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Abstract—This paper investigates instrument-to-instrument
timbre conversion by employing the MaskCycleGAN
architecture in conjunction with the MelGAN vocoder. The
proposed framework enables the transformation of piano
sounds into violin sounds using both parallel and non-parallel
datasets. To examine the impact of training conditions, multiple
model variants were implemented with different dataset types
and residual channel settings. Objective evaluations, based on
Mel-Cepstral Distortion (MCD) and Fréchet Audio Distance
(FAD), demonstrate that models trained with parallel datasets
achieve superior conversion performance. Subjective
evaluations, including MOS and CMOS tests, further confirm
the perceptual validity of the converted sounds. The results
indicate that the proposed method reduces the technical barrier
for performers by allowing seamless cross-instrument
conversion and provides a promising tool for enhancing
creativity in music production.

Keywords—MaskCycleGAN, audio conversion, instrument-to-
instrument, timbre conversion, MelGAN, piano to violin
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L.

With the continuous advancement of technology, audio
conversion has become an increasingly prominent research
area, such as speech emotion conversion [1] and singing voice
conversion [2]. Audio conversion also demonstrates
significant potential in music creation. Instrument-to-
instrument timbre conversion has emerged as a new research
direction, not only achieving the desired sound of target
instruments but also fostering diversity and innovation in
music creation. In music composition, the timbre of
instruments is a crucial element, giving each work its unique
character and opening up broader avenues for exploration.
Different instruments represent distinct playing techniques
and unique timbres. Composers aim to integrate these features
to create novel and unique musical works. Through indepth
exploration of instrument-to-instrument timbre conversion
techniques, this research aspires to bring more inspiration and
possibilities to music creation.

INTRODUCTION

Compared to voice conversion, which has received
significant attention and has been the subject of the Voice
Conversion Challenge held in 2016, 2018, and 2020 [3]-[5],
research on instrument-to-instrument timbre conversion is
relatively recent. Voice conversion techniques have evolved
considerably, beginning with approaches utilizing parallel
data, such as spectral parameter trajectory maximum-
likelihood estimation [6], spectral mapping using artificial
neural networks [7], and Recurrent Temporal Restricted
Boltzmann Machines (RTRBMs) [8]. Subsequently, methods
for non-parallel data conversion were also proposed. Non-
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parallel data conversion methods are generally categorized
into two main types. The first is feature disentanglement-
based approaches, which aim to separate different factors of
variation within a speech signal, such as linguistic content,
speaker identity, and background noise, and by isolating these
components, the model can independently manipulate specific
attributes. For instance, L. Sun and H. Wang proposed a non-
parallel voice conversion system that combines Phonetic
PosteriorGrams (PPGs) obtained from an Automatic Speech
Recognition (ASR) system with a Deep Bidirectional Long
Short-Term Memory (DBLSTM) network [9]. The second
category involves direct transformation-based methods, where
the model learns to convert source to target directly. Notable
examples include CycleGAN-VC [10], as well as its enhanced
versions CycleGAN-VC2 [11], CycleGAN-VC3 [12], and
MaskCycleGAN-VC [13].

Recently, instrument-to-instrument timbre conversion has
started gaining attention as well. For example, the
Differentiable Digital Signal Processing (DDSP) audio
synthesis model [14] has been applied to instrument timbre
conversion. By incorporating differentiable oscillators, filters,
and reverberation components, DDSP enables high-quality
audio synthesis with fewer data and parameters.

This study implements timbre conversion between
instruments using the MaskCycleGAN architecture.
MaskCycleGAN requires smaller datasets and results in a
relatively compact model with faster processing times [13]. It
incorporates the vocoder MelGAN [15] as a synthesizer for
converting waveforms to Mel-spectrograms and vice versa.
By adjusting various parameters and utilizing both parallel
and non-parallel datasets for training, the experiments
successfully realize audio conversion. Finally, subjective and
objective evaluations are conducted to assess the outcomes.

The structure of this paper is as follows: Section 2 presents
the method for instrument-to-instrument timbre conversion.
Section 3 and 4 provide the experimental results and
evaluation analysis. Concluding remarks are provided in the
final section.

II. METHODOLOGY

The preprocessing procedure is follows: audio samples are
first transformed into Mel-spectrograms via the Short-Time
Fourier Transform (STFT). The mean and standard deviation
of each Mel-spectrogram are computed for normalization. The
resulting normalized values serve as the real input x to the
MaskCycleGAN architecture.
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Detailed descriptions of the MaskCycleGAN and
MelGAN architectures are provided in the following
subsections.

A. MaskCycleGAN

The concept of Generative Adversarial Networks (GANs)
was introduced by Ian J. Goodfellow in 2014 [16]. The core
idea involves two neural networks— a generator and a
discriminator—trained in opposition. The generator aims to
produce realistic fake data, while the discriminator attempts to
distinguish between real and generated data. Building upon
this concept, CycleGAN [17] was later proposed, and in 2018,
Kaneko et al. introduced CycleGAN-VC [10], followed by the
improved CycleGAN-VC2 in 2019 [11].

The CycleGAN-VC architecture incorporates three
primary loss functions: adversarial loss, identity-mapping
loss, and cycle consistency loss. The improved CycleGAN-
VC2 model builds upon this structure by introducing a two-
step adversarial loss, employing a 2-1-2D CNN architecture
for the generator, and adopting a PatchGAN as the
discriminator. In 2020, CycleGAN-VC3 [12] was introduced
to address a key limitation of previous CycleGAN-based voice
conversion models—namely, the inability to fully preserve the
time-frequency structure of mel-spectrograms during
conversion. To overcome this limitation, CycleGAN-VC3
draws inspiration from semantic image synthesis and adopts
the  SPatially-Adaptive  (DE)normalization  (SPADE)
technique [18]. It further proposes Time-Frequency Adaptive
Normalization (TFAN), which utilizes convolutional neural
networks (CNNs) to learn the time-frequency structure of the
source mel-spectrogram. This information is then used to
modulate the scale and bias of the transformation features,
thereby preserving the source structure in the converted mel-
spectrogram. In 2021, MaskCycleGAN-VC [13] was
proposed as a further extension. While still operating on mel-
spectrogram representations, it introduces a novel strategy
called "Filling-In Frames" (FIF), which guides the generator
to recover missing frames by leveraging surrounding frame
information.

In the MaskCycleGAN framework, the input mel-
spectrogram is denoted as x, and a mask m of the same
dimensions is applied through element-wise multiplication to
obtain the masked spectrogram X, as shown in Eq. (1).

X=x-m 1)

The masked spectrogram X, together with the mask m, is
channel-wise concatenated (denoted by concat) and passed
to the forward generator GF*%*. Conditioned on the mask m,
GI%¥ can selectively infer and reconstruct the absent regions
in the input spectrogram. The conditionally informed
generator then outputs the converted mel-spectrogram y’, as
in Eq. (2).

y' = G  (concat(x,m)) @)

Due to the lack of parallel data for direct supervision, the
converted result cannot be directly compared with a ground-
truth target. Therefore, a reverse generator Gi*%¥ is used in a
cycle-consistent fashion to reconstruct x”’, as defined in Eq.
(3), where m' is assumed to be a matrix of ones, indicating

fully filled frames.
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Subsequently, a cycle consistency loss is applied between
the original mel-spectrogram x and the reconstructed
spectrogram x"’. Additionally, a second adversarial loss is

imposed on x", as defined in Eq. (4).

Ly = Exepymepylll x" = x Il1] “)
B. MelGAN
Following the conversion process performed by

MaskCycleGAN, MelGAN is employed as the vocoder to
synthesize the converted speech. In MelGAN [15], the mel-
spectrogram serves as the primary representation for
conversion. By optimizing the parameters of both the
generator and the discriminator, the model is trained to
reconstruct the original waveform within the GAN
framework.

As illustrated in Fig. 1, the architecture of the MelGAN
generator takes the mel-spectrogram as input, which is first
processed by a convolutional layer, followed by a series of
upsampling layers and residual stacks within the generator.
The output from these modules is then passed through a final
convolutional layer to produce the synthesized audio
waveform. The total upsampling factor of the generator is
calculated as 10x10x2x2x2=800.

Fig. 2 illustrates the MelGAN discriminator architecture,
which employs three discriminators operating at different
temporal resolutions. The original waveform is fed to the first
discriminator, while downsampled versions—obtained via
average pooling—are provided to the others. Each
discriminator comprises a stack of one-dimensional
convolutional layers, beginning with a large-kernel
convolution to capture broad temporal context. This is
followed by progressively smaller-kernel convolutional
blocks with a fixed stride 2 to reduce temporal resolution and
expand the receptive field. Non-linear activations LeakyReLU
are applied to all layers, and weight normalization is used to
stabilize adversarial training. Each discriminator produces a
local real/fake decision map. The outputs across scales are
aggregated to compute the discriminator loss in adversarial
learning.
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Fig. 1. Schematic illustration of the MelGAN generator architecture
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Fig. 2. Schematic illustration of the MelGAN discriminator architecture



III. EXPERIMENTS

In this study, the experimental setup focuses on musical
instrument sound conversion from piano to violin. The
MaskCycleGAN architecture is employed to perform the
instrument voice conversion between piano and violin, while
MelGAN is adopted as the vocoder for waveform synthesis.

A. Datasets

The dataset includes both parallel and non-parallel types.
Since parallel datasets are relatively difficult to obtain, they
are generated through MIDI-based conversions. The parallel
dataset consists of 48 piano and 48 violin recordings with
relatively simple melodies, among which 5 pieces are reserved
as the test set. The non-parallel dataset contains 195 piano and
195 violin pieces with more complex melodic structures. The
piano and violin data in the non-parallel set come from
different sources: the piano recordings are taken from the
MAESTRO (MIDI and Audio Edited for Synchronous
TRacks and Organization) dataset [19], which comprises
approximately 200 hours of piano performances and
corresponding MIDI files. The violin recordings are from the
CocoChorales dataset [20], generated by Yusong Wu, Josh
Gardner, and others using the Chamber Ensemble Generator.
All datasets were resampled to 16 kHz. Table I summarizes
the characteristics of the datasets.

B. Training of MaskCycleGAN

During the training of MaskCycleGAN, the audio
sampling rate was set to 16 kHz, the mask size was 25, the
number of mel-spectrogram channels was 64, and the number
of training iterations was set to 5000. To evaluate the impact
of different training settings on the quality of the generated
audio, four training versions were created using combinations
of parallel or non-parallel datasets and residual channels set to
either 256 or 512, as summarized in Table II.

The training loss dynamics of the MaskCycleGAN
architecture are analyzed below. The horizontal axis
represents training time in hours. As shown in Figs. 3 and 4,
the loss curves for MCGnp512 and MCGp512 illustrate the
evolution of various losses during training, including (a)
generator loss, (b) generator X—Y loss and generator Y —~X
loss, (c) cycle consistency loss and mapping loss, and (d)
discriminator loss, discriminator D, loss, and discriminator
D, loss.

TABLE L. DATASETS
Dataset Parallel Non-Parallel
Type
Instrument Piano Violin Piano Violin
Sampling 16kHZ 16kHZ 16kHZ 16kHZ
Rate
Number of 48 48 195 195
Pieces
Duration 9s~278s 9s~278s | 241s~7689s 135~39s
Range
Source MIDI MIDI MAESTRO | CocoChorlaes
TABLE II. VERSIONS OF MASKCYCLEGAN
. Residual
Version Dataset Channels

MCGnp256 nonparallel 256
MCGnp512  nonparallel 512
MCGp256  parallel 256
MCGp512 parallel 512
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Fig. 3. MCGnp512 Loss Plots: (a) Generator, (b) Generator X—Y and Y—~
X, (c) Cycle-consistency and Mapping, (d) Discriminator, D, and D,,
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Fig. 4. MCGp512 Loss Plots: (a) Generator, (b) Generator X—Y and Y—
X, (c) Cycle-consistency and Mapping, (d) Discriminator, D, and D,,

TABLE III. TRAINING PARAMETERS OF MELGAN VOCODER
Parameter Value
Training Iterations 60000
Sampling Rate 16kHz
Mel Spectrogram Channels 64
Segment Length 8000
Batch Size 64
FFT Size 1024
Window Length 1024
Upsampling Layers 800
Upsampling Ratios 10Xx10x2%x2x%x2

C. Training of Mel GAN

To suit the voice conversion task, the sampling rate is set
to 16 kHz, and the mel-spectrogram channel size and audio
duration are adjusted accordingly. MelGAN is trained based
on these settings, as summarized in Table III.

Using the training parameters specified in Table III,
MelGAN was trained with both parallel and non-parallel
conversion datasets. The corresponding generator and
discriminator losses were measured with respect to the
number of iterations, as illustrated in Figs. 5 and 6.



(a) (b)
Fig. 5. (a) Generator loss and (b) discriminator loss plots for the parallel
conversion dataset

(a) (b)
Fig. 6. (a) Generator loss and (b) discriminator loss plots for the non-
parallel conversion dataset

TABLE IV. VERSIONS OF THE INSTRUMENT SOUND CONVERSION
MODEL
Version MaskCycleGAN Residual MelGAN
Channels
MCGnp256 MGnp nonparallel 256 nonparallel
MCGnp256 MGp nonparallel 256 parallel
MCGnp512 MGnp nonparallel 512 nonparallel
MCGnp512 MGp nonparallel 512 parallel
MCGp256 MGnp parallel 256 nonparallel
MCGp256 MGp parallel 256 parallel
MCGp512 MGnp parallel 512 nonparallel
MCGp512 MGp parallel 512 parallel

(b)

Fig. 7. (a) Waveform and (b) Mel-spectrogram of MCGp512_MGp

D. Versions of the Instrument Sound Conversion Model

Instrument-to-instrument sound conversion between piano
and violin is conducted using the MaskCycleGAN
architecture, with MelGAN employed as the vocoder. By
combining either parallel or non-parallel datasets for training
both MaskCycleGAN and MelGAN, and configuring the
residual channels to either 256 or 512, eight different
instrument sound conversion versions are generated, as
summarized in Table IV. Fig. 7 presents an example of the
converted instrument waveform along with the corresponding
mel-spectrogram obtained from MCGP512_MGP.

IV. EVALUATION

Human perception of sound varies greatly among
individuals, rendering auditory experience inherently
subjective. Consequently, this study employs both subjective
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and objective evaluations as the criteria for assessing the
experimental outcomes.

A. Objective Evaluation Metrics

The objective evaluation in this study adopts two widely
used metrics: Mel-Cepstral Distortion (MCD) [21] and
Fréchet Audio Distance (FAD) [22].

MCD, a common evaluation metric in voice conversion
and speech synthesis, measures the difference between
synthesized speech and target speech. It is particularly
effective in reflecting perceived differences in audio quality.
In this experiment, MCD is computed between audio
converted from piano to violin and the corresponding target
violin recordings; lower MCD values indicate higher
similarity between the converted and target audio.

FAD is an objective metric for evaluating the perceptual
quality of audio signals, introduced by Google Research as an
audio-domain counterpart to the Fréchet Inception Distance
(FID) [23] used in image quality assessment. Unlike
traditional distortion-based measures, FAD does not require
the original (clean) audio as a reference. Instead, it computes
the statistical distance between feature distributions extracted
from the audio under evaluation and a set of high-quality
reference recordings. The features are derived from a
pretrained VGGish network, which captures high-level
semantic and perceptual characteristics of the audio. The
distance is calculated using the Fréchet distance between
multivariate Gaussian distributions fitted to the feature sets.
Lower FAD values indicate closer alignment of the evaluated
audio with the reference domain, thus implying better
perceptual quality.

B. Subjective Evaluation Metrics

For the subjective evaluation, two perceptual tests were
conducted: the Mean Opinion Score (MOS) and the
Comparison Mean Opinion Score (CMOS) test. Both tests
were administered via online questionnaires distributed to
participants, who were instructed to provide ratings according
to the specified evaluation criteria.

In the MOS test, participants were asked to evaluate the
perceptual quality of the presented audio samples on a five-
point scale, where a score of 1 indicates "very poor" quality
and a score of 5 indicates "excellent" quality. Audio samples
generated in the experiments were embedded directly into the
questionnaire, and ratings were collected through an online
survey form. The detailed interpretation of the rating scale is
provided in Table V.

According to Annex E of the ITU-T Recommendation
P.800 [24], the Comparative Mean Opinion Score (CMOS)
method serves as an alternative subjective metric for quality
assessment. In a CMOS test, listeners compare two different
versions of the test audio and assign a score based on their
perceived preference. The original scoring scale ranges from
-3 to +3, corresponding to seven discrete levels. To reduce the
cognitive load on participants when discerning subtle
differences and assigning scores, this study simplifies the
scale to three levels: —1 (worse), 0 (equal), and +1 (better).

C. Objective Evaluation Results

In this experiment, objective evaluation was conducted
using two metrics: MCD and FAD. The scores of the
generated audio for each version of the test set are presented
in Table VI.



Through this objective evaluation, it was found that the
scores of MCGp256 MGp and MCGp512 MGp were
consistently lower than those of other experimental methods,
indicating superior performance. Therefore, the approaches
using parallel conversion datasets in both MaskCycleGAN
and MelGAN outperform those employing non-parallel
conversion datasets.

D. Subjective Evaluation Results

In this experiment, a subjective evaluation was conducted
using the MOS metric to assess the conversion of five piano
pieces (A to E) of the test set of the parallel dataset into violin
sounds. The conversions were performed by two models:
MCGp256 MGp and MCGp512_ MGp. Violin sounds
synthesized directly from the MIDI files of the test set were
included as a reference baseline for comparison. Fifteen
participants rated the audio samples based on their subjective
perception. The MOS results for the model-generated
conversions by MCGp256 MGp and MCGp512_MGp are
summarized in Tables VII (a) and (b), while the MOS scores
for the MIDI-synthesized violin sounds are presented in Table
VII ().

Based on the MOS evaluation results presented in Tables
VII (a), (b), and (c), the average scores were calculated as
follows: 4.21 for MCGp256_MGp, 4.19 for MCGp512_MGp,
and 4.51 for the MIDI-generated violin sounds.

Furthermore, a CMOS evaluation was conducted to
compare the MCGp512_ MGp and MIDI-generated violin
sounds for the five test-set pieces. Fifteen participants were
asked to select the version they perceived as superior. The
results, shown in Table VIII, indicate that 74.67% of the
participants preferred the MIDI-generated violin sounds,
while 25.33% favored the MCGp512 MGp outputs.

V. CONCLUSIONS AND FUTURE WORKS

The objective of this study is to enable effortless
conversion from one musical instrument sound to another by
employing the MaskCycleGAN network architecture in
conjunction with the MelGAN vocoder. To this end,
experiments were conducted using both parallel and non-
parallel piano-to-violin datasets, and the results were
compared to evaluate the influence of dataset type on the
conversion performance.

In the present experiments, superior results were achieved
for monophonic instrument sound conversion. However,
musical performances often involve complex melodies rather
than such simplified cases. For more intricate melodies, the
conversion quality is significantly reduced. Addressing this
limitation will be the focus of our future work.

TABLE V. MOS RATING CRITERIA FOR VIOLIN TIMBRE QUALITY
MOs Grade Violin Timbre Quality Description
5 Excellent Timbrg remains stable wit'h goqd rhxihmic
consistency and no audible distortion.
4 Timbre is stable with good rhythmic
Good . . Lo -
consistency; distortion is negligible.
3 Fair Ti.mbre quality is slightl)f degradeq; rhythm
is unstable, and distortion is noticeable.
2 Poor Timbre quality is severely degraded;
rhythm is unstable, and distortion is
pronounced.
1 Very Poor Timbre and rhythm are unrecognizable;

distortion is excessively severe.
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TABLE VL RESULTS FOR MIDI-TO-VIOLIN CONVERSION

Version MCD FAD
MCGnp256 MGnp 21.53 9.74
MCGnp256 MGp 19.48 9.79
MCGnp512 MGnp 25.90 10.68
MCGnp512 MGp 22.49 9.19
MCGp256 MGnp 16.41 5.31
MCGp256 MGp 4.98 0.70
MCGp512 MGnp 15.37 5.12
MCGp512 MGp 4.81 0.71

TABLE VII.  MOS EVALUATION VOTE COUNTS FOR (A)
MCGP256_MGP (B) MCGP512_MGP (C) MIDI-SYNTHESIZED VIOLIN
(2)
Audio\MOS 1 2 3 4 5
A 0 0 3 5 7
B 0 0 4 4 7
C 0 0 0 5 10
D 0 0 4 4 7
E 1 0 4 7 3
Percentage 1.33% 0% 20% 33.33% 45.33%
(B)
Audio\MOS 1 2 3 4 5
A 0 1 1 5 8
B 0 0 1 4 10
C 0 0 3 6 6
D 0 1 3 4 7
E 2 0 2 8 3
Percentage 2.66%  2.66%  13.33% 36% 45.33%
(C)
Audio\MOS 1 2 3 4 5
A 0 0 1 2 12
B 0 0 0 5 10
C 0 0 0 5 10
D 0 1 1 6 7
E 0 2 1 4 8
Percentage 0% 4% 4% 29.33% 62.66%
TABLE VIII. CMOS EVALUATION VOTE COUNTS FOR MCGP512_MGpP
VS. MIDI-GENERATED VIOLIN SOUNDS
Audio MCGp512 MGp MIDI generated
A 3 12
B 3 12
C 5 10
D 5 10
E 3 12
Percentage 25.33% 74.67%
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