels: –1 (worse), 0 (equal), and +1 (better). 

C. Objective Evaluation Results 
In this experiment, objective evaluation was conducted 

using two metrics: MCD and FAD. The scores of the 
generated audio for each version of the test set are presented 
in Table VI.  
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Through this objective evaluation, it was found that the 
scores of MCGp256_MGp and MCGp512_MGp were 
consistently lower than those of other experimental methods, 
indicating superior performance. Therefore, the approaches 
using parallel conversion datasets in both MaskCycleGAN 
and MelGAN outperform those employing non-parallel 
conversion datasets. 

D. Subjective Evaluation Results 
In this experiment, a subjective evaluation was conducted 

using the MOS metric to assess the conversion of five piano 
pieces (A to E) of the test set of the parallel dataset into violin 
sounds. The conversions were performed by two models: 
MCGp256_MGp and MCGp512_MGp. Violin sounds 
synthesized directly from the MIDI files of the test set were 
included as a reference baseline for comparison. Fifteen 
participants rated the audio samples based on their subjective 
perception. The MOS results for the model-generated 
conversions by MCGp256_MGp and MCGp512_MGp are 
summarized in Tables VII (a) and (b), while the MOS scores 
for the MIDI-synthesized violin sounds are presented in Table 
VII (c). 

Based on the MOS evaluation results presented in Tables 
VII (a), (b), and (c), the average scores were calculated as 
follows: 4.21 for MCGp256_MGp, 4.19 for MCGp512_MGp, 
and 4.51 for the MIDI-generated violin sounds.  

Furthermore, a CMOS evaluation was conducted to 
compare the MCGp512_MGp and MIDI-generated violin 
sounds for the five test-set pieces. Fifteen participants were 
asked to select the version they perceived as superior. The 
results, shown in Table VIII, indicate that 74.67% of the 
participants preferred the MIDI-generated violin sounds, 
while 25.33% favored the MCGp512_MGp outputs. 

V. CONCLUSIONS AND FUTURE WORKS 
The objective of this study is to enable effortless 

conversion from one musical instrument sound to another by 
employing the MaskCycleGAN network architecture in 
conjunction with the MelGAN vocoder. To this end, 
experiments were conducted using both parallel and non-
parallel piano-to-violin datasets, and the results were 
compared to evaluate the influence of dataset type on the 
conversion performance. 

In the present experiments, superior results were achieved 
for monophonic instrument sound conversion. However, 
musical performances often involve complex melodies rather 
than such simplified cases. For more intricate melodies, the 
conversion quality is significantly reduced. Addressing this 
limitation will be the focus of our future work. 

TABLE V.  MOS RATING CRITERIA FOR VIOLIN TIMBRE QUALITY 

MOS Grade Violin Timbre Quality Description 
5 Excellent Timbre remains stable with good rhythmic 

consistency and no audible distortion. 
4 Good Timbre is stable with good rhythmic 

consistency; distortion is negligible. 
3 Fair Timbre quality is slightly degraded; rhythm 

is unstable, and distortion is noticeable. 
2 Poor Timbre quality is severely degraded; 

rhythm is unstable, and distortion is 
pronounced. 

1 Very Poor Timbre and rhythm are unrecognizable; 
distortion is excessively severe. 

TABLE VI.  RESULTS FOR MIDI-TO-VIOLIN CONVERSION 

Version MCD FAD 
MCGnp256_MGnp 21.53 9.74 
MCGnp256_MGp 19.48 9.79 
MCGnp512_MGnp 25.90 10.68 
MCGnp512_MGp 22.49 9.19 
MCGp256_MGnp 16.41 5.31 
MCGp256_MGp 4.98 0.70 
MCGp512_MGnp 15.37 5.12 
MCGp512_MGp 4.81 0.71 

TABLE VII.  MOS EVALUATION VOTE COUNTS FOR (A) 
MCGP256_MGP (B) MCGP512_MGP (C) MIDI-SYNTHESIZED VIOLIN 

(A) 
Audio\MOS 1 2 3 4 5 

A 0 0 3 5 7 
B 0 0 4 4 7 
C 0 0 0 5 10 
D 0 0 4 4 7 
E 1 0 4 7 3 

Percentage 1.33% 0% 20% 33.33% 45.33% 

(B) 
Audio\MOS 1 2 3 4 5 

A 0 1 1 5 8 
B 0 0 1 4 10 
C 0 0 3 6 6 
D 0 1 3 4 7 
E 2 0 2 8 3 

Percentage 2.66% 2.66% 13.33% 36% 45.33% 

(C) 
Audio\MOS 1 2 3 4 5 

A 0 0 1 2 12 
B 0 0 0 5 10 
C 0 0 0 5 10 
D 0 1 1 6 7 
E 0 2 1 4 8 

Percentage 0% 4% 4% 29.33% 62.66% 

TABLE VIII.  CMOS EVALUATION VOTE COUNTS FOR MCGP512_MGP 
VS. MIDI-GENERATED VIOLIN SOUNDS 

Audio MCGp512_MGp MIDI generated 
A 3 12 
B 3 12 
C 5 10 
D 5 10 
E 3 12 

Percentage 25.33% 74.67% 

 

ACKNOWLEDGMENT 
Part of this work was supported by the Ministry of Science 

and Technology, Taiwan under Contract MOST 111-2221-E-
992-075. 

REFERENCES 
[1] Carl Robinson, Nicolas Obin, and Axel Roebel, “Sequence-to-

sequence Modelling of F0 for Speech Emotion Conversion,” in 
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, 
Speech and Signal Pro-cessing (ICASSP), 12-17 May 2019, pp. 6830-
6834, doi: 10.1109/ICASSP.2019.8683865. 

[2] Koki Senda, Yukiya Hono, Kei Sawada, Kei Hashimoto, Keiichiro 
Oura, Yoshihiko Nankaku, and Keiichi Tokuda, “Singing Voice 
Conversion Using Posted Waveform Data on Music Social Media,” in 
2018 Asia-Pacific Signal and Information Processing Association 
Annual Summit and Conference (APSIPA ASC), 12-15 Nov. 2018 
2018, pp. 1913-1917, doi: 10.23919/APSIPA.2018.8659568. 

649



[3] Tomoki Toda, Ling-Hui Chen, Daisuke Saito, Fernando Villavicencio, 
Mirjam Wester, Zhizheng Wu, Junichi Yamagishi, “The Voice 
Conversion Challenge 2016,” INTERSPEECH 2016, September 8–12, 
2016, San Francisco, USA, pp. 1632-1636. 

[4] Jaime Lorenzo-Trueba, Junichi Yamagishi, Tomoki Toda, Daisuke 
Saito, Fernando Villavicencio, Tomi Kinnunen, Zhenhua Ling, “The 
Voice Conversion Challenge 2018: Promoting Development of Parallel 
and Nonparallel Methods,” The Speaker and Language Recognition 
Workshop (Odyssey 2018), 26-29 June 2018, Les Sables d’Olonne, 
France, pp. 195-202. 

[5] Zhao Yi, Wen-Chin Huang, Xiaohai Tian, Junichi Yamagishi, Rohan 
Kumar Das, Tomi Kinnunen, Zhenhua Ling, Tomoki Toda, “Voice 
Conversion Challenge 2020 – Intra-lingual semi-parallel and cross-
lingual voice conversion –,” Joint Workshop for the Blizzard Challenge 
and Voice Conversion Challenge 2020, 30 October 2020, Shanghai, 
China, pp. 80-98. 

[6] T. Toda, A. W. Black, and K. Tokuda, "Voice Conversion Based on 
Maximum-Likelihood Estimation of Spectral Parameter Trajectory," 
IEEE Transactions on Audio, Speech, and Language Processing, vol. 
15, no. 8, pp. 2222-2235, November 2007, doi: 
10.1109/TASL.2007.907344. 

[7] Srinivas Desai, Alan W. Black, B. Yegnanarayana, and Kishore 
Prahallad, “Spectral Mapping Using Artificial Neural Networks for 
Voice Conversion,” IEEE Transactions on Audio, Speech, and 
Language Processing, vol. 18, no. 5, pp. 954-964, July 2010, doi: 
10.1109/TASL.2010.2047683. 

[8] Toru Nakashika, Tetsuya Takiguchi, and Yasuo Ariki, “Voice 
Conversion Using RNN Pre-Trained by Recurrent Temporal Restricted 
Boltzmann Machines,” IEEE/ACM Transactions on Audio, Speech, 
and Language Processing, vol. 23, no. 3, pp. 580-587, 2015, doi: 
10.1109/TASLP.2014.2379589. 

[9] Lifa Sun, Kun Li, Hao Wang, Shiyin Kang, and Helen Meng, “Phonetic 
posteriorgrams for many-to-one voice conversion without parallel data 
training,” 2016 IEEE International Conference on Multimedia and 
Expo (ICME), Seattle, WA, USA, 11-15 July 2016, pp. 1-6, DOI: 
10.1109/ICME.2016.7552917. 

[10] Takuhiro Kaneko and Hirokazu Kameoka, “CycleGAN-VC: Non-
parallel voice conversion using cycle-consistent adversarial networks,” 
in Proc. EUSIPCO, 2018, pp. 2100–2104. 

[11] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu 
Hojo, “CycleGan-VC2: Improved CycleGan-based Non-parallel Voice 
Conversion,” in ICASSP 2019 - 2019 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP), 12-17 May 
2019 2019, pp. 6820-6824, doi: 10.1109/ICASSP.2019.8682897. 

[12] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu 
Hojo, “CycleGAN-VC3: Examining and Improving CycleGAN-VCs 
for Mel-spectrogram Conversion,” INTERSPEECH 2020, October 25–
29, 2020, Shanghai, China, pp. 2017-2021. 

[13] Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, Nobukatsu Hojo, 
“Maskcyclegan-VC: Learning Non-Parallel Voice Conversion with 
Filling in Frames,” in ICASSP 2021 - 2021 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), 6-
11 June 2021 2021, pp. 5919-5923, doi: 
10.1109/ICASSP39728.2021.9414851. 

[14] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts, 
“DDSP: Differentiable digital signal processing,” ICLR 2020. 

[15] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, 
Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, 
Aaron Courville, “MelGAN: Generative Adversarial Networks for 
Conditional Waveform Synthesis,” Proceedings of the 33rd 
International Conference on Neural Information Processing Systems, 
December 2019, Article No.: 1335, Pages 14910 - 14921. 

[16] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David 
Warde-Farley, Sherjil Ozairy, Aaron Courville, Yoshua Bengioz, 
“Generative Adversarial Networks,” June 2014, Advances in Neural 
Information Processing Systems 3(11), DOI:10.1145/3422622. 

[17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros, 
“Unpaired Image-to-Image Translation Using Cycle-Consistent 
Adversarial Networks,” in 2017 IEEE International Conference on 
Computer Vision (ICCV), 22-29 Oct. 2017, pp. 2242-2251, doi: 
10.1109/ICCV.2017.244. 

[18] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu, 
“Semantic Image Synthesis with Spatially-Adaptive Normalization,” 
2019 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 15-20 June 2019, Long Beach, CA, USA, pp. 
2332-2341. 

[19] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-
Zhi Anna Huang, Sander Dielemany, Erich Elsen, Jesse Engel, and 
Douglas Eck, “Enabling Factorized Piano Music Modeling and 
Generation with the MAESTRO Dataset,” ICLR 2019. 

[20] YusongWu, Josh Gardner, Ethan Manilow, Ian Simon, Curtis 
Hawthorne, Jesse Engel, “The Chamber Ensemble Generator: 
Limitless High-Quality MIR Data via Generative Modeling,” arXiv 
preprint arXiv:2209.14458. 

[21] Robert F. Kubichek, “Mel-cepstral distance measure for objective 
speech quality assessment,” Proceedings of IEEE Pacific Rim 
Conference on Communications Computers and Signal Processing, 19-
21 May 1993, Victoria, BC, Canada, pp. 125-128. 

[22] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, Matthew Shari, 
“Fréchet Audio Distance: A Metric for Evaluating Music Enhancement 
Algorithms,” INTERSPEECH 2019, September 15–19, 2019, Graz, 
Austria, pp. 2350-2354. 

[23] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard 
Nessler, Sepp Hochreiter, “GANs Trained by a Two Time-Scale 
Update Rule Converge to a Local Nash Equilibrium,” Neural 
Information Processing Systems (NIPS), Volume: 30, December 2017, 
Long Beach, California. 

[24] P.800: Methods for Subjective Determination of Transmission Quality. 
https://www.itu.int/rec/T-REC-P.800-199608-I. Accessed Jan. 09, 
2021. 

 

650


